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Abstract: In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of
Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel
and uniform framework for face verification is presented. The framework is based on a family of PPS
wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based
in that features are extracted from the face image. The feature vectors are then subjected to subspace projection
of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the
literature. The Stirling Universitys face database were used to generate the results. Our method has achieved
92 % of correct detection and 5 % of false detection rate on the database.

1 INTRODUCTION

Systems based on biometric characteristics, such as
face, fingerprints, geometry of the hands, iris pat-
tern and others have been studied with attention.
Face verification is a very important of these tech-
niques because through it non-intrusive systems can
be created, which means that people can be compu-
tationally identified without their knowledge. This
way, computers can be an effective tool to search for
missing children, suspects or people wanted by the
law. Mathematically speaking, human face verifica-
tion problem can be formulated as function approxi-
mation problems and from the viewpoint of artificial
neural networks these can be seen as the problem of
searching for a mapping that establishes a relationship
from an input to an output space through a process of
network learning.

Wavelet functions have been successfully used in
many problems as the activation function of feedfor-
ward neural networks. An abundance of R&D has
been produced on wavelet neural network area. Some
successful algorithms and applications in wavelet
neural network have been developed and reported in

the literature (Pati and Krishnaprasad, 1993; Marar,
1997; Oussar and Dreyfus, 2000; Fan and Wang,
2005; Zhang and Pu, 2006; Avci, 2007; Jiang et al.,
2007; Misra et al., 2007).

However, most of the aforementioned reports im-
pose many restrictions in the classical backpropaga-
tion algorithm, such as low dimensionality, tensor
product of wavelets, parameters initialization, and, in
general, the output is one dimensional, etc.

In order to remove some of these restrictions,
we develop a robust three layer PPS-wavelet multi-
dimensional strongly similar to classical multilayer
perceptron. The great advantage of this new approach
is that PPS-Wavelets offers the possibility choice of
the function that will be used in the hidden layer,
without need to develop a new learning algorithm.
This is a very interesting property for the design of
new wavelet neural networks architectures. This pa-
per is organized as follows. Section 2 introduces the
wavelet sigmoidal function. Section 3 presents the
framework used in this research. Section 4 deals with
application of human face verification problem. Sec-
tion 5 concludes this paper.
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2 WAVELET FUNCTIONS

Two categories of wavelet functions, namely, or-
thogonal wavelets and wavelet frames (or non-
orthogonal), were developed separately by different
interests. An orthogonal basis is a family of wavelets
that are linearly independent and mutually orthogo-
nal, this eliminates the redundancy in the representa-
tion. However, orthogonal wavelets bases are difficult
to construct because the wavelet family must satis-
fy stringent criteria (Daubechies, 1992). This way,
for these difficulties, orthogonal wavelets is a serious
drawback for their application to function approxi-
mation and process modeling (Oussar and Dreyfus,
2000). Conversely, wavelet frames are constructed by
simple operations of translation and dilation of a sin-
gle fixed function called the mother wavelet, which
must satisfy conditions that are less stringent than or-
thogonality conditions.

Let ϕ j(x) a wavelet, the relation:

ϕ j(x) = ϕ(d j.(x− t j))

where t j is the translation factors and d j is the dilation
factors ∈ R. The family of functions generated by f
can be defined as:

f=
{

ϕ(d j.(x− t j)) , t j and d j ∈ R
}

A family f is said to be a frame of L2(R) if there
exist two constants c > 0 and C < ∞ such that for any
square integrable function f the following inequali-
ties hold:

c‖ f‖2 ≤∑
j
|< ϕ j, f > |2 ≤C‖ f‖2

where ϕ j ∈ f, ‖ f‖ denotes the norm of function f
and < ϕ j, f > the inner product of functions. Fa-
milies of wavelet frames of L2(R) are universal ap-
proximators (Pati and Krishnaprasad, 1993; Marar,
1997). In this work, we will show that wavelet frames
allow practical implementation of multidimensional
wavelets. This is important when considering prob-
lems of large input and output dimension. For the
modeling of multi-variable processes, such as, the ar-
tificial neural networks biologically plausible, multi-
dimensional wavelets must be defined. In the present
work, we use multidimensional wavelets constructed
as linear combination of sigmoid, denominated Poly-
nomial Powers of Sigmoid Wavelet (PPS-wavelet).

2.1 Sigmoidal Wavelet Functions

In (Funahashi, 1989) is showed that:

Let s(x) a function different of the constant func-
tion, limited and monotonically increase. For any

0 < α < ∞ the function created by the combination
of sigmoid is described in Equation 1:

g(x) = s(x+α)− s(x−α) (1)

where g(x) ∈ L1 (R), i.e,

∫ ∞

−∞
g(x) < ∞

in particular, the sigmoid function satisfies this pro-
perty.

Using the property came from the Equation 1, in
(Pati and Krishnaprasad, 1993) boundary suggest the
construction of wavelets based on addition and sub-
traction of translated sigmoidal, which denominates
wavelets of sigmoid. In the same article show a pro-
cess of construction of sigmoid wavelet by the substi-
tution of the function s(x) by ϒ(qx) in the Equation 1.
So, the Equation 2 is the wavelet function created in
(Pati and Krishnaprasad, 1993).

ψ(x) = g(x+ r)−g(x− r) (2)

where r > 0. By terms of sigmoid function, the
Equation 2, ψ(x) is given by:

ψ(x) = ϒ(qx+a+ r)−ϒ(qx−a+ r)−
ϒ(qx+a− r)+ϒ(qx−a− r) (3)

where q > 0 is a constant that control the curve of the
sigmoid function and α and r ∈ R > 0.

Pati and Krishnaprasad demonstrated that the
function ψ(x) satisfies the admissibility condition for
wavelets (Daubechies, 1992). The Fourier Transform
of the function ψ(x) is given by the Equation 4:

∫ ∞

−∞
ψ(x)e−iwxdx =−i

4π
q

sin(wα)sin(wr)
sinh(πw

q )
(4)

In particular, we accepted for analysis and prac-
tical applications the family of sigmoid wavelet gen-
erated by the parameters q = 2 and α = r, as exam-
ple. So, the Equation 3 can be rewritten the following
form:

ψ(x) = ϒ(2x+m)−2ϒ(2x)−ϒ(2x−m) (5)

where m = α+ r.
Following, partially, this research line, we present

in the next section a technique for construction of
wavelets based on linear combination of sigmoid
powers.
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3 POLYNOMIAL POWERS OF
SIGMOID

The Polynomial Powers of Sigmoid (PPS) is a class
of functions that have been used in recent years to
solve a wide range of problems related to image and
signal processing (Marar, 1997). Let ϒ : R → [0,1]
be a sigmoid function defined by ϒ(x) = 1

1+e−x . The
nth−power of the sigmoid function is a function
ϒn : R→ [0,1] defined by ϒn(x) =

(
1

1+e−x

)n
.

Let Θ be set of all power functions defined by (6):

Θ = {ϒ0(x),ϒ1(x),ϒ2(x), . . . ,ϒn(x), . . .} (6)

An important aspect is that the power these functions,
still keeps the form of the letter S. Looking the form
created by the power functions of sigmoid, suppose
that the nth power of the sigmoid function to be repre-
sented by the following form:

ϒn(x) =
1

a0 +a1e−x +a2e−2x + · · ·+ane−nx (7)

where a0,a1,a2, . . . ,an are some integer values. The
extension of the sigmoid power can be viewed like
lines of a Pascal′s triangle. The set of function writ-
ten by linear combination of polynomial powers of
sigmoid is defined as PPS function. The degree of
the PPS is given by the biggest power of the sigmoid
terms.

3.1 Polynomial Wavelet Family on PPS

The derivative of a function f (x) on x = x0 is defined
by:

f ′(x0) = lim
∆x→0

f (x0 +∆x)− f (x0)
∆x

since the limits there is. So, if we do the computation
of the Equation 8 :

f (x0 +∆x)− f (x0)
∆x

(8)

for a small value of ∆x , showed have a good appro-
ximation for f ′(x0). Naturally, ∆x can be positive or
negative. So, if is we use negative value for ∆x, the
expression will be:

f (x0−∆x)− f (x0)
−∆x

(9)

This way, we can say that the arithmetic measure
of the Equations 8 and 9 will be a good approxima-
tion for f ′(x0) too. Then, we can write the following
Equation 10:

f ′(x0)'
f (x0 +∆x)− f (x0−∆x)

2∆x
(10)

By convenience, we consider p = 2∆x and its su-
bstitution in the Equation 10. So, we have the Equa-
tion 11:

f ′(x0)'
f (x0 + p

2 )− f (x0− p
2 )

p
(11)

this point we computed an approximated value for the
second derivative of f (x) in x = x0. From the Equa-
tion 11, changing f (x) by f ′(x), we obtain the Equa-
tion 12 :

f ′′(x0)'
f
′
(x0 + p

2 )− f ′(x0− p
2 )

p
(12)

reusing the Equation 11, we can write:

f ′(x0 +
p
2
)' f (x0 + p)− f (x0)

p
and

f ′(x0−
p
2
)' f (x0)− f (x0− p)

p
using these results in the Equation12, we have an ap-
proximation of the second derivative of f (x) in x = x0
that is given by:

f ′′(x0)'
f (x0 + p)−2 f (x0)+ f (x0− p)

p2 (13)

The approximation given by the Equation 13 is ex-
tremely adequate for the that f (x) is a sigmoid func-
tion. Suppose that f (x) is a sigmoid, for example,
ϒ(x). So, the second derivative of ϒ(x) is approxi-
mated by the Equation 14:

ϒ′′(x0)'
ϒ(x0 + p)−2ϒ(x0)+ϒ(x0− p)

p2 (14)

Due the fact of the sigmoid function to be continu-
ous and differentiable for any x ∈ R, we can say that
the Equation 14 is true for any x0, then we can write
the Equation 15, defined for all x ∈ R.

ϒ′′(x)' ϒ(x0 + p)−2ϒ(x)+ϒ(x− p)
p2 (15)

Comparison the Equations 15 and 5, we do
there analysis for the approximation of the second
derivative of sigmoid function. The first for values of
p≥ 1 and the second for values of p < 1.

Case p≥ 1:
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It is clear that the function given by the sigmoid
second derivative approximation, Equation 15, also
will have the same form of the Pati and Krishnaprasad
functions, except of a p2 constant that divides their
amplitude. So, the following result is true: when
p > 1 always there is a sigmoid wavelet which
integral of the admissibility condition (Daubechies,
1992) limited the same integral of the Equation 15.
Therefore, the approximation of the second derivative
of the sigmoid function is a wavelet too.

Case p < 1:

In this case, we will analyze when p is going to zero,
i.e.,

lim
p→0

ϒ′
(x0 + p)−2ϒ(x)+ϒ′(x− p)

p2 (16)

this limit tends to the second derivative of the function
is given on PPS terms by:

ϕ2(x) = 2ϒ(x)3−3ϒ(x)2 +ϒ(x) (17)
where we denominated ϕ2(x) the first wavelet the
sigmoid function. The others derivatives, begin on
the second, we considered true by derivative proper-
ty by Fourier Transform (Marar, 1997). The suc-
cessive derivation process of sigmoid functions, al-
lowed to join a family of wavelets polynomial func-
tions. Among many applications for this family of
PPS-wavelets, special one is that those functions can
be used like activation functions in artificial neurons.
The following results correspond to the the analytical
functions for the elements ϕ3(x) and ϕ4(x) that are
represented by:

ϕ3(x) =−6ϒ4(x)+12ϒ3(x)−7ϒ2(x)+ϒ(x)

ϕ4(x) = 24ϒ5(x)−60ϒ4(x)+50ϒ3(x)−15ϒ2(x)+ϒ(x)

ϕ4(x) ϕ5(x)
Figure 1: PPS-wavelets examples.

3.2 PPS Wavelet Neural Network

Let us consider the canonical structure of the multidi-
mensional PPS-wavelet neural network (PPS-WNN),
as shown in Figure 2.

Figure 2: PPS-wavelet neural network Architectures.

For the PPS-WNN in Figure 2, when a input pat-
tern X = (x1,x2, . . . ,xm)T is applied at the input of the
network, the output of the ith neuron of output layer is
represented as a function approximation problem, ie,
f : Rm → [0,1]n, given by:

Oi(x)'

ϒi

(
p

∑
j=1

w(2)
i j ϕ j

(
d j.

(
m

∑
k=1

w(1)
jk xk−b(1)

j

)
− t j

)
−b(2)

i

)

(18)

where p is number of hidden neurons, ϒ(.) is sig-
moid function, ϕ(.) is the PPS-wavelet, w(2)

are weight between the hidden layer to the output
layer, w(1) are weights between the input to the hid-
den layer, d are dilation factors and t are translation
factors of the PPS-wavelet, b(1) and b(2) are bias
factors of the hidden layer and output layer, respec-
tively.

Figure 3: The Hidden Neuron of PPS-Wavelet Neural Net-
work.
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The PPS-WNN contains PPS-wavelets as the ac-
tivation function in the hidden layer ( Figure 3) and
sigmoid function as the activation function in the out-
put layer (Figure 4).

The output of the jth PPS-wavelet hidden neuron
(Figure 3) is given by :

~ j = ϕ j(d j.(net(1)
j − t j))

where

net(1)
j =

m

∑
k=1

w(1)
jk xk−b(1)

j

The output of the ith output layer neuron (Figure 4)

Figure 4: The Output Neuron of PPS-Wavelet Neural Net-
work.

is given by:

}i =
1

1+ exp(−net(2)
i )

where

net(2)
i =

p

∑
j=1

w(2)
i j ϕ j(d j.(net(1)

j − t j))−b(2)
i

The adaptive parameters of the PPS-WNN consist
of all weights, bias, translations and dilation terms.
The sole purpose of the training phase is to determine
the ”optimum” setting of the weights, bias, transla-
tions and dilation terms so as to minimize the diffe-
rence between the network output and the target out-
put. This difference is referred to as training error of
the network. In the conventional backpropagation al-
gorithm, the error function is defined as:

E =
1
2

s

∑
q=1

n

∑
i=1

(yqi−oqi)2 (19)

where n is the dimension of output space, s is the
number of training input patterns

The most popular and successful learning method
for training the multilayer perceptrons is the back-
propagation algorithm. The algorithm employs an

iterative gradient descendent method of minimization
which minimizes the mean squared error (L2 norm)
between the desired output (yi) and network output
(oi). From Equations (18) and (19), we could
deduce the partial derivatives of the error to each
PPS-wavelet neural network parameter′s, which is
given by:

Partial Equations of the Output Layer

∂E

∂w(2)
i j

=−
s

∑
q=1

(yqi−oqi).oqi.(1−oqi).

ϕ j(d j.(net(1)
q j − t j)) (20)

∂E

∂b(2)
i

=
s

∑
q=1

(yqi − oqi).oqi.(1 − oqi) (21)

Partial Equations of the Hidden Layer

∂E

∂w(1)
jk

=−d j.
s

∑
q=1

[ϕ′j(d j.(net(1)
q j − t j)).xqk.

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (22)

∂E

∂b(1)
j

=
s

∑
q=1

[ϕ′j(d j.(net(1)
q j − t j)).d j.

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (23)

Partial Equations of the PPS-Wavelet Parameters

∂E
∂d j

=
s

∑
q=1
{[ϕ′j(d j.(net(1)

q j − t j)).(net(1)
q j − t j)].

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j } (24)

∂E
∂t j

= d j

s

∑
q=1

[ϕ′j(d j.(net(1)
q j − t j)).

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (25)

After computing all partial derivatives the network
parameters are updated in the negative gradient direc-
tion. A learning constant γ defines the step length of
the correction, r is the iteration and momentum factor
is β. The corrections are given by:

w(2)
i j (r +1) =

w(2)
i j (r)− γ.

∂E

∂w(2)
i j

+β.(w(2)
i j (r)−w(2)

i j (r−1))
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b(2)
i (r +1) =

b(2)
i (r)− γ.

∂E

∂b(2)
i

+β.(b(2)
i (r)−b(2)

i (r−1))

w(1)
jk (r +1) =

w(1)
jk (r)− γ.

∂E

∂w(1)
jk

+β.(w(1)
jk (r)−w(1)

jk (r−1))

b(1)
j (r +1) =

b(1)
j (r)− γ.

∂E

∂b(1)
j

+β.(b(1)
j (r)−b(1)

j (r−1))

d j(r+1) = d j(r)−γ.
∂E
∂d j

+β.(d j(r)−d j(r−1))

t j(r + 1) = t j(r)− γ.
∂E
∂t j

+ β.(t j(r)− t j(r− 1))

4 HUMAN FACE VERIFICATION

This study presents a system for detection and extrac-
tion of faces based on the approach presented in (Lin
and Fan, 2001), which consists of finding isosceles
triangles in an image, as the mouth and eyes form that
geometric figure when linked by lines. In order for
these regions to be determined, the images must be
converted into binary images, thus the vertices of the
triangles must be found and a rectangle must be cut
out around them so that their size can be brought to
normal and the area can be fed into a second part of
the system that will analyze whether or not it is a real
face. three different approaches are tested here: A
weighing mask is used to score the region, proposed
by Lin and Fan (Lin and Fan, 2001), a classical MLP
backpropagation (MLP-BP) and PPS-wavelet neural
network, for the analysis to be performed.

4.1 Image Treatment

First the image was read with the purpose of alloca-
ting a matrix in which each cell indicates the level of
brightness of the correspondent pixel; then, it is con-
verted into a binary matrix by means of a Threshold
parameter T, because the objects of interest in our case
are darker than the background. This stage changes
to 1 (white) a brightness level greater than T and to 0
(black). In most of the cases, due to noise and distor-
tion in the input image, the result of the binary trans-
formation can bring a partition image and isolated

pixels. Morphologic operations - opening followed
by closing - are applied with the purpose of solving
or minimizing this problem (Gonzalez and Woods,
2002). The Figure 5 shows the result of these oper-
ations.

Figure 5: Image treatment after morphologic operations.

XSegmentation of Potential Face Regions

After binarization the task is finding the center of
three 4-connected components that meet the follow-
ing characteristics:

1. vertex of an isosceles triangle (Lin and Fan,
2001);

2. the Euclidean distance between the eyes must be
90-100 % the distance between the mouth and
the central point between the eyes (Lin and Fan,
2001);

3. the triangle base is at the top of the image.

The last restriction does not allow finding upside
down faces, but it significantly reduces the number
of triangles in each image, thus reducing the process-
ing time to the following stages. For example, the
numbers of triangles found in Figure 5(D), with this
restriction 399 and without restriction 769.

The opening and closing operations are vital,
since it is impossible to determine the triangles with-
out this image treatment. The processing mean time
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to find the results presented was 4 seconds; on the
other hand, 8 hours were insufficient in an attempt at
finding the same results using a Pentium 4 with 2.4
Ghz processor in Figure 5(C).

XNormalization of Potential facial Regions

Once the potential face regions that we have selected
in the previous section are allowed to have different
sizes. All regions had to be normalized to the (60x60)
pixels size by bi-cubic interpolation technique, be-
cause every potential regions needs to present the
same amount of information for comparison. So, nor-
malization of a potential region can reduce the effects
of variation in distance and location.

4.2 Face’s Pattern Recognition

The purpose of this stage is to decide whether a poten-
tial face region in an image (the region extracted in the
first part of the process) actually contains a face. To
perform this verification, two methods were applied :
The weighting mask function, described by Lin and
Fun (Lin and Fan, 2001) and PPS-wavelet neural net-
work.

XThe Weighting Mask Function

The function Weighting Mask, according to the au-
thor, it is based on the following idea: If the nor-
malized potential region is really contains a face, it
should have high similarity to the mask that is formed
by 10 binary training faces (Mask Generation). Every
normalized potential facial region is applied into the
weighting mask function that is used to compute the
similarity between the normalized potential facial re-
gion and the mask. The computed value can be used
in deciding whether a potential region contains a face
or not.

Mask Generation

The mask was created using 10 images. The first five
are pictures of females and the others are pictures of
males. All of them were manually segmented, bina-
rized, normalized, morphologically treated (opening
and closing) and then the sum of the correspondent
cell of each image was stored in the 11th matrix. Fi-
nally, that matrix was binarized with another Thresh-
old T, for which values lower than or equal to T were
replaced by 0, and the others by 1. The result was
improved with T=4. Whereas at lower values the ar-
eas of the eyes and mouth become too big, at higher
values these areas almost disappear. In both cases,
determining the triangles is considerably difficult.

Weighting Mask Algorithm

The algorithm used to decide whether a potential face
(R) contains a real face is based on the idea that the
binary image of a face is highly similar to that of the
mask.

Begin
Input the region R and mask M; p=0;
For all pixels of R and M

IF the pixel from R and M is white
Then p = p+6;

IF the pixel from R and M is black
Then p = p+2;

IF the pixel from R is white and that from M is
black

Then p = p - 4;
IF the pixel from R is black and that from M is

white
Then p = p - 2;

End

A set experimental results demonstrates that
the threshold values should be a set between face
3400<= p >= 6800 (Marar et al., 2004).

XPPS-wavelet Neural Network

In order to demonstrate the efficiency of the proposed
model. Two PPS-WNNs, one with the activation
function ϕ2(.) and the other with ϕ5(.) in the hidden
layer, were implemented to analyze when a potential
face region really contains a face. However, the raw
data face, (60 x 60) pixels, cannot be used directly
for the training the networks because the features are
deep hidden. Therefore, we used the Principal Com-
ponents Analysis (PCA) method to create a face space
that represents all the faces using a small set of com-
ponents (Marar, 1997). For this purpose we consider
the first 15 components as the extracted features or
face space. In that case study, 100 manually seg-
mented faces (50 women and 50 men) and more 40
non-face random images were used to network train-
ing.

Therefore, the PPS-WNNs and classical MLP-BP
architectures with 15 units in the input layer, with 16
PPS-wavelet neurons in the hidden layer and with 2
neurons in the output layer were designed and trained.
Here, in the output layer, we represented face by the
vector (1,0) and non-face by the vector (0,1). We
used, as test, the same regions (R) applied to the pre-
vious method.
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5 RESULTS
Several tests were performed to determine an ideal
threshold value for the conversion of the images into
binary figures. In a scale from 0 (black) to 1 (white),
0.38 was empirically determined as a good value to
most of the images, but to darker images 0.22 was a
better value. The test was done through the use of
100 images (50 male and 50 female) with two differ-
ent threshold values from (Department, 2003). The
results are shown in Table 1.

Table 1: Face verification results with 2 threshold values.

Threshold 0.22 0.38
Weighting Correct Detection 81 % 48 %

Mask False Detection 25 % 21 %
Classical Correct Detection 83 % 35 %
MLP-BP False Detection 28 % 17 %

PPS-WNN Correct Detection 85% 63 %
ϕ2(.) False Detection 15 % 23 %

PPS-WNN Correct Detection 92 % 51 %
ϕ5(.) False Detection 5 % 11 %

The best result for T=0.22 is explained by the low
brightness and consequently low contrast of the im-
ages in the set. All the images used are at an 8 bit
gray scale and 540 x 640 pixels. All tests were per-
formed in an IBM -compatible PC, Pentium 4 with
2.4 Ghz processor, 1Gb RAM memory.

6 CONCLUSIONS
The face recognition is an active research area for se-
curity. However, it is still a complex and challenging
research topic because the human face may change its
appearance due to the internal variations such as facial
expressions, beards, mustaches, hair styles, glasses,
ageing, surgery and the external distortions such as
scale, lighting, position and face occlusion. In this
paper, we showed the basic concepts and technics of
Polynomial Powers of Sigmoid and how to build mul-
tidimensional wavelet neural networks starting from
this definition. We chose this application due to the
complexity of image processing problems. The ob-
tained results suppose to validate the new method for
new and future applications in the artificial intelli-
gence area.
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