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Abstract: Even though the neurons in the human brain are sensitive to noises, human central nervous systems can 
operate correctly under a noisy environment. Since neural networks have superior information processing 
functions, many investigators have attemptted to model biological neurons and neural networks.  A number 
of recent studies of neural networks have been conducted with the purpose of applying engineering to the 
brain. Especially, neuro devices have been created that focus on how to have a learning function.  Here, we 
focus on spike timing dependent synaptic plasticity (STDP) and construct pulse-type neuro devices with 
STDP using analog VLSI technology. We show that it is possible to extract phase differences representing 
the reinforcement part of the synaptic weight by using pulse-type neuro devices with STDP. Moreover, we 
investigate noise tolerance for thermal noise and fluctuation of time. 

1 INTRODUCTION 

An artificial neural network that performs similarly 
to the human brain would be required to construct a 
brain-type information processing system. Our 
human central nervous systems can operate correctly 
in noisy environments even though the neurons in 
the brain are sensitive to noise. On the other hand, it 
would be necessary to use neuro devices as 
components in an environment without noise. To 
focus on this superior function, investigators are 
studying the noise tolerance of artificial neural 
networks.  Because it is not possible to learn 
correctly when influenced by noise, an information 
processing system cannot be constructed. The 
classical Hebbian learning rule is proposed as the 
learning rule. (Hebb, 1949). This rule is thought to 
play an important role in the synaptic plasticity of 
neural networks in the brain. This rule uses mean 
spike firing correlations between pre- and 
postsynaptic neurons to drive learning.  Recently, 
the form of synaptic plasticity was seen to be 
dependent on the order and time intervals of pre- and 
postsynaptic spikes (STDP: spike timing dependent 
synaptic plasticity (Bi and Poo, 1998, Nishiyama, 

Hong, Mikoshiba, Poo, and Kato, 2000)), as was 
observed in the hippocampus and cerebral cortex. 
(Patrick and Curtis, 2002, Sakai and Yoshizawa, 
2003, Tsukada, Aihara, Kobayashi and Shimazaki, 
2005). STDP manifests itself as the potentiation of a 
synapse if the presynaptic spike precedes the 
postsynaptic spike, and as depression if the 
presynaptic spike follows the postsynaptic spike.  
Potentiation and depression were determined from 
the results of experiments on rat hippocampal 
neurons (Patrick and Curtis, 2002) and frog tectal 
neurons. (Zhang, Tao, Holt, Harris and Poo, 1998). 
The timing based learning rule enhances the 
excitatory postsynaptic potentials induced by 
coincident input spikes, since the synaptic 
connections already contributing to postsynaptic 
firing are further strengthened. (Gerstner, Kempter, 
van Hemmen and Wagner, 1996).  It is reported 
these characteristics are useful and effective for the 
extraction of synchronous firing so that STDP is 
buried in the noise. (Fukai and Kanemura, 2001, 
Saeki, Hayashi and Sekine, 2006).  In addition, the 
hardware model with STDP (Bofill-i-Petit and 
Murray, 2004) has been proposed based on the 
physiological experiment results. However these 
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models are complex circuits and don’t study the noise 
tolerance. 

On the other hand, we proposed a pulse-type 
neuro device that approximately simulates pulse 
signals as an information transmission means in the 
brain. (Sekine 1999, Saeki, Sekine, and Aihara, 1999, 
Sekine, Sumiyama, Saeki and Aihara, 2001).  

In this paper, we discuss the construction of 
neural networks from pulse-type neuro devices with 
STDP. We show that it is possible to extract the 
phase difference representing the reinforcement part 
of synaptic weight. Moreover, we investigate the 
noise tolerance of thermal noise and the fluctuation 
of time.  

2 CIRCUIT OF NEURO DEVICES 
WITH STDP 

An STDP block diagram is shown in Fig. 1. This 
block diagram has cell body blocks and an STDP 
block. When pulses are inputted to each temporal 
summation block, output pulses from each temporal 
summation block have first-order delays and are 
transmitted to the subsequent blocks. When the post-
synaptic cell generates the pulses, the synaptic 
weight Wp between pre- and post-synaptic cells is 
reinforced based on the output amplitude of the 
temporal summation block with the pre-synaptic 
cell. On the other hand, when the pre-synaptic cell 
generates the pulses, Wp is suppressed based on the 
output amplitude of the temporal summation block 
with the post-synaptic cell. 

 
Figure 1: STDP block diagram. 

A pulse-type neuro device is shown in Fig. 2. The 
pulse-type neuro device consists of a cell body 
circuit and a synaptic circuit. Figure (a) shows the 
cell body circuit. When Iout is inputted to the cell 
body circuit, output pulses are generated. This 
circuit has a threshold and a refractory period 
characteristic. Figure (b) shows the synaptic circuit. 

When pulses are inputted to the input terminal Vpre 
of the synaptic circuit from the pre-synaptic cell, Iout 
is generated. The current Iout changes according to 
Vw. Therefore, the synaptic weight between the pre- 
and post-synaptic cells can be controlled by Vw. 
Spatial summation circuits can also be constructed 
when a series circuit of Msy1 and Msy2 is connected 
in parallel. 

 
Figure 2: Pulse-type neuro device. 

The synaptic weight generation circuit is shown in 
Fig. 3. This circuit consists in part of three blocks; 
two temporal summation circuits and a synaptic 
weight control circuit. The voltage Vw is the output 
voltage of this circuit and is the parameter that 
controls the synaptic weight between the pre- and 
post-synaptic cells.  

 
Figure 3: Synaptic weight generation circuit. 

A function of Vw in the synaptic weight generation 
circuit is shown in Fig. 4. The horizontal axis is the 
time interval Δt’, which is the time of the pre-
synaptic pulse minus the time of the post-synaptic 

(a) Cell body circuit. 

(b) Synaptic circuit. 
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Figure 6: Synaptic weight control voltage. 
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pulse, and the vertical axis is the amount of voltage 
change ΔVw of Vw after generating pulses in pre- 
and post-synaptic cells. This figure shows that Vw 
increases when a pulse generated in the post-
synaptic cell after a pulse is generated in the pre-
synaptic cell, but decreases when the pulse 
generated in the pre-synaptic cell follows the pulse 
generated in the post-synaptic cell. Furthermore, as 
Δt’ becomes shorter, ΔVw increases exponentially. 

From these results, we clarify principles of the 
operation of the proposed circuits when the circuit in 

Fig. 2 is controlled with Vw in Fig. 3. Therefore, 
controlling the circuit depicted in Fig. 2 with Vw, as 
depicted in Fig. 3, generates the STDP function. 

3 EXTRACTION OF PHASE 
DIFFERENCE INFORMATION 

 
 
 
 
Figure 5 shows an example of a neural network 
composed of SDelay,(1~k~L) that represents the synaptic 
circuits of each difference in the propagation delay 
time, SSTDP,(1~k~L) that represents the synaptic circuits, 
with synaptic weight control circuits, N'pre and 
parallel N’post,(1~k~L). Moreover, inputs 1 and 2 are 
made in the same cycle. The synaptic weight control 
voltage of SSTDP,(1~k~L) is VW,STDP(1~k~L), and the 
synaptic weight control voltage of SDelay,(1~k~L) is a 

constant value VW,STDP(1~k~L) = 0.0 V. The 
propagation delay time of SDelay,k is assumed to be 
the next equation. )1( −⋅Δ= kk ττ    (1) 
In equation, τk is the propagation delay time. Δτ is 
the sampling time of the propagation delay time. 

Figure 5 : A neural network that extracts phase. 

Figure 4: Characteristic of Vw in the synaptic weight. 
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Input 2 is transmitted N’post,(1~k~L) through the 
SSTDP,(1~k~L), and N’post,(1~k~L) outputs pulses at each 
different time. The synaptic weigh control voltage of 
the synaptic circuit, which connects the cell body 
circuit and input 1 corresponds to the phase 
difference between inputs 1 and 2, decreases 
because the cycles of inputs 1 and 2 are the same. As 
a result, the phase difference can be learned as the 
number of the synaptic circuit which it reinforces. 
Moreover, the cell body circuit connected with the 
reinforced synaptic circuit can output a pulse when 
input 1 is inputted again after the learning finished, 
and the phase difference between inputs 1 and 2 can 
be extracted.  

Figure 6 shows the characteristics of each 
synaptic weight control voltage Vw,k to the phase 
difference of input 2 based on input 1. In this case, 
we use the parameters, T=10μs, L=20 and Δτ=0.5μs. 
The horizontal axis is the number of the synaptic 
circuits, and the vertical axis is VW,STDP(1~k~L).  This 
figure shows that Vw,k with the minimum value 
neighbourhood appear to be 1~4, 5~9, 12~16 and 
17~20 for phase differences between inputs 1 and 2 
of 0, π/2, π and 3π/2, respectively. That is to say, the 
minimum neighbourhood depends on the phase 
difference between inputs 1 and 2.  Therefore, it is 
possible to extract the phase difference from pulse-
type neuro devices with STDP. 

4 NOISE TOLERANCE 

4.1 Thermal Noise 

In this section, thermal noise is assumed, and 
tolerance to white noise is investigated.  

The signal of the next equations is used as a 
train of pulses that adds white noise to a periodic 
train of pulses of the cell body circuit.  

∑
=

+⋅=
m

i
whiteiprepre viTvS

1
, )'()(' σ  (2) 

∑
=

++⋅=
n

j
whitejpostpost vdtjTvS

1
, )'()(' σ  (3) 

In these equations, vwhite shows white noise that 
generates random numbers. σ’ is the standard 
deviation of distribution, shows noise tolerance.                                                                                                                           
In this case, we use these parameters, T=10μs and 
dt=1μs. 

Figure 7 shows a characteristic of the synaptic 
weight control voltage to the strength of the white 

noise. The horizontal axis is the strength of the white 
noise and the vertical axes are the average of Vw (■
) and the ratio that becomes Vw less than 1V (○), 
respectively. We assume that it is transmitted to the 
pulses from Npre to Npost, when Vw less than 1V. This 
figure shows that not more than σ’ =1.0V is 
displayed below Vw=1.5V, and σ’ =1.05V is 
displayed above Vw=1.5V. Noise strength shows that 
if the influence of the reinforcement displays below 
σ’ =1.0V, the influence of the suppression appears 
as σ’ =1.05V. As well, the rate that Vw becomes not 
more than 1V is 100% within the range of σ’ =0.8V 
or less. This suggests a neural network with STDP 
that has a learning function with tolerance for white 
noise of 0.8V or less. 

4.2 Fluctuation of Time 

Next, the difference of the pulse timing caused by 
the wiring capacity etc. is investigated. The signal of 
the next equations is used as a train of pulses that 
adds the fluctuation of the timing of the cell body 
circuit. 

( )∑
=

+⋅=
m

i
iNrandiprepre tiTvS

1
,, )"(" σ   (4) 

( )∑
=

++⋅=
n

j
jNrandjpostpost tdtjTvS

1
,, )"(" σ  (5) 

In these equations, tNrand,i tNrand,j show the fluctuation 
of time. σ’’ is the standard deviation of the 
distribution, showing the noise tolerance.  In this 
case, we use the parameter, T=10μs.                                                         

Figure 8 shows a characteristic of the synaptic 
weight control voltage to the fluctuation of the time. 
The horizontal axis is σ’’ and the vertical axes are 
the average of Vw (■) and the ratio that becomes Vw 

Figure 7: Synaptic weight control voltage to the 
strength of white noise.
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less than 1V (○), respectively. This figure shows 
that not more than σ’’ =1.8μs is displayed below 
Vw=1.5V, and σ’’ =2.0μs is displayed above 
Vw=1.5V. The fluctuation of time shows that the 
influence of reinforcement is displayed below σ’’ 
=1.8μs, and the influence of suppression appears at 
σ’’ =2.0μs. As well, the rate at which Vw becomes 
not more than 1V is 100% within the range of σ’’ 
=0.6μs or less. This suggests a neural network with 
STDP that has a learning function with tolerance for 
the fluctuation of time of 0.6μs or less. 

5 CONCLUSIONS 

In this paper, we focus on STDP and we construct 
neuro devices with STDP to study the effect of 
STDP on the ability to extract phase differences. 
Using these devices, we construct a neural network 
that extracts phase difference information. As a 
result, it is possible to extract the phase differences 
of pulse-type neuro devices with STDP, representing 
the reinforcement component of synaptic weight. 
Moreover, we investigated the noise tolerance of the 
proposed model. As a result, we demonstrated pulse-
type neuro devices with STDP that have a learning 
function with tolerance for white noise of 0.8V or 
less, and for fluctuation of time of 0.6μs or less. 
That is to say, we showed that pulse-type neuro 
devices with STDP had a learning function with 
noise tolerance for the thermal noise and the 
fluctuation of the time. 
In our future work, we will construct an integrated 
circuit with pulse-type neuro devices with STDP. 
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Figure 8: Synaptic weight control voltage to fluctuation 
of the time. 
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