
SUPPORTING DESIGN PATTERNS IN GRAPH  
REWRITING-BASED MODEL TRANSFORMATION 

László Lengyel, Tihamér Levendovszky, Tamás Mészáros and Hassan Charaf 
Budapest University of Technology and Economics, Goldmann György tér 3, 1111 Budapest, Hungary 

Keywords: Model Transformation, Graph Rewriting, Design Patterns, Rewriting Rule Patterns. 

Abstract: Model transformations appear in many, different situations in a model-based development process. A few 
representative examples are as follows: refining the design to implementation, aspect weaving, analysis, and 
verification. In object-oriented software design, design patterns describe simple and elegant solutions to 
specific problems. Similarly, design pattern should be identified in model transformations as well to support 
the frequently appearing problems. This paper introduces the design pattern support of a modelling and 
model transformation framework (Visual Modeling and Transformation System). Furthermore, we discuss 
two model-based development related design patterns.  

1 INTRODUCTION 

Specifying systems in a higher abstraction level 
helps understanding, developing and maintaining 
software. A higher abstraction level can be achieved 
by software models and their model transformation. 
Model compilers provide a solution for automated 
source code generation from software models and 
mechanisms for software maintenance (Sztipanovits 
& Karsai, 1997) (Sztipanovits & Karsai, 2002). 

Modelling software systems helps conceiving 
and visualising the actual design, but real 
automation needs efficient model processing 
facilities, namely, model compilers. 

A model compiler is a tool that automatically 
composes a model from a set of sub-models and an 
architectural description of the arrangement of sub-
models (Butts et al, 2001). The output of a model 
compiler can be not only a model but source code as 
well. 

Model-driven development approaches (such as 
Model-Integrated Computing (MIC) (Sprinkle, 
2004) (Sztipanovits & Karsai, 1997) and OMG’s 
Model-Driven Architecture (MDA) (OMG MDA, 
2003)) emphasize the use of models at all stages of 
system development. They have placed model-based 
approaches to software development into focus. 

Graph transformation is a widely used technique 
for model transformations. Especially, visual model 
transformations can be expressed by graph 

transformations, since graphs are well-suited to 
describe the underlying structures of models. 

Graph rewriting (Rozenberg, 1997) is a powerful 
tool for graph transformations with strong 
mathematical background. The atoms of graph 
transformation are rewriting rules, each rewriting 
rule consists of a left-hand side graph (LHS) and 
right-hand side graph (RHS). Applying a graph 
rewriting rule means finding an isomorphic 
occurrence (match) of the LHS in the graph the rule 
being applied to (host graph), and replacing this 
subgraph with RHS. Replacing means removing 
elements which are in the LHS but not in the RHS, 
and gluing elements which are in the RHS but not in 
the LHS. 

In graph rewriting-based model transformation, 
there are several recurring problems that should be 
solved again and again in the context of different 
transformations or different environments. In 
(Agrawal et al, 2004), a few reusable idioms and 
patterns are provided in the context of graph 
transformation languages. A pattern is a reusable 
entity, which describes a frequent design or 
implementation problem, and gives a general but 
customizable solution to it. Illustrative examples are 
object-oriented design patterns defined by UML 
diagrams (Gamma et al, 1995). The current work 
discusses model transformation design patterns from 
the point of metamodel-based model transformation 
view. Furthermore, we introduce our tool support 

25
Lengyel L., Levendovszky T., Mészáros T. and Charaf H. (2007).
SUPPORTING DESIGN PATTERNS IN GRAPH REWRITING-BASED MODEL TRANSFORMATION.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 25-32
DOI: 10.5220/0002585100250032
Copyright c© SciTePress



 

that provides the application of the patterns in 
transformation definitions. 

The presented model transformation design 
patterns require neither unusual transformation 
language features nor unusual sophisticated 
solutions. All can be implemented in standard graph 
rewriting-based transformation languages. In 
general, implementing patterns might take a little 
more work than ad hoc solutions, but the extra effort 
returns in increased flexibility and reusability. 

The rest of the paper is organized as follows. 
Section 2, as background information, introduces 
our modelling and model transformation framework:  
Visual Modeling and Transformation System 
(VMTS). Section 3 presents the design pattern and 
transformation wizard tool support of VMTS. 
Section 4 dicusses the metamodel-based model 
transformation design patterns. Section 5 provides 
the related work information. Finally, conclusions 
are given. 

2 VISUAL MODELING AND 
TRANSFORMATION SYSTEM 

As background information, this section introduces 
our implemented metamodeling and model 
transformation framework Visual Modeling and 
Transformation System (VMTS) (VMTS, 2003). 

Visual Modeling and Transformation System 
supports editing models according to their 
metamodels, and allows specifying constraints 
written in Object Constraint Language (OCL) (OMG 
OCL, 2006). Models are formalized as directed, 
labelled graphs. VMTS uses a simplified class 
diagram for its root metamodel (”visual 
vocabulary”). Also, VMTS is a model 
transformation system, which transforms models 
using graph rewriting techniques. Moreover, the tool 
facilitates the verification of the constraints specified 
in the transformation rule during the model 
transformation process. 

In VMTS, LHS and RHS of the transformation 
rules are built from metamodel elements. This 
means that an instantiation of LHS must be found in 
the input graph instead of the isomorphic subgraph 
of LHS. 

Rewriting rules can be made more relevant to 
software engineering models if the metamodel-based 
specification of the transformations allows assigning 
OCL constraints to the individual transformation 
rules. This technique facilitates a natural 
representation for multiplicities, multi-objects and 

assignments of OCL constraints to the rules with a 
syntax close to the UML notation.  

 

 
Figure 1: Example transformation rule: ClassToTable. 

An example transformation rule that generates 
database tables from UML classes is depicted in Fig. 
1. Constraints propagated to the transformation rule 
nodes are also presented: Cons_C1, Cons_C2, 
Cons_H1, Cons_T1, and Cons_T2. With the help of 
these constraints we can require certain properties 
from the transformation rule, and we can make them 
validated (Lengyel, 2006). 

 
context Class inv Cons_C1: 
not self.abstract 
 
The constraint Cons_C1 is assigned to the 

pattern rule node Class in LHS of the rule 
CreateTable. This link forms a precondition for the 
rule, it requires the rule to process only non-abstract 
classes.  

 
context Table inv Cons_T1: 
self.columns->exists(c | c.datatype =  
'int' and c.is_primary_key) 
 
The constraint Cons_T1 is a postcondition of the 

rule CreateTable, it is assigned to the rule node 
Table. This constraint requires the rule that all 
created table has a primary key of int type. 
 

context Atom inv Cons_H1: 
self.class.attribute->forAll 

(self.table.column-> 
exists(c | (c.columnName =  
class.attribute.name)) 
 
The constraint Cons_H1 is linked to the rule 

node TableHelperNode, it requires that each class 
attribute should have a created column with the 
same name in the resultant table. 

The constraints assigned to the transformation 
rule guarantee our requirements. After a successful 

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

26



 

rule execution, the conditions hold and the output is 
valid, which cannot be achieved without constraints. 

VMTS facilitates a refined description of the 
transformation rules. When the transformation is 
performed, the changes are specified by the RHS 
and internal causality relationships defined between 
the LHS and the RHS elements of a transformation 
rule. Internal causalities can express the 
modification or removal of an LHS element, and the 
creation of an RHS element. Imperative OCL (OMG 
QVT, 2005) or XSLT scripts can access to the 
attributes of the objects matched to the LHS 
elements, and produce a set of attributes for the RHS 
element to which the causality points. 

Classical graph grammars apply any production 
that is feasible. This technique is appropriate for 
generating and matching languages but model 
transformations often need to follow an algorithm 
that requires a stricter control over the execution 
sequence of the rules, with the additional benefit of 
making the implementation more efficient. 

 

 
Figure 2: Example transformation (VCFL model): 
ClassToRDBMS. 

The VMTS approach is a visual approach, thus, 
it also uses graphical notation for control flow: 
stereotyped UML activity diagrams. VMTS Visual 
Control Flow Language (VCFL) is a visual language 
for controlled graph rewriting and transformation, 
which supports the following constructs: sequencing 
transformation rules, branching with OCL 
constraints, hierarchical rules, parallel execution of 
the rules, and iteration. An example VMTS 
transformation, a VCFL model, is presented in Fig. 
2. 

VMTS transformation rules have two specific 
properties: Exhaustive and MultipleMatch. An 
exhaustive transformation rule is executed 
repeatedly, as long as LHS of the rule can be 
matched to the input model. The MultipleMatch 
property of a rule allows that the matching process 
finds not only one but all occurrences of LHS in the 

input model, and the replacement is executed on all 
the found places. 

The interface of the transformation rules allows 
the output of one rule to be the input of another rule 
(parameter passing), in a dataflow-like manner. In 
VCFL, this construction is referred to as external 
causality. An external causality creates a linkage 
between a node contained by RHS of the rule i and a 
node contained by LHS of the rule i+1. Since rule i 
provides partial match to rule i+1, this feature 
accelerates the matching process and reduces the 
complexity. 

VMTS supports validated model transformation, 
constraint management and control flow definition. 
The environment has standalone algorithms and 
other solutions that make them efficient. Moreover, 
VMTS has a unique, aspect-oriented technique-
based constraint management (Lengyel, 2006). The 
constraint-driven branching mechanism of the 
VMTS is unique in the sense that the decision is 
made not only based on the actual state of the input 
model but using system variables 
(SystemLastRuleSucceed) as well. If a 
transformation rule fails, and the next element in the 
control flow is a decision object, then it can provide 
the next branch based on these variables. Fig. 3 
outlines the principles of VMTS metamodel-based 
model transformation. 

 

 
Figure 3: Principles of VMTS metamodel-based model 
transformation. 

3 DESIGN PATTERN AND 
TRANSFORMATION WIZARD 
SUPPORT IN VMTS 

This section shortly introduces domain-specific 
design patterns and the Visual Model Processor 
(VMP) wizard support of VMTS. 

3.1 VMTS Design Pattern Support 

Creating domain-specific model patterns and reusing 
them in different domain-specific models offer great 
perspectives for rapid application development and 
keep reliability at a high-level as well. VMTS 

SUPPORTING DESIGN PATTERNS IN GRAPH REWRITING-BASED MODEL TRANSFORMATION

27



 

provides a tool support to create general but 
customizable model patterns.  

Patterns are defined as general models based on 
their metamodels. Of course, patterns can be applied 
for models, which have the same metamodel as the 
patterns.   

There was a natural need for the capability of 
organising them into pattern repositories and 
attaching some meta-information to the patterns as 
well. A domain-specific model has been created, 
whose instance model elements represent a reference 
to pattern models. The instance models behave as 
pattern repositories as they can contain numerous 
references to design pattern models. 

The modelling framework of the VMTS 
facilitates to browse patterns and apply them to the 
actual model. Furthermore, the customization of 
pattern element attributes is also supported. 

The VMTS Rule Editor and Control Flow plug-
ins are implemented as domain-specific models: 
they are defined with their metamodels and plug-in-
dependent visualisation is added to them (VMTS, 
2003). Therefore, the VMTS design pattern support 
can be applied both for transformation rules and 
control flow models. 

3.2 VMTS Visual Model Processor 
Wizard 

VMTS provides a tool support for automatic Visual 
Model Processor (VMP) generation. The 
transformation generated by VMTS VMP Wizard 
contains a control flow (VCFL) model and rewriting 
rules.  

VMTS VMP Wizard provides the possibility (i) 
to select from the “hello world transformations”: 
such as UML class diagram to source code 
(ClasToCode), or (ii) to customise the 
transformation: e.g. select the metamodels of the 
source and target models, or to select the option to 
generate source code.  

The mechanisms used by the framework to 
generate the transformation based on the selected 
options are the XML-based import and the design 
pattern support (Section 3.1) of VMTS. The example 
transformations are exported as XML files and can 
be imported during the VMP generation. 
Furthermore, the import and the design pattern 
support is combined in certain cases: the control 
flow model is imported from XML, but the rewriting 
rules are inserted via the design pattern support 
mechanisms.  

4 DESIGN PATTERNS IN MODEL 
TRANSFORMATION  

Design patterns presented in this section are based 
on the transformation “class model to relational 
database management system (RDBMS) model” 
(also referred to as object-relational mapping). The 
control flow model of the transformation is 
presented in Fig. 2. The validated solution of the 
case study can be found in (Lengyel, 2006) and 
(Lengyel et al, 2006). 

We have divided the model transformation-
related design patterns into the following groups: 
full rewriting rules, partial rewriting rules, and 
control flow patterns (a pattern containing more 
rewriting rules). 

Based on the well-estabilished method used to 
define design patterns in the object-oriented world, 
we provide the same structure for the description of 
metamodel-based model transformation patterns: (i) 
Motivation: a problem, the pattern is intended to 
solve. (ii) Applicability: the general class of 
problems in which the design pattern can be applied. 
(iii) Structure: the abstract graphical representation 
of the pattern. (iv) Consequences: the trade-offs and 
results of using the pattern (advantages and 
disadvantages). (v) Known uses: examples of the 
pattern found in transformations. (vi) Variations: the 
known solutions of other approaches, and the 
important differences. 
Section 4.1 is devoted to the dicussion of a rewriting 
rule pattern, which presents a rule part. Section 4.2 
presents a pattern that contains not only a single rule 
or rule part, but several rewriting rules and a control 
flow pattern as well. 

4.1 The Helper Construct Pattern 

Motivation. In transformation ClassToRDBMS, the 
first rule, ClassToTable (Fig. 1), creates database 
tables for all non-abstract classes. A generated table 
contains columns for each attribute in its origin 
class. At this point the tables are not complete, 
because not only the actual class but its parent 
classes should also be taken into account. In general, 
an input model contains several classes.  Later in the 
transformation we need to add further columns to 
the tables based on the corresponding parent classes. 
Therefore we need the information that relates the 
original class and its generated table. This can be 
solved with helper constructs that can temporarily 
relate model elements, even if they are in different 
models (with different metamodels).  

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

28



 

Applicability. Helper constructs support to 
temporarily releate model elements that cannot be 
releated based on their metamodel. The helper 
construct is created by a model transformation, it can 
be used during the actual transformation, but it 
should be removed till the end of the transformation.  
 

 
Figure 4: Sructure of the Helper Construct Pattern. 

Structure. The structure of the pattern is presented 
in Fig. 4. Recall that metamodel-based rewriting 
rules are built from metamodel elements. Often, the 
helper construct must connect elements from 
different models. In the current solution the 
metatypes of the helper constructs do not belong to 
any of the actually used metamodels. They are based 
on the hard-wired meta-metamodel that provides 
basic contructs for metamodel definitions: Atom, and 
different relations: SystemInheritance, 
SystemContainment, and SystemRelationship 
(VMTS, 2003). Fig. 5 presents that metamodel-
based rewriting rules are on the same level as 
metamodels. Furthermore, the rule node Original 
has metatype from Metamodel 1, rule node Atteched 
has metatype from Metamodel 2, and the metatype 
of the helper constuct is from Meta-metamodel. Fig. 
5 introduces the instantiation hiearchy applied in a 
metamodeling tool. 
 

 
Figure 5: The the instantiation hiearchy of a metamodeling 
tool. 

Consequences. Optional temporary relations can be 
supported between optional model elements, even 
they are from different models. Furthermore, 

optional attributes can be assigned to the temporary 
relations that can make them more sophisticated. 
Helper construct elements have different metatypes 
than input and output model elements, therefore, it 
can be automatically checked not to leave helper 
construct in processed models.  

This pattern provides the basis for the automatic 
trace generation during the model transformation. In 
VMTS, trace elements are generated based on the 
internal causalities using the structure of the current 
pattern.   
Known uses. (i) In the transformation ClassToTable 
temporary relaions between: (a) Class and Table 
elements, (b) Class elements, which are devoted to 
support the creation of the transitive closure upwards 
in the inheritance hierarchy, and (c) Class elements, 
which are used to created foreign key relations. (ii) 
In transformation ClassToCode between Package 
and Namespace elements. 
Variations. The following environments have been 
examined how they support helper constructions: 
AGG (Taentzer, 2003) is an integrated development 
tool for typed attributed graph transformation, 
AToM3 (Lara et al, 2004), which supports regular 
graph grammars and triple graph grammars, the 
VIATRA (Varró and Pataricza, 2003) approach that 
combines the rule and pattern-based paradigm of 
graph transformation and abstract state machines 
(ASM), the GReAT (Karsai et al, 2003) framework, 
which is a transformation system for domain-
specific languages, and FUJABA (Köhler et al, 
2000) that extends UML, story driven modelling and 
graph transformation. All of them provides slutions 
that support the runtime creation of the helper 
constructs. In case of AGG and AToM3 helper types 
are added to the metamodels and then they can be 
used in model transformation rules (Taentzer et al, 
2005). 

4.2 The Optimized Transitive Closure 
Pattern 

Motivation. Recall that in transformation 
ClassToTable the columns of the generated table 
should be created not only based on the actual class, 
but on its parent classes as well. Therefore, we 
should support the creation of the transitive closure 
upwards in the inheritance hierarchy. Furthermore, 
the relations between the tables should be created 
not only based on the relations of the actual class, 
but based on the relations of the parent classes as 
well. Furthermore, using temporary associations the 
actual class and the neighbours of the parent classes 
should be related. 

SUPPORTING DESIGN PATTERNS IN GRAPH REWRITING-BASED MODEL TRANSFORMATION

29



 

The control flow pattern of the transitive closure 
traversing inheritance hierarchy is depicted in Fig. 6. 
 

 
Figure 6: The control flow model of the inheritance 
transitive closure. 

Rule CreateParentClassHelper inserts a helper 
construct between a class (provided with the help of 
an external causality) and its base class if any. If the 
rule was successful, there exists a base class, then 
the transformation continues with rule 
AddParentAssociation (Fig. 7). This rule creates a 
temporary association that links the child class to the 
neighbours of the parent class. These associations 
facilitate that the rule ProcessAssociations (Fig. 2.) 
processes not only the direct associations of a class, 
but the association of its parents as well. 

 

 
Figure 7: Rewriting rule AddParentAssociation. 

 
Figure 8: Rewriting rule ShiftParentClassHelper. 

The transformation should traverse the whole 
inheritance hierarchy. The rule 
ShiftParentClassHelper (Fig. 8) removes the 
original helper construct, and adds a new one which 
links the child class to the parent of the parent class. 
If the rule ShiftParentClassHelper finishes 
successfully (there exits parent on the next 
inheritance level), then the transformation continues 

with rule AddParentAssociation. These two rules 
form a loop that presents the core of the transitive 
closure pattern. The external causalities defined 
between the rules ShiftParentClassHelper and 
AddParentAssociation are depicted in Fig. 9. The 
key external causality is the causality parentClass 
that links the node ParentClass2 from RHS of the 
rule ShiftParentClassHelper and ParentClass from 
the LHS of the rule AddParentAssociation. This 
external causality supports to step between the 
inheritance levels. Finally, rule 
DeleteParentClassHelper removes the helper 
construct. 

 

 
Figure 9: External causalities between rules 
ShiftParentClassHelper and AddParentAssociation. 

Applicability. In case of transformations where the 
transitive closure should be calculated.  
 

 
Figure 10: The control flow pattern of the transitive 
closure. 

Left-Hand Side Right-Hand Side
<<Metatype>>

Neighbor

<<Metatype>>
Source

neighborhood

1<<Metatype>>
Neighbor

<<Atom>>
HelperNode

<<Metatype>>
Source

1

1 1

neighborhood

 
Figure 11: Rewriting rule AddInitialHelper. 

Structure. The abstract control flow model of the 
optimized transitive closure is depicted in Fig. 10. 
The rule AddInitialHelper (Fig. 11) initializes the 
input with a helper construct: connects the rule node 
Source with its direct special type neighbour. If the 
rule node has the adjacent rule node of required 
type, the rule can be executed successfully and the 
next rule will be the Process. The rule Process 
performs the required modifications based on the 
rule nodes Source and its actual Neighbor, which are 

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

30



 

connected with a helper construct. The rule 
ShiftHelper (Fig. 12) is responsible to shift the 
helper construct from the actual neighbour to its next 
neighbour. There is a key external causality in the 
loop formed by the rules ShiftHelper and Process, 
which connects the rule node NextNeighbor from 
RHS of the rule ShiftHelper to the rule node 
ActualNeighbor from LHS of the rule Process. This 
external causality facilitates that each loop iteration 
to expand the visited neighbour chain. Finally, rule 
DeleteHelper removes the helper construct. 
 

 
Figure 12: Rewriting rule ShiftHelper. 

Consequences. The presented construct is not a 
usual transitive closure pattern, rather an  optimized 
transitive closure pattern. Helper constructs are not 
left between the traversed classes, but they are 
moved up during the process and removed at the 
end. 

Often, algorithms implemented by model 
transformations require the repetition of a process 
within a transformation. The presented pattern 
provides solution for iterative and recursive 
behaviour. The key concepts of these constructs are 
external causalities that facilitates to a rule provide 
part matches (input or parameters) to another rules. 
Known uses. (i) In the transformations 
ClassToTable and ClassToCode to traverse the 
inheritance hierarchy.  (ii) In transformations 
FlattenStatechart and StatechartToSourceCode to 
traverse the statechart hierarchy. 
Variations. In AGG, transitive closure is calculated 
by recursive rule application. AGG do not define 
additional control structures for the rule execution, 
but coordinate them by the definition of layers. Each 
rule is assigned to a certain layer. Starting with layer 
0, the rules of one layer are applied as long as 
possible, and then the next layer is executed. AToM3 
and AGG use negative application conditions 
(NACs) to forbid the rule execution in certain cases. 
In AToM3, the transitive closure is calculated by 
iterative rule application (Taentzer et al, 2005). 

The control structures in VIATRA are 
implemented with abstract state machine (ASM) 
statements. Transitive closure is calculated by the 
forall ASM control structure.  

In (Agrawal et al, 2004), the transitive closure 
solution of GReAT is provided, which works for 
directed acyclic graphs. The solution is based on the 
iterative rule application. Comparing this solution 
with the currently presented optimized transitive 
closure pattern we can state that GReAT’s solution 
leave the helper constructs in the processed model. 
Contrary to this, VMTS adds the helper construct to 
the model only for the execution of the useful 
procedure.  

FUJABA uses the * operator to compute the 
transitive closure of a basic path expression (a dotted 
list of edge labels). 

5 RELATED WORK 

Object-oriented design patterns (Gamma et al, 1995) 
make it easier to reuse successful designs and 
architectures in source code level. Defining proven 
methods as design patterns makes them more 
accessible to developers of new systems. Design 
patterns help choosing design alternatives that make 
a system reusable. Furthermore, design patterns can 
improve the documentation and maintenance of 
existing systems by providing an explicit 
specification of class and object interactions and 
their underlying intent.  

In (Agrawal et al, 2004), a graph transformations 
language, GReAT is presented, and it is shown how 
typical design problems that arise in the context of 
model transformations can be solved using the 
constructs of GReAT. The presented patterns are 
intended to serve as the starting point for a more 
complete collection. Unfortunately, the presented 
tool does not have direct support for patterns.  

Many approaches have been introduced in the 
field of graph grammars and transformations to 
capture graph domains; for instance, GReAT (Karsai 
et al, 2003), PROGRES (Schürr, 1999), FUJABA 
(Köhler et al, 2000), VIATRA (Varró and Pataricza, 
2003), AToM3 (Lara et al, 2004) and Attributed 
Graph Grammar (Taentzer, 2003). These approaches 
are specific to the particular system, and each of 
them has some features that others do not offer. The 
main features of these approaches are already 
discussed in the Variations sections of the presented 
design patterns. 

At the time of the writing, we have no 
knowledge about that any of the modeling or model 

SUPPORTING DESIGN PATTERNS IN GRAPH REWRITING-BASED MODEL TRANSFORMATION

31



 

transformation environments (except for VMTS) 
provide tool support for transformation patterns. 

6 CONCLUSIONS 

This paper has introduced the design pattern and 
transformation wizard tool support of Visual 
Modeling and Transformation System, and 
discussed two metamodel-based model 
transformation related design patterns. 

VMTS supports rewriting rule patterns in model-
based development. Patterns are available on 
different levels: parts of the whole transformation 
rules, whole transformation rules, and several 
transformation rules can reperesent a pattern as well. 
Patterns can contain constraints assigned to the rule 
nodes, and internal causalities that describe the 
changes that should be executed during the rule 
firing.  

Model transformation-related desing patterns and 
the presented transformation wizard support make 
the metamodel-based model transformatioin easier,  
more efficient and rapid. Furthermore, design 
patterns with adequate constraints attached to them 
can support the validated model transformation as 
well. 

ACKNOWLEDGEMENTS 

The fund of “Mobile Innovation Centre” has 
supported, in part, the activities described in this 
paper. 

REFERENCES 

Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., 
Narayanan, A., Karsai, G., 2004. Reusable Idioms and 
Patterns in Graph Transformation Languages, 2nd Int. 
Conference on Graph Transformation, Rome, Italy. 

Butts, K., Bostic, D., Chutinan, A., Cook, J., Milam, B., 
Wang, Y., 2001. Usage scenarios for an Automated 
Model Compiler, EMSOFT 2001, pp 66–79. 

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. 
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional 
Computing Series. 

Karsai, G., Agrawal, A., Shi, F., Sprinkle, J, 2003. On the 
Use of Graph Transformation in the Formal 
Specification of Model Interpreters, Journal of 
Universal Computer Science, Special issue on Formal 
Specification of CBS. 

Köhler, H. J., Nickel, U., A. Niere, J., Zündorf, A., 2000. 
Integrating UML Diagrams for Production Control 
Systems, 22nd Int. Conf. on Software Engineering 
(ICSE), Limerick Ireland, ACM Press, pp. 241-251. 

Lara, J., Vangheluwe, H., Alfonseca, M., 2004. Meta-
modelling and graph grammars for multi-paradigm 
modelling in AToM, SoSyM, August, 3(3):194-209. 

Lengyel, L., Levendovszky, T., Charaf, H., 2005. Graph 
Transformation and Constraint Validation-Driven User 
Interface Handler Code, MicroCAD, March 10-11, 
2005, Miskolc, pp. 267-272. 

Lengyel, L., 2006. Online Validation of Visual Model 
Transformations, PhD thesis, Budapest University of 
Technology and Economics, Department of 
Automation and Applied Informatics. 

Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H., 
2006. Model-Based Development with Strictly 
Controlled Model Transformation, In The 2nd Int. 
Workshop on Model-Driven Enterprise Information 
Systems, MDEIS 2006, Cyprus, pp. 39–48. 

OMG MDA Guide Version 1.0.1, 2003. Document 
number: omg/2003-06-01, 
www.omg.org/docs/omg/03-06-01.pdf 

OMG OCL Specification, Version 2.0, 2006. 
http://www.omg.org/ 

OMG QVT, 2005. Meta Object Facility 2.0 
Query/Views/Transformation Specification, 
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf 

OMG UML Specification, Version 2.1.1, 2007. 
http://www.uml.org/ 

Quantum Framework (qF) Web Site, 
http://www.quantum-leaps.com/qf.htm 

Rozenberg, G. (ed.) 1997, Handbook on Graph Grammars 
and Computing by Graph Transformation: 
Foundations, Vol.1 World Scientific, Singapore. 

Schürr, A., Winter, A.J., Zündorf, A., 1999. The 
PROGRES approach: Language and environment. 

Sprinkle, J., 2004. Model-Integrated Computing, IEEE 
Potentials, 23(1):28-30, 2004. 

Sztipanovits, J., Karsai, G., 1997. Model-Integrated 
Computing, IEEE Computer, pp. 110-112. 

Sztipanovits, J., Karsai, G., 2002, Generative 
Programming for Embedded Systems, LNCS 2487, pp. 
32-49. 

Taentzer, G., 2003. AGG: A Graph Transformation 
Environment for System Modeling and Validation. In 
Proc. Tool Exihibition at Formal Methods 2003. 

Taentzer, G., Ehrig, K., Guerra, E.,  de Lara, J., Lengyel, 
L., Levendovszky, T., Prange, U., Varro D., Varro-
Gyapay, Sz., 2005. Model Transformation by Graph 
Transformation: A Comparative Study, ACM/IEEE 
8th Int. Conference on Model Driven Engineering 
Languages and Systems, Montego Bay, Jamaica. 

Thai T. and Lam H., 2003. .NET Framework Essentials, 
O’Reilly. 

Varró, D. and Pataricza, A., 2003. VPM: A visual, precise 
and multilevel metamodeling framework for 
describing mathematical domains and UML, Journal 
of Software and Systems Modeling. 

VMTS Website, 2003. http://www.vmts.aut.bme.hu/  

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

32


