
AN ONTOLOGY-BASED APPROACH TO THE MODELLING OF
COLLABORATIVE ENTERPRISE PROCESSES

Dynamic Managing of Functional Requirements

M. V. Hurtado, M. Noguera, M. L. Rodríguez, J. L. Garrido
Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, E.T.S.I.I.T.

c/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain

Lawrence Chung
Department of Computer Science, University of Texas at Dallas, Richardson, Texas 75083, USA

Keywords: Ontology-based collaborative modelling, Enterprise modelling techniques.

Abstract: Enterprise models describe and analyze collaborative processes and provide stakeholders with a common
view of requirements. A core challenge to tackle the management of collaborative business processes is the
continuous translation between business requirements and the current collaborative process model of the
involved enterprises. This model is constituted by multiple IT systems, resources, and human labour. This
paper presents a novel approach to modelling business processes from the perspective of collaborative
systems. The proposal consists of a multi-level design scheme based on ontologies for the description of
complex collaborative systems. The use of this ontology-based framework enables machine reasoning
which can be applied to automated or semi-automated control and propagation of changes in the functional
requirements specification. Benefits related to integrating ontology-based models are also presented.

1 INTRODUCTION

Nowadays, collaborative systems need to be
developed in order to operate in dynamic
environments. This kind of systems supports users
who perform flexible and creative tasks within
defined business rules.

The development of models and mechanisms is
mandatory in order to enable the specification of
collaborative systems which can capture the
increasingly dynamic nature of both intra and inter-
enterprise processes. Enterprise modelling
techniques aim at modelling the behavior and
domain entities in order to identify the fundamental
business principles of an organization (Ambler,
2003) (Jaekel, 2005). They are recognised for their
value in describing complex organizational domains,
but usually in an informal way. Therefore, the
modelling methods need to be improved with a new
approach to integrate methods and tools which are
appropriate to enterprise modelling and to the
management of change. Ontology based integration

of methods and tools can solidly provide a more
precise means to model collaborative enterprise
processes (Gruninger, 2000).

This research work presents an ontology-based
framework which aids software engineers in the
description of domain requirements and their
appropriate association with the collaborative model
elements (by means of concepts and relationships
among them) at different levels. From the
perspective of collaborative business processes, an
ontology-based framework contributes to the formal
definition of business semantics in a common
vocabulary and supports the modelling and analysis
of functional requirements. Moreover, this
framework enables the dynamic management of
domain requirements for collaborative processes
within and across enterprises.

The remainder of this paper is organized as
follows. Section 2 shows the main motivations on
the basis of the relevant issues to be addressed for an
advanced description of collaborative systems.
Section 3 introduces an ontology-based framework
to modelling and analysing functional requirements

87V. Hurtado M., Noguera M., L. Rodríguez M., L. Garrido J. and Chung L. (2007).
AN ONTOLOGY-BASED APPROACH TO THE MODELLING OF COLLABORATIVE ENTERPRISE PROCESSES - Dynamic Managing of Functional
Requirements.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 87-94
DOI: 10.5220/0002587000870094
Copyright c© SciTePress

of collaborative systems. Section 4 presents how the
proposal adequately supports the dynamic
management of the functional requirements
satisfying desirable properties for a formal
description. Finally, the conclusions and future work
are given in Section 5.

2 MOTIVATIONS

Collaboration processes in today’s global business
environment are a critical issue to the innovation and
creation of new business models. Collaborative
business processes involve organizations,
workgroups, applications, documents and different
sources of information. Stakeholders need to be
assisted with tools that help them to describe, verify,
validate and share their perspective in both
modelling processes and domain requirements
capture.

Domain requirements are related to the
properties and functionalities of the system to be
designed. They are categorized into functional and
non-functional. There are several approaches dealing
specifically with non-functional requirements which
support the elicitation, documentation, verification
and validation of this requirements (Chung,
2006).However, functional requirements are usually
given in natural language or using semi-formal
notations (e.g. UML use case (OMG, 2003)) during
the modelling process. The main difficulty of this
method resides in the gaps between domain users
and requirements engineers. This will be the main
source of inconsistent and ambiguous requirements
(Yuqin, 2006).

Conversely, requirements generated by different
members in a collaborative process may use
different terminology to specify their system views.
Hence, the same term may be applied to different
concepts and different terms can be used to
designate the same entity.

As long as models are not described sharing a
common terminology, there will not be appropriate
instruments to support the exchange of information
and to ensure certain properties (consistency,
completeness, etc) in the description and
management of functional requirements using
different models. Recent research points to
ontologies as an appropriate technology to solve this
problem. An ontology is a formal description of
objects and their properties, relationships,
constraints, and behaviour (Gruber, 1995), (Guarino,
1995). It allows defining a common vocabulary for
users who need to share viewpoints of each

particular domain. Consequently, the use of an
ontology-based method (Zhi, 2000), (Lu, 2000)
focusing on representing domain concepts and
relations among them, can be used to share both
intra and cross-enterprises models.
Furthermore, requirements are also altered during
the system design due to changes of the business
process and rules, customers’ objectives, etc.

Formalizing ontologies with standard languages,
for instance OWL (Web Ontology Language)
(Smith, 2004), machine reasoning can be applied to
an automated or semi-automated control and
propagation of the functional requirements changes.
The underlying Description Logics (Baader, 2003)
to the OWL language allows OWL-based reasoners
to perform certain verification procedures such as
consistency check, concept satisfiability,
classification and realization (Sirin, 2006).
Therefore, an ontology-based approach provides
mechanisms to propagate changes, and focuses on
the evolutionary nature of Collaborative Business
Processes.

3 FRAMEWORK FOR
MODELLING OF
COLLABORATIVE
ENTERPRISE PROCESSES

We propose an ontology-based design scheme for
the modelling and requirements analysis of
collaborative system design. This ontology-based
framework provides both terminology to specify
different functional requirements visions and
communication of system functions by means of a
well-defined terminology, syntax and semantics.

Amenities
ontology

document

Amenities-based
application ontology

document for
enterprises

Amenities-based
application ontology

document for
C&C Valuation Office

Amenities-based
application ontology for
John F. Kennedy aiport

Amenities-based
application ontology

document for
airports

Amenities-based
application ontology

document for
Accurances office

Amenities-based
application ontology

document for
Caser Insurances

Amenities-based
application ontology

document for
Notary Offices

Amenities-based
application ontology

document for
Klimt Notary Office

Amenities-based
application ontology

document for
universities

Metamodel level
Domain ontology

Ground level
application ontologies

First level
application ontologies

organizations

roles

tasks…

artefacts

actors…

Amenities-based
application ontology

document for
Bank Branch

Amenities-based
application ontology

document for
Bank Branch nº 15

Amenities-based
application ontology

document for
Bank Branch nº 32

Figure 1: Three-tier ontology design for collaborative
systems.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

88

At the highest abstraction level of the adopted
design scheme (see Figure 1) for building the
framework, a domain ontology defines the
collaborative system terminology. Using this
ontology, domain users and modellers can describe
systems functions in terms of a common vocabulary
(organizations, group, actor, role, capability, law,
task, subactivity, information object, interaction
protocol, etc.).

Figure 2 shows a diagrammatic representation of
a domain ontology description, basically concepts
and relationships between them, using the Protégé
ontology editor (Knublauch,.2004).

The metamodel for the domain ontology is
adopted from AMENITIES (Garrido, 2005a), a
methodology for the study and development of
collaborative systems. We define the meaning of the
terminology using OWL which gives a precise and
unambiguous semantics for each term.

The correctness and unambiguity avoid possible
conflicts and diverse interpretations by different
modellers. Accordingly, modellers use the same
terminology and can work in the system
specification promoting a participatory design.

At the subsequent level, based on the domain
ontology, different application ontologies would
appear in order to define specific elements for each
particular business process (bank branch, valuation
office, notary office, assurances office…), but with
the adequate abstraction level so that they can be
employed in similar or related systems (e.g. bank
manager, head of risk and cashier roles).

At the lowest level, more specific entities of the
system we are dealing with would be declared (e. g.
“Anna Riemann” and “Donald Johnson” as actors

present in the bank collaborative system of the
Branch nº 15).As a leading example, we will
consider the process of granting a mortgage in a
bank branch. In this context collaborative systems
can help a branch to offer a wider range of services.
The corporate activity includes some collaborative
tasks among different organizations (Bank Branch,
Valuation Office and Notary Office)

Likewise, it is necessary that diverse actors
belonging to different organizations are involved,
although they are all part of the same group in
charge of the granting process. Among others, bank
actors can play the bankManager, headOfRisk, and
cashier roles. Different banker tasks are considered
in order to provide various banking services. During
the process of granting a mortgage several
information objects are handled. One of subactivity
is called calculate_leverage_coefficient which is
composed by others such as the subactivities
queryASNEF and queryRAI, which obtain
information contained in two databases: the ASNEF
databases (banking database of possible non-
fulfilment and their current situation) and RAI
database (database referred to unpaid banking
effects, bills of exchange etc.). As a result of the
calculate_leverage_coefficient subactivity and
together with additional information provided by the
customer, the headOfRisk generates the mortgage
report and suggests the approval, refusal or
interruption of the operation. If the bank manager
approves the operation, the collaborative task
agreeAndsign will be carried out. A connection_law
indicates that to perform that action, bank manager,
notary and client must sign the mortgage document.

Figure 2: Diagrammatic representation of the AMENITIES metamodel description in OWL (domain ontology).

AN ONTOLOGY-BASED APPROACH TO THE MODELLING OF COLLABORATIVE ENTERPRISE PROCESSES -
Dynamic Managing of Functional Requirements

89

calculateLeverage
Coefficient

Collect-applicant
-data

Metamodel Level: Domain ontologyFirst Level: Application ontology

Bank_Branch

headOfRisk bankManager cashier

grantLoan

query
ASNEF

qweryRAI

mortgageReport

Face to face

Granting-mortgage
CooperativeSystem

Notary-Office

decideConcesion

Allowed
Signature

agreeAndsign

Computer
Videoconference

mortgagegranting

Figure 3: Mapping of some application ontology elements (Bank Branch Example) to metamodel elements.

4 DYNAMIC MANAGEMENT OF
FUNCTIONAL
REQUIREMENTS

The ontology based approach offers the potential to
meet some needs of requirements management.
These include abstraction mechanisms using
different levels (see Figure 3), description for each
term (concepts, properties, instances, as well as
concept inheritance), inference mechanism, and
model driven trace requirements capture (for
example using Laws, pointing out the type
InteractionProtocol…).

4.1 General Analysis

Collaborative business processes evolve with time.
Hence, the system description is necessarily an
iterative and dynamic process. The reasons for
changes are inherent in the complexity of reality and
in the limited ability of humans to cope with this
complexity. Thus, the specification system must be
able to change for a number of reasons, among
others the following:

 The system specification often contains
“design errors” and sometimes does not meet
the requirements of its users.

 The business environment in which the system
operates can change unpredictably, thereby
invalidating the requirements made when the
system was designed.

 Users’ requirements can change after the
system is initially built, requiring that the
existing specification evolve to meet the new
requirements.

Since most of the changes usually affect local parts
of the system or organization, it is compulsory that
the changes are managed without affecting those
elements that are unrelated to these changes and
without being necessary to put them “out of
service”. Likewise, appropriate tools and strategies
for change propagation are needed.

The proposed three-tier ontology design allows
us to manage systematically the modelling of the
dynamic nature of the functional requirements for
this kind of systems. The domain ontology and the
application ontologies provide vocabularies and
restrictions to help identifying and analysing system
functions changes. Constraints capture statements
that must be satisfied by design after change.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

90

In addition, related to the dynamic aspects of the
collaborative system, a different level can be used to
answer many questions on the system behaviour, by
deduction and using the reasoning logic.

 In order to illustrate changes and their propagation
(a change in one element of an ontology may have
relevant consequences on other elements of the
scheme-based ontology), the following situations
will be considered for changes in:

 the relationships between instances and the
terms of the application ontology at the
ground level.

 the terms of the application ontology at the
first level

 the structure of the domain ontology

Each of these changes can be carried out by one of
the meta-change transformations: add, remove and
modify ontology elements (Stojanovic,2002). As a
result, a set of operations (Table 1) can be defined
by the cross level of the set of entities of the
ontology model, which form the ontology-based
scheme, and the set of meta-operations.

A set of operations can be applied to an ontology in
a valid state, and after all changes are performed, the
ontology and dependant collaborative system must
convert into another valid state. It means that every
change is guaranteed to maintain the domain
constraints.

According to software engineering, a set of
properties for the specification has to be maintained
for instance:

 Consistency – A consistent description system
satisfies all invariants of the domain ontology
model (Amenities ontology document).
Invariants are constraints that must fulfill in
every state of an ontology. For example, an
organization has at least one role class.

 Validity – it is necessary to distinguish
between syntax and semantic validity of an

ontology. Syntax invalidity arises when
undefined entities are used or model
constraints are invalidated. Semantic
invalidity arises when the meaning of an
ontology entity is modified. Conversely, a
valid instance adjusts to the constraint
specified in the ontology document.

4.2 Detailed Examples of Control and
Propagation in Requirements
Changes

On the basis of the previously described case study
(section 3), some particular examples of functional
requirements changes are illustrated in this section.

System Behavior Properties

The most frequent changes are related with the
dynamical aspects of the system which occur at the
ground level. It allows us to specify functional
requirements related to system behaviour, i.e. state
changes in the described system.

See the example of “Anna Riemann” who was
playing the cashier role changes to the headOfRisk
role (Figure 4).

1.**Ground level
is (Anna Riemann play cashier)?
TRUE=> (Remove_instance (AnnaRiemann play
cashier) AND Add_instance (AnnaRiemann play
headOfRisk)
FALSE => (Add_instance (AnnaRiemann play
headOfRisk)
2.**Model level
No-changes
3.**Metamodel level
No-changes

Figure 4: Meta-operations and propagation (changes at
ground level).

Table 1: Operations in the ontology-based scheme.

 Add Remove Modify

Concept Add concept Remove concept Rename concept
Concept hierarchy Add subConceptOf

relationship
Remove subConceptOf

relationship
Set subConceptOf

relationship
Property Add property Remove property Rename property
Property Domain Add property domain Remove property domain Set property domain
Property Range Add property range Remove property range Set property range
Instance Add instance Remove instance Rename instance
Property Instance Add property instance Remove property instance Set property instance

AN ONTOLOGY-BASED APPROACH TO THE MODELLING OF COLLABORATIVE ENTERPRISE PROCESSES -
Dynamic Managing of Functional Requirements

91

In the Bank_Branch organization can be
considered the need of including a new role called
proxy with the intention of realizing chief's tasks,
hereby the bankManager is released from some
tasks. This requirement modification takes place in
the first level application ontology of the scheme
description (Figure 5).This operation of adding the
role would provoke changes in the following level
because an actor system could play a proxy role (i.e.
Donald Johnson) and, in the accomplishment of
certain actions, the actor playing this role may
replace the bank manager; this is the case for the
task signature-load. Therefore, to realize the above
mentioned subactivity, it would be necessary to
modify the specification of the responsible roles in
order to include the connexion between the proxy
and the bank manager roles by means of an
exclusive-or relationship.

1.**Model level
Add concept (proxy)
AddsubConcept Of relationship (proxy, Role)
 Add property (proxy.role, signature-load.task)->
Actor play proxy replace Actor play bank-manager
AND check replace-bank-manager.Law
Rename signature-load.subactivity

2.**Ground level
is (Donald Johnson instance of Actor)?
TRUE=> (Remove_instance (Donald-Johnson instance
of Actor)) AND Add_instance (Donald Johnson play
proxy)
FALSE=> (Add_instance (Donald-Johnson instance of
Actor) AND Add instance (Donald-Johnson play proxy)
3.**Metamodel level
 No-changes

Figure 5: Meta-operations and propagation (changes at the
model level).

Finally, there is another kind of less usual
changes which take place at metamodel level. For
example, for the highest abstraction level in the
system description, a new way of arranging the work
could be required, in particular, to have pending
tasks classified according to different factors. In the
branch context, such factors might be related to the
type of asset transaction (credit, loan, mortgage,…),
deadlines to be met, etc. In order to fulfil this new
requirement, stakeholders could decide to add the
new concept worklist in the domain ontology. This
concept would be connected by an aggregation
relationship with the concept task, The cardinality of
relation would be of 0..n. This kind of change
modifies the conceptual model. However, there is

not propagation to the previously created application
ontologies at the first and ground levels (Figure 6).

1.**Metamodel level
 Add concept (worklist)
 AddsubConcept Of relationship (workist, Task)
 Add property (worklist, cardinality)
 Add property range (woklist.cardinalyty, 1:n)
2.**Model level
 No-changes
3.**Ground level
 No-changes

Figure 6: Meta-operations and propagation (changes at
metamodel level).

Another kind of change could be to remove one
element of the domain ontology. For example, when
the term subactivity is removed, the change involves
modifications in order to guarantee the consistency
of same and lower abstraction levels (application
ontologies), each instance of the subactivity concept
must be substituted with the set of final actions it
includes.

Completeness Property

The separation between the model and the ground
level ontologies may cause that design decisions be
spread throughout both levels. The formalization of
the system description using ontologies allows
defining the appropriate restrictions so that
completeness and consistency be preserved. For
example, let’s consider that Anna Riemann is
integrated in the group that deals with the
agreeAndSign at the ground level ontology.

At the model level, this activity for the signing of
a mortgage is defined to be part of the roles bank
manager, notary and client. In that case, it has to
checked that Anna_Riemann plays one of the roles
the activity agreeAndSign is part of or add (or
remove) the necessary facts to the ground level
ontology accordingly in order to preserve the
completeness of the system (Figure 7).

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

92

1.**Metamodel level
 No-changes
2.**Model level (present facts)
 SubActivity (agreeAndSign)
 Role (bankManager)
 Role (notary)
 Role (client)
 (agreeAndSign partOf client)
 (agreeAndSign partOf bankManager)
 (agreeAndSign partOf notary)
3.**Ground level (present facts)
 Actor (Anna_Riemann)
 Group (sign-Group)
 (sign-Group do agreeAndSign)
 **Ground level (new facts)
 Add_instance (Anna_Riemann partOf (sign-Group))
=>
 (Add_instance (Anna_Riemann play bankManager)
OR (Add instance (Anna_Riemman play notary))
OR (Add instance (Anna_Riemman play client))
OR (Remove_instance (Anna_Riemann partOf (sign-
Group))))

Figure 7: Detection of incompleteness and system
response.

Consistency Property

Finally, as an example of consistency preservation
let’s think of the following scenario. At the model
level, the bank the branch office belongs to has
made a corporate decision by which every actor
playing the role proxy must assume the task agree
assigned to the bankManager when this one is
absent, However, the branch office of the mortgage
system has forbidden that any role may share the
tasks assigned to the bankManager. This
inconsistency will become apparent when trying to
satisfy both restrictions.

1.**Metamodel level
 No-changes
2.**Model level
 (agreeAndSign partOf bankManager)
 is (bankManager status absent) == TRUE? =>
 ((exist ?actor play proxy) AND
 (Add_instance (agreeAndSign partOf proxy))
=> System_Restriction_Violation (“Generated by --”,
Add_instance (agreeAndSign partOf proxy))
3.**Ground level
forall ?activity ((?activity partOf bankManager)
==TRUE) => NOT (exists ?role (?activity partOf
?role)))

Figure 8: Detection of consistency violation and system
response.

5 CONCLUSIONS AND FUTURE
WORK

Collaborative systems are dynamic (changing over
time), active (carrying out processes of change) and
open (changes in the business environment inducing
changes in the system). A successful collaborative
system at its core depends on its capacity to support
both the environment and the internal changes (e.g.,
roles played by actors, actors’ capabilities, etc.).

In this paper, we have presented a three-tier
ontology for modelling and managing the intrinsic
evolutionary aspects of collaborative processes. This
ontology formally defines a set of essential concepts
that allows for modelling functional requirements. In
addition, elementary and compositionally operation
has been introduced in order to control the
propagation in the requirements change. These
changes can also be modelled either as a snapshot at
a particular instance of time or as a sequence of
changes over a period of time. Also associated with
the ontology are rules of changes: changes are
applied in a valid collaborative system state, and
after all changes are performed, result in a valid
state. This ensures that every change preserves the
system domain constraints. In order to show how to
apply this approach, a banking system case study has
been described.

In previous works (Hurtado, 2001), (Hurtado,
2002), although related to a different problem
domain of that treated in this paper, have been
defined mechanisms (algorithms and restrictions) on
the basis of the graph theory in order to assure these
properties in an automatic way. The corresponding
mechanisms for the current proposal (in the
collaborative system domain) are been developed by
using OWL logics (Sirin, 2006), according to the
multilevel scheme proposed.

Additionally, future work will be targeted to
support the development of groupware applications
on the basis of the proposed description and
dynamic management of functional requirements.
For that aim, clear connections should be established
between this framework and software architectures
in order to trace requirements. We are exploring
ways to capture and maintain a software architecture
as an instance of an architectural ontology, together
with key design decisions that determine the final
software architecture for each given system similarly
to the approach in (Akerman, 2006).

We also plan to capitalize on our previous
experiences in the development of groupware
applications (Garrido, 2007), in devising an
ontology-based architectural framework with

AN ONTOLOGY-BASED APPROACH TO THE MODELLING OF COLLABORATIVE ENTERPRISE PROCESSES -
Dynamic Managing of Functional Requirements

93

evolutionary capabilities. It can provide the support
for structural changes in the architecture in order to
satisfy changes that can occur in the functional
requirements specification.

ACKNOWLEDGEMENTS

This research is partially supported by R+D projects
of the Spanish MCYT under project TIN2004-
08000-C03-02.

REFERENCES

Akerman, A. Tyree, J. 2006. Using ontology to support
development of software architectures. In IBM
Systems Journal, Vol 45, Nº 4, pp. 813-825.

Ambler, S. W., Nalbone, J., Vizdos, M., 2003. Enterprise
Unified Process: Extending the Rational Unified
Process. Prentice Hall PTR.

Baader, F., Calvanese, D., McGuineness, D., Nardi, D.,
Patel-Schneider, P. 2003. The Description Logic
Handbook. Cambridge University Press.

Chung, L. Supakkul, S., 2006. Capturing and reusing
functional and non-functional requirements
knowledge: A goal-object pattern approach. In
Proceedings of the IEEE International Conference on
Information Reuse and Integration, pp. 539-544.

Garrido, J.L., Gea, M., Rodríguez, M.L., 2005.
Requirements Engineering in Cooperative Systems.
Requirements Engineering for Sociotechnical
Systems. Chapter XIV, IDEA GROUP, Inc.USA.

Garrido, J.L. Noguera, M. González, M. Hurtado M.V.,
Rodríguez, M.L., 2007. Definition and use of
Computation Independent Models in an MDA-based
groupware development process. In Science of
Computer Programming, Vol. 66, Issue 1, pp. 25-43,
Elsevier.

Garrido, J.L. Padereswki, P. Rodríguez, M.L. Hornos,
M.J. Noguera, M., 2005. A software architecture
intended to design high quality groupware
applications. In Proceeding of the 4th International
Workshop on System/Software Architectures,
IWSSA’05, Las Vegas, USA, June 2005, pp 59-65.

Gruber, T.,1995. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. International
Journal of Human and Computer Studies, Vol. 43
(5/6), pp. 907-928.

Gruninger, M., Atefi, K., Fox, M.S., 2000. Ontologies to
Support Process Integration in Enterprise Engineering.
In Computational and Mathematical Organization
Theory, Vol. 6, Nº. 4, pp. 381-394.

Guarino, N. and Giaretta, P., 1995 Ontologies and
Knowledge Bases: Towards a Terminological
Clarification. In N. Mards (Ed.) Towards Very Large
Knowledge Bases: Knowledge Building and

Knowledge Sharing. IOS Press, Amsterdam. pp.25-
32.

Hurtado, M.V.,Parets, J. 2001,Evolutionary Information
and Decisión Support Systems: An integration Based
on Ontologies. Lecture Notes in Computer Science
LNCS 2178, pp 146-159.

Hurtado, M.V.,2002 Un modelo ontológico de integración
evolutivo entre sistemas de información y sistemas de
ayuda a la decisión. Tesis doctoral. Departamento de
Lenguajes y Sistemas Informáticos. Universidad de
Granada. Spain.

Jaekel, F.W., Perry, N., Campos, C., Mertins, K.,
Chalmeta, R., 2005. Interoperability Supported by
Enterprise Modelling. LNCS 3762, pp. 552 – 561.

Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.,
2004. The Protégé OWL Plugin: An Open
Development Environment for Semantic Web
Applications. LNCS 3298, pp. 229 – 243.

Lu, R.Q., 2000. Ontology-based requirements analysis
Journal of Software. Vol. 11(8). Pp 1009-1017.

OMG. Object Management Group: Unified Modelling
Language (UML) 2.0 Superstructure Specification,
August 2003. Ptc/03-08-02, pp. 455–510.

Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A.,
Katz, Y.. 2006. Pellet: A practical OWL-DL reasoner,
Journal of Web Semantics (To Appear)

Smith, M.K. Welty, C. and McGuinness, D.L. (Eds.),2004.
OWL Web Ontology Language Guide, W3C
Recommendation, 10 February
2004,http://www.w3.org/TR/2004/REC-owl-guide-
20040210/. Latest version available at
http://www.w3.org/TR/owl-guide/.

Stojanovic, L. and Motik, B., 2002. Ontology evolution
within ontology editors. In Proceedings of the
OntoWeb-SIG3 Workshop at the 13th International
Conference 22 on Knowledge Engineering and
Knowledge Management (EKAW) , pp. 53—62.

Yuqin Lee and Wenyun Zhao, 2006. Domain
Requirements Elicitation and Analysis -An Ontology-
Based Approach; LNCS 3994, pp. 805 – 813.
Springer-Verlag Berlin Heidelberg 2006

Zhi, Jin., 2000. Ontology-based requirements elicitation
automatically. Chinese J. Computers. Vol.23, Nº.5, pp.
486-492.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

94

