
A MDE APPROACH FOR LANGUAGE ENGINEERING

Francisco Gort́azar, Abraham Duarte and Micael Gallego
Department of Computer Science, Universidad Rey Juan Carlos, Tulipán, Móstoles, Madrid, Spain

Keywords: Model Driven Engineering, Language Engineering, abstract syntax, concrete syntax, DSLs.

Abstract: Many development tools of modern Integrated Development Environments (IDEs) make an intensive use of
abstract syntax tree (AST) representations of the software. This is the case of refactors, code formatters,
or content assistants, among others. Such AST is usually an instance of an object oriented abstract syntax
model. We propose to center the attention of Language Engineering (LE) on this model. We propose to use
UML as the abstract syntax metamodel because UML tools provide code generators for different programming
languages for model implementation. As well as an abstract syntax, a concrete syntax of the language it is
also necessary. We are concerned about textual languages, whose concrete syntax is usually given as a BNF
grammar. Instead, we propose to stereotype the abstract syntax model by means of a profile, aimed at concrete
syntax definition. Applying Model Driven Engineering (MDE) practices several development artifacts can be
automatically generated.

1 INTRODUCTION

Development tools in modern IDEs rely on the ASTs
of the program (Boshernitsan, 2001; Clark et al.,
2004; Herranz and Nogueira, 2005). An AST is a rep-
resentation of the program that is being edited. Some
development tools that are based on ASTs to perform
their tasks are refactorings, design patterns extractors,
call graph visualizers, type hierarchy visualizers, or
content assistants, among others. Some IDEs with
AST-based tools areEclipse1, NetBeans2, or IntelliJ
IDEA3.

ASTs are generally object oriented, and conform
to the abstract syntax model (Vainsencher and Black,
2006; Jones, 2003). The abstract syntax model rep-
resents the abstract syntax of the language. We pro-
pose to make the abstract syntax model the central
piece of LE. We then follow a MDE approach to gen-
erate different development tools. MDE is a Soft-
ware Engineering methodology focused on the inte-

1http://www.eclipse.org
2http://www.netbeans.org
3http://www.jetbrains.com/idea/

gration of bodies of knowledge by different research
communities (Favre, 2004). The MDE approach is
strongly based onmodels, and model-to-modeltrans-
formationsthat drive the application generation.

A well-suited modeling language for abstract syn-
tax model definition is UML. UML is a standard
modeling language for object oriented modeling, and
there are several tools which support it. Furthermore,
UML tools provide code generators which can gener-
ate code implementing the models for different pro-
gramming languages, such as Java, C#, and C++.

Languages consist on an abstract syntax and a
concrete syntax. There are two kind of concrete syn-
taxes: graphical and textual. We are concerned about
textual syntaxes. Thus, our proposal is aimed at gen-
erating development tools for textual languages. The
concrete syntax is usually represented by means of
some form of a BNF context-free grammar. These
grammars are used in reference manuals as thede-
factostandard for defining the concrete syntax of lan-
guages (Paakki, 1995).

Some advantages of using BNF grammars in lan-
guage definitions follows:

• Context-free grammars, and concretely BNF

80
Gortázar F., Duarte A. and Gallego M. (2007).
A MDE APPROACH FOR LANGUAGE ENGINEERING.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 80-86
DOI: 10.5220/0002586800800086
Copyright c© SciTePress

grammars, are well-known by language engi-
neers.

• Context-free grammars have a long tradition on
compiler construction, they also have solid under-
lying theories, and there is a large amount of doc-
umentation on the topic (Blasband, 2001).

• There is a large amount of automatic tools aimed
at compiler construction, such as lexer and parser
generators.

However, grammars as a concrete syntax defini-
tion formalism also present some drawbacks:

• Duplication of information. The structure of the
language is represented in both the grammar and
the abstract syntax model. It is error-prone to
maintain both specifications synchronized.

• Structures of the grammar need to be trans-
formed into their counterparts in the abstract syn-
tax model. For instance, lists and boolean proper-
ties in the abstract syntax have different represen-
tations in the grammar.

In order to take advantage of MDE methodol-
ogy for Language Engineering, some authors pro-
pose a metamodel for context-free grammar defini-
tion (Wimmer and Kramler, 2005; Muller et al., 2006;
Fondement et al., 2006). Grammars are then de-
fined by means of models which conforms with such
metamodel. However, this approach does not solve
the problem of keeping in-sync abstract and concrete
models.

Instead, we propose to stereotype the abstract syn-
tax model by means of a UML profile (Gortázar et al.,
2007). This profile is aimed at concrete syntax def-
inition. Our approach is compatible with grammar
metamodels, because models based on that metamod-
els can be automatically generated from the annotated
abstract syntax model. Although defining in the same
model abstract and concrete syntaxes limits the lan-
guage to a unique concrete syntax, having more than
one concrete syntax for a language is unusual. In
contrast, this unification of both definitions into one
model allows to keep in-sync both syntaxes. It is
possible to use one single model because some con-
structions of both domains are equivalent, like lists,
or inheritance, among others (Wimmer and Kramler,
2005; Alanen and Porres, 2003; Antoniol et al., 2003;
Hedin and Magnusson, 2003; Lieberherr, 2005; Wile,
1997).

In this paper we propose to apply MDE for auto-
matic generation of development tools from a specifi-
cation given in UML, thus bridging Model Driven De-
velopment and Language Engineering. For this pur-
pose, we propose a new concrete syntax specification
to be used within a model-driven approach.

2 ABSTRACT SYNTAX TREES

Abstract syntax represents the structure of the lan-
guage, present in every computer language (Bosher-
nitsan, 2001; Clark et al., 2004; Herranz and
Nogueira, 2005). An AST represents the structure of
a program as a tree. ASTs hide syntactic details like
reserved words or punctuation symbols. The most
common ASTs are object oriented (Jones, 2003). In
modern IDEs ASTs are a central repository, and de-
velopment tools rely heavily on them (Figure 1).

Code formatters

View #1

Software metrics

Refactorings

Search tools

Editors

View #2

View #3

AST

Figure 1: AST dependencies in modern IDEs.

The importance of ASTs in modern IDEs causes
in some situations to start the language specification
modeling the abstract syntax, and defining separately
the concrete and abstract syntaxes. Some examples
are SableCC4, MPS, XMF-Mosaic, among others.

AST quality is gaining importance as a result of
the open architecture of IDEs, as long as third par-
ties can contribute development tools to the IDE by
means of plug-ins. These plug-ins interact with the
AST to perform their tasks. Thus, the abstract syn-
tax model has to be comprehensible and easy to use
(Bloch, 2006).

Figure 2 shows package dependencies of three
Eclipse plug-ins for development support in three dif-
ferent programming paradigms (imperative, object-
oriented, and functional). Dependencies shown in
model a) correspond to the EclipseFP project, which
is a framework that provides Haskell support in
Eclipse. TheHalamo subpackage, in theCore pack-
age, contains the Haskell abstract syntax model.

Dependencies shown in model b) correspond to
the Java Development Tools (JDT)5, which is a set of
plug-ins that support Java programming in the Eclipse
environment. TheDOM subpackage, in theCore pack-
age, contains the Java abstract syntax model.

4SableCC 3.0: http://sablecc.org
5http://www.eclipse.org/jdt

A MDE APPROACH FOR LANGUAGE ENGINEERING

81

a) b) c)

Figure 2: Some packages dependencies from different development tools.

Dependencies shown in model c) correspond to
the C/C++ Development Tooling, which provides
C/C++ support in the Eclipse environment. TheDOM
subpackage, in theCore package, contains the C/C++
abstract syntax model.

As it can be seen in Figure 2 most development
tools included in the three plug-ins rely on the abstract
syntax model. This is the case of editors, refactors,
content assistants, or code formatters, among others.

3 MODEL DRIVEN LANGUAGE
ENGINEERING: METACET’S
APPROACH

Our proposal is based on the abstract syntax model of
the language, as it is an essential part of development
tools. We propose a methodology, called MetaCET,
for textual language design and automatic genera-
tion of development tools. This methodology applies
MDE principles to language development. MetaCET
is based on modeling the abstract syntax of the tar-
get language in UML. The concrete syntax is pro-
vided by means of a UML profile aimed at this task,
called Concrete Syntaxprofile. This profile is de-
scribed elsewhere (Gortázar et al., 2007).

We call the resulting model thelanguage model.
From this model several tools can be automatically
derived aimed at development in the target language.
Figure 3 shows graphically the general approach of
MetaCET.

During the rest of this section, we will use as
an example the Statechart language, as defined in
(Fondement et al., 2006). Our intention is to obtain a
parser for such language, by means of applying MDE
principles to language engineering. It follows an ex-
planation of each step.

Abstract
Syntax
Model

Artifact Artifact Artifact

Concrete
Syntax
Profile

Language
Model

Figure 3: An overview of the approach.

3.1 Modeling the Abstract Syntax of the
Target Language

Given the importance of ASTs in modern IDEs, we
propose a Language Engineering approach which is
focused on the abstract syntax model. We use UML
as the abstract syntax metamodel. Our intention in
doing so is to take advantage of code generation usu-
ally available within UML tools. Furthermore, UML
is thede factostandard modeling language for object
oriented modeling.

Basically, any abstract syntax model contains lan-
guage concepts, represented as UML classes or in-
terfaces. Relations between concepts are represented
as UML associations. Finally, basic properties of
concepts are represented as attributes with basic data
types. Figure 4 presents an example, taken from
(Fondement et al., 2006), of the abstract syntax of a
statechart language. This language will be used to il-
lustrate our proposal.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

82

PseudoState

-kind : PseudoStateKind

StateMachine

StateVertex

<<enumeration>>

PseudoStateKind

initial

CompositeState

Transition

SimpleState

State Event

-transitions
*

1

-states

*

-container

0..1

-ingoing

*

-target

1

-outgoing

*

-source

1

1 -top

0..1

-trigger

Figure 4: Fragment of an abstract syntax model.

3.2 Modeling the Concrete Syntax of
the Target Language

The concrete syntax of a language defines the notation
used to write or build documents in such language.
There are two kind of notations: textual notations and
graphical notations. In this paper we are concerned
with textual notations.

We propose to stereotype the abstract syntax
model with the concrete syntax. This stereotyping is
performed by means of stereotypes defined in a UML
profile we have defined: theConcrete Syntaxprofile.

A UML profile is an extension mechanism pro-
vided by UML. It may contain information from a
domain which is not supported directly by UML. A
profile contains stereotype definitions which, when
applied to elements of a UML model, provide the se-
mantics of the domain.

In MetaCET, we provide a profile which contains
the necessary stereotypes to augment an abstract syn-
tax model with the concrete syntax. This stereotyped
abstract syntax model is called thelanguage model
(see Figure 5).

Keeping abstract and concrete syntax separated
might allow to define different concrete syntaxes for
the same abstract syntax. However, this is not very
usual. On the other hand, defining the language in a
single model presents some advantages. Furthermore,
there are several similarities between EBNF and ob-
ject oriented modeling (Wimmer and Kramler, 2005).
For instance, inheritance↔ alternation (Wimmer and
Kramler, 2005; Alanen and Porres, 2003), associa-
tions with a n upper bound multiplicity↔ EBNF
repetitions (Alanen and Porres, 2003), enumerations
↔ choice between static strings (Alanen and Porres,
2003), among others.

The EBNF grammar corresponding to thelan-
guage modelshown in Figure 5 is shown in Figure
6. The inheritance relationship betweenState and
its subclassesCompositeState andSimpleState, is
represented in the EBNF grammar as a choice rule
(theState rule). Symbols on the left represent non-
terminals, and symbols in bold represent literals.

Grammar details that cannot be represented di-
rectly in UML can be specified by means of theCon-
crete Syntaxprofile. This is the case of grammar
terminals, and the arrangement of UML properties
within the syntax definition of the class.

<<syntax>>

CompositeState

{value = initial "CompositeState" name "{" (states|transitions)! "}" }

<<enumeration>>

Tokens

<<tokenDef>>identifier{pattern = [:jletter:][:jletterdigit:]*}

<<syntax>>

Transition

{value = "Transition" "from" source "to" target trigger }

<<tokenRef>>-source : String{value = identifier}

<<tokenRef>>-target : String{value = identifier}

<<syntax>>

<<root>>

StateMachine

{value = "StateMachine" name top ,

tokens = Tokens}

<<tokenRef>>-name : String{value = identifier}

<<LanguageElement>>

State

<<tokenRef>>-name : String{value = identifier}

<<syntax>>-initial : boolean{value = "initial"}

<<syntax>>

SimpleState

{value = initial "State" name }

PseudoState

-kind : PseudoStateKind

<<enumeration>>

PseudoStateKind

initial

<<syntax>>

Event

{value = name }

StateVertex

<<syntaxList>>

-transitions *

1

-states

*

-container0..1

1 -top

-ingoing *

-outgoing *

<<optional>>
{previousSyntaxDescription = "on" }

-trigger 0..1

Figure 5: An annotated abstract syntax model for the State-
Chart language.

StateMachine ::= <ID> State
State ::= CompositeState

| SimpleState
CompositeState ::= []

(State | Transition)
SimpleState ::= [] <ID>
Transition ::= <ID>

<ID> [Event]
Event ::= <ID>

StateMachine

initial CompositeState

initial State
Transition from
to on

Figure 6: EBNF for the StateChart language.

3.3 Tool Generation

Several tools can be generated automatically from the
language model. Usually such specifications are used
to generate a parser. However, this is just one of a
set of other possible tools. For instance, a call graph
visualizer could be generated from this model. The
visualizer obtains the information querying the AST.

A MDE APPROACH FOR LANGUAGE ENGINEERING

83

Models for different tasks can be derived from the
language model. These derived models can be tai-
lored to specific domains such as design pattern de-
tection, parser construction or software metrics. At
the end of the process, it is necessary to generate code
from the lowest levels. Code generators must be de-
fined for this purpose. In this sense, low level models
must be specific enough in terms of the technology to
perform code generation.

Our proposal does not exclude other approaches.
For instance, from thelanguage model, a grammar
models such as those defined in (Wimmer and Kram-
ler, 2005) and (Alanen and Porres, 2003) can be auto-
matically generated.

4 VALIDATION: A PARSER FOR
AST CONSTRUCTION

In this section, a particularization of the methodology
is presented. We have stated that ASTs are key in
modern development tools such as those present in
common IDEs. Therefore, we have chosen to validate
our proposal by means of automatically generating a
parser for AST construction from thelanguage model.
The parser takes a document in the target language
and builds its corresponding AST.

Our proposal for parser generation is based on
three different levels (Figure 7). Each level requires
different knowledge. This separation in levels al-
lows experts in different domains focus on different
parts of the language engineering process. Finally, we
build the parser using a parser generator or compiler-
compiler. Parser generators provide their own lan-
guage for parser specification, thus we need to trans-
form the language model into the appropriate speci-
fication. We use model-to-model transformations to
derive such specification.

4.1 First Level: Language Model

The first level is the specification of the language by
means of the abstract syntax model annotated with
the concrete syntax (the language model) as was de-
scribed in Section 3. This model is independent on
any kind of grammar. The model could even be hardly
tractable by most common analysis methods. How-
ever, this is not a key aspect at this level.

4.2 Second Level: Parser Model

The second level is the specification of a context-free
grammar for the language. This grammar is repre-
sented by means of an object oriented model. This

Language
Model

Parser
Model

Generator
Model

Parser
Profile

Generator
Profile

Parser

Code
Generation

Figure 7: Parser development for a target language with the
MetaCET’s approach.

model is calledparser model. It is not just a grammar
model, because elements in the model are related with
elements in the abstract syntax model.

The parser model is independent of the analysis
method used. Common problems to various of these
methods can be solved in this level. Thus, when mod-
els in the lower level are generated, they are free of
such problems.

The parser model is obtained automatically from
the language model by means of a model-to-model
transformation. The transformation produces the
parser model and annotates it with stereotypes from
a profile, calledParser, we have defined. Our profile
have the same intention as other approaches such as
those of (Wimmer and Kramler, 2005; Muller et al.,
2006; Fondement et al., 2006). In fact, those ap-
proaches could also be used as a result of our trans-
formation.

4.3 Third Level: Generator Model

The third level is the specification of thegenerator
model. This model is tailored for a concrete parser
generator. Thegenerator modelis obtained automat-
ically from theparser model. Two different model-

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

84

to-model transformations have been defined. The first
one produces a model for a JavaCC parser generator.
The second one produces a model for a Cup6 parser
generator.

The generator model is based upon a concrete kind
of context-free grammar: LL, LALR, etc. For in-
stance, JavaCC requires a LL grammar. Cup, on the
other side, requires a LALR grammar.

4.4 Code Generation: Parser
Construction

Code generation is performed in two steps. First,
from the generator model, a textual specification for
the parser generator is produced. Second, the parser
generator takes this textual specification and gener-
ates the parser. The aim of the parser is to parse docu-
ments written in the target language and to build their
corresponding AST. This AST is an instance of the
abstract syntax model.

5 CONCLUSION

Many development tools make an intensive use of
abstract syntax trees. This is the case of refactors,
code formatters, or content assistants, among others.
Such AST is usually an instance of an object oriented
model which represents the language’s abstract syn-
tax. In this paper we have proposed a Language En-
gineering methodology which is focused on this ab-
stract syntax model. We choose UML as the abstract
syntax metamodel because UML tools provide code
generators for different programming languages for
model implementation. Furthermore, UML is thede
factostandard for object oriented modeling.

We have proposed to stereotype the abstract syn-
tax model by means of a UML profile, calledCon-
crete Syntax, aimed at concrete syntax specification.
This stereotyped abstract syntax model avoids the
synchronization between abstract and concrete syn-
tax. From this stereotyped abstract syntax model sev-
eral development artifacts can be automatically gener-
ated by means of applying MDE practices. We have
given an overview of the generation of a common de-
velopment component: a parser for AST construction.

6Cup: LALR parser generator for Java
(http://www2.cs.tum.edu/projects/cup/)

ACKNOWLEDGEMENTS

This work has been partially supported by MCyT
TIN2005-08943-C02-02 and URJC-CM-2006-CET-
0603.

REFERENCES

Alanen, M. and Porres, I. (2003). A relation between
context-free grammars and meta object facility meta-
models.

Antoniol, G., Penta, M. D., and Merlo, E. (2003). Yaab
(yet another ast browser): Using ocl to navigate asts.
In IWPC ’03: Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension,
page 13, Washington, DC, USA. IEEE Computer So-
ciety.

Blasband, D. (2001). Parsing in a hostile world. InProceed-
ings of the Eighth Working Conference on Reverse En-
gineering (WCRE’01), page 291. IEEE Computer So-
ciety.

Bloch, J. (2006). How to design a good api and why
it matters. In OOPSLA ’06: Companion to the
21st ACM SIGPLAN conference on Object-oriented
programming languages, systems, and applications,
pages 506–507. ACM Press.

Boshernitsan, M. (2001). Harmonia: A flexible framework
for constructing interactive. Technical report.

Clark, T., Evans, A., Sammut, P., and Willians, J. (2004).
Applied Metamodelling: A Foundation for Language
Driven Development. Xactium.

Favre, J.-M. (2004). Towards a basic theory to model
model driven engineering. In3rd Workshop in Soft-
ware Model Engineering (WiSME 2004).

Fondement, F., Schnekenburger, R., Gérard, S., and Muller,
P.-A. (2006). Metamodel-Aware Textual Concrete
Syntax Specification. Technical report.

Gort́azar, F., Duarte, A., and Gallego, M. (2007). Rep-
resenting languages in UML. InProceedings of the
2nd Conference on Evaluation of Novel Approaches
to Software Engineering.

Hedin, G. and Magnusson, E. (2003). Jastadd: an aspect-
oriented compiler construction system.Sci. Comput.
Program., 47(1):37–58.

Herranz, A. and Nogueira, P. (2005). More than parsing. In
Lpez Fraguas, F. J., editor,Spanish V Conference on
Programming and Languages (PROLE 2005), pages
193–202. Thomson Paraninfo.

Jones, J. (2003). Abstract syntax tree implementation id-
ioms. InProceedings of the 10th Conference on Pat-
tern Languages of Programs (PLoP’03).

Lieberherr, K. J. (2005). Object-oriented programming with
class dictionaries.LISP and Symbolic Computation,
1:185–212.

A MDE APPROACH FOR LANGUAGE ENGINEERING

85

Muller, P.-A., Fleurey, F., Fondement, F., Hassenforder, M.,
Schneckenburger, R., Gérard, S., and J́eźequel, J.-M.
(2006). Model-driven analysis and synthesis of con-
crete syntax. InMoDELS, pages 98–110.

Paakki, J. (1995). Attribute grammar paradigmsa high-level
methodology in language implementation.ACM Com-
put. Surv., 27(2):196–255.

Vainsencher, D. and Black, A. P. (2006). A pattern lan-
guage for extensible program representation. InPro-
ceedings of the Pattern Languages of Programming
Conference.

Wile, D. S. (1997). Abstract syntax from concrete syntax.
In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 472–480,
New York, NY, USA. ACM Press.

Wimmer, M. and Kramler, G. (2005). Bridging grammar-
ware and modelware. InMoDELS Satellite Events,
pages 159–168.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

86

