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Abstract: This paper introduces the work developed by the authors in the study of tremor time series. First, it introduces
a novel technique for the study of tremor. The technique presented is a high-resolution technique that solves
most of limitations of the Fourier Analysis (the standard technique to the study of tremor time series). This
technique was used for the study of tremorous movement in joints of the upper limb. After, some conclusions
about tremor behaviour in upper limb based on the technique introduces are presented. Furthermore, an
algorithm able to estimated in real-time the voluntary and the tremorous movement was presented. This
algorithm was validated in two contexts with successful results. Finally, some conclusions and future work
are given.

1 INTRODUCTION

Tremor is a rhythmic, involuntary muscular contrac-
tion characterized by oscillations of a part of the body
(Anouti and Koller, 1998). The oscillatory activi-
ties are related to various combinations of four basic
mechanisms: (a)mechanically induced oscillations,
(b) oscillations due to reflexes, (c) oscillations gen-
erated by neuronal generators in the central nervous
system, (d) oscillations resulting from impaired feed-
forward and feedback loops.

It is well established that tremorous activity is
composed of deterministic and stochastic compo-
nents, (Timmer et al., 2000). The detection and quan-
tification of tremor are of clinical interest for diag-
nosis of neurological disorders and objective evalu-
ation of their treatment, (Gao and Wen-wen, 2002).
Furthermore, the estimation of tremor is an important
stage in systems that aim to control limb oscillations,
and also in biofeedback studies. In this regard, es-
timation techniques have been developed for tremor
suppression. Methods based on the Fourier transform
(FT) are commonly employed for this purpose, spe-
cially because of the similarity between the tremor to

a sine wave, (Elble and Koller, 1990). For instance,
the weighted Fourier linear combiner (WFLC) char-
acterizes the tremor based on its approximation by a
sinusoidal waveform, (Riviere, 1995). Riviere also in-
vestigated the application of neural networks to aug-
ment manual precision by cancelling involuntary mo-
tion. Another example is the extraction of frequency
parameters from the power spectrum (based on the
FT) of the tremor for classification purposes, (Rocon
et al., 2004).

This paper introduces an original study for tremor
characterization. First, experiments were performed
with 31 patients suffering from tremor diseases in
order to study tremor characteristics. The data col-
lected in this experiments were analyzed by means of
a novel methodology for the study of tremor time se-
ries based onEmpirical Mode Decomposition. This
technique allows an automatic detection of tremorous
movement and the study of nonlinear and nonstation-
ary characteristics of tremor, (Rocon et al., 2006).
Based on the information provided by this study, a
novel algorithm able to estimate in real time and com-
posed by two stages, one for the detection of vol-
untary movements and other for the estimation of
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Figure 1: Hilbert Spectrum of an Essential tremor patient
performing the task of Keeping the arms outstretched. The
high levels of energy activities are perceived when the pa-
tient is performing the task.

tremorous movements, is presented. Finally, exper-
iments for the validation of the algorithm presented
are given.

2 THE EXPERIMENTAL
PROTOCOL

In order to assess tremor characteristics we studied
its behavior in 31 patients suffering from different
pathologies. The average age of patients was 52.3
years old (ranging from 23 to 84 years old). All pa-
tients provided their written consent for the experi-
ments.

The diagnosis of the condition of patients was
given by the neurological staff of the General Hospi-
tal of Valencia (GHV, Spain) and the functional state
of patients was evaluated by means of the Faher scale,
(Fahn et al., 1998). Ethical approval for this research
has been granted by the Ethical Committee of the
GHV.

2.1 Sensors

The tremor was detected by a customized sensor,
which is based on the combination of two indepen-
dent gyroscopes placed distally and proximally to the
joint of interest. The joint angular speed is obtained
by subtraction of the angular speed measured by one
gyroscope from the angular speed measured by the
other one. The weight of the system is roughly 15
g, which is a low-mass system when compared to
other sensors used in the field, (Rocon et al., 2004).
The use of a low-mass sensor is important to reduce
the effect of low-pass filtering on the detected signal.
Gyroscopes were placed in order to estimate follow-
ing movements of the upper limb: 1) Elbow flexion-

extension, 2) Forearm pronation-supination, 3) Wrist
flexion-extension, and 4) Wrist deviation.

2.2 Tasks

Six different tasks were employed for excitation of
tremor: 1) Rest, 2) Reaching for an object, 3) Draw-
ing a spiral, 4) Arm outstretched, 5) Touching nose,
and 6) Moving a cup. In all tasks the patient was sit-
ting on a chair. This set of tasks aims to stimulate all
different types of tremor.

3 ANALYSIS OF TREMOROUS
MOVEMENT

In order to analyze the tremorous movement acquired
during the experiments,Empirical Mode Decomposi-
tion was used. This technique was proposed in (Ro-
con et al., 2006). This technique was identified as
a very useful tool for an automatic decomposition of
the signal into tremor and voluntary signal. Moreover,
this technique enables the representation of the ampli-
tude and the instantaneous frequency of the input sig-
nal as function of time in which the amplitude could
be contoured on the time-frequency plane. The tech-
nique presented is a high-resolution technique that
solves most of limitations of the Fourier Analysis (the
standard technique to the study of tremor time series).
This technique provides, in a time-frequency-energy
plot, a clear visualization of local activities of tremor
energy over the time, see figure 1.

Based on this technique, a study of the tremorous
movement at different joints of the upper limb was
developed. The study was performed with the data
collect from the experiments introduced in the previ-
ous section and aim at understanding tremorous be-
haviour. The main conclusions of this study are the
following: 1)the amplitude of the tremorous move-
ment is larger in distal joints than in proximal joints,
2)the frequency of tremorous movements is com-
prised in the bandwidth between 3 and 8 Hz, 3)tremor
frequency at different joints of the upper limb has very
similar values, 4)tremor frequency is not related to
the task performed by the patient, 5)the frequency of
tremorous movement is constant during the execution
of a task, nevertheless it could change during repe-
titions of the same task, 6)tremor activity is not al-
ways present during the experiments. Patients showed
tremor activity just during 40% of the time measured,
7) sex and age does not influence tremor behaviour.
The main novelty of this study is that it is centered in
tremor at joint level while the majority of the studies
presented in the literature are centered in the study of
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tremor at finger tip. The main drawback of this tech-
nique is the impossibility to implement it in real-time
(RT). In order to address this issue, next section de-
scribes the development of an algorithm able to dis-
tinguish in RT tremorous movement from voluntary
movement.

4 TREMOR ESTIMATION

A number of estimation algorithms have been devel-
oped for tremor suppression. As a first approach,
we evaluated robust algorithms based on IEEE-STD-
1057, which is a standard for fitting sine waves to
noisy discrete-time observations. In particular, the
weighted-frequency Fourier linear combiner (WFLC)
developed by Riviere, (Riviere, 1995), in the context
of actively counteracting physiological tremor in mi-
crosurgery was implemented. The WFLC is an adap-
tive algorithm that estimates tremor using a sinusoidal
model, estimating its time-varying frequency, ampli-
tude, and phase. The WFLC can be described by
equation 1. It assumes that the tremor can be mathe-
matically modelled as a pure sinusoidal signal of fre-
quencyω0 plusM harmonics and computes the error,
εk, between the motion,sk, and its harmonic model.

εk = sk−
M

∑
r=1

[wrk sin(rω0kk)+wr+Mk cos(rω0kk)] (1)

In its recursive implementation, see equations 2
and 3, the WFLC can be used online to obtain estima-
tions of both tremor frequency and amplitude, (Riv-
iere, 1995).

w0k+1 = w0k +2µ0εk

M

∑
r=1

r (wrkxM+rk −wM+rkxrk) (2)

where,

xrk =







sin(rω0k), 1≤ r ≤ M

cos((r −M)ω0k), M +1≤ r ≤ 2M
(3)

The WFLC algorithm was evaluated with the sig-
nals measured in the experiments described in pre-
vious section. In the completed trials, the algorithm
was able to estimate the tremor movement of all the
patients with accuracy always lower than 2 degrees,
see figure 2. The main disadvantage of the WFLC
is the need for a preliminary filtering stage to elimi-
nate the voluntary component of the movement, (Riv-
iere, 1995). This filtering stage introduces an unde-
sired time lag for our system when estimating tremor
movement, this time lag introduces a time delay that
could considerably affect the implementation of the
control strategies for tremor suppression.
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Figure 2: Estimation of tremor, solid line, based on WFLC
algorithm, red dashed line.

4.1 Estimation of Voluntary Movement

The tremor literature indicates that voluntary move-
ments and tremor movements are considerably dif-
ferent, (Elble and Koller, 1990). Voluntary move-
ments are slower while tremor movements are brus-
quer. This indicates that adaptive algorithms to esti-
mate and track movement would be useful when sep-
arating the two movements with an appropriate de-
sign. The underlying idea is to design the filters so
that they only estimate the less dynamic component of
the input signal, which in our case we consider to be
voluntary movement, thereby filtering out the tremor
movement.

A set of algorithms was considered for the estima-
tion of the voluntary motion: two point-extrapolator,
critically damped g-h estimator, Benedict-Bordner g-
h estimator, and Kalman filter. These algorithms im-
plement both estimation and filtering equations. The
combination of these actions allows the algorithm to
filter out the tremorous movement from the overall
motion at the same time it reduces the phase lag intro-
duced, (Bar-Shalom and Li, 1998). The equation pa-
rameters were adjusted to track the movements with
lower dynamics (voluntary movement) since tremors
present a behaviour characterised by quick move-
ments. The performance of these algorithms were
compared based on their accuracy when estimating
voluntary movements of tremor time series from pa-
tients.

4.1.1 Two Points Extrapolator

It is the simplest tracking algorithm. This algorithm
uses the current position measured,yn, and the past
measured position,yn−1, to estimate the velocity, ˙x∗n,
and the future positionx∗n+1.

ẋ∗n =
yn−Yn−1

T
, (4)
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x∗n+1 = yn +T ∗ ẋ∗n, (5)

whereT is the sample time and “∗” denotes an esti-
mated value.

4.1.2 Critically Damped G-h Estimator

This estimation algorithm is a g-h filter composed
by g-h track update equations and by g-h prediction
equations

update







ẋ∗k,k = ẋ∗k,k−1 +hk

(

yk−x∗k,k−1
T

)

x∗k,k = x∗k,k−1 +gk

(

yk−x∗k,k−1

) (6)

predict

{

ẋ∗k+1,k = ẋ∗k,k
x∗k+1,k = x∗k,k +Tẋ∗k+1,k

(7)

The track update equations or estimation equa-
tions, 6, provide us the velocity and position of tremor
at timekT after the measurement of the angular posi-
tion of the joint,yk. The estimated position is based
on the use of the actual measurement as well as the
past prediction. As a consequence of filtering, the
measured noise is reduced. The predicted position is
an estimate ofxn+1 based on past states and predic-
tion (equation 7), and take into account the current
measurement by means of updated states.

4.1.3 Benedict-Bordner G-h Estimator

This estimation algorithm have the same equations
that the Critically Damped g-h estimator but with dif-
ferent values in the parameters g-h, (Bar-Shalom and
Li, 1998). The Benedict-Bordner estimator is de-
signed to minimize the transient error. Filter g-h pa-
rameters are related by:

h =
g2

2−g
(8)

4.1.4 The Kalman Filter

The Kalman filter is a g-h filter where the weights g
and h are a function ofn and are updated recursively.
This filter has the advantage of allowing the optimum
use of the information if it is available. In addition,
permits the use of the target dynamics information
to optimize the filter parameters. More complete in-
formation about Kalman filter can be found in (Bar-
Shalom and Li, 1998).

4.2 Figure of Merit

In order to quantitative compare the estimators pro-
posed a metric,Cinematic Estimation Error (CEE),

was proposed. The equation that define this metrics
is:

CEE=
√

ϕ2
|b∗| + σ2

x∗ , (9)

whereϕ2
|b∗| is the mean square of errors of the esti-

mators: |b∗| = |xk − x∗k,k−1|, andσ2
x∗ variance of the

estimation.
CEE quantifies the transient response through

ϕ2
|b∗| and, at the same time, the averaging or filter-

ing capabilities of the filter through the termσ2
x∗ . The

accuracy and transient response of the estimation al-
gorithms are important. Another important parameter
taken into account in our analysis was the execution
time of each algorithm in view of the fact that the sys-
tem was designed to work in real time. The result
of such analysis indicated that Benedict-Bordner fil-
ter presents the best results with the lowest computa-
tional cost.

4.3 Real-time Estimation of Voluntary
and Tremorous Movement

The solution adopted was the development of an algo-
rithm capable of estimating voluntary and tremorous
motion with a small phase lag based on a two-stage al-
gorithm. In the first stage, the Benedict-Bordner filter
estimates the voluntary component of the movements.
In the second stage, the estimated voluntary motion is
removed from the overall motion and it is assumed
that the remaining movement is tremor. After this,
the WFLC was used in order to estimate tremor pa-
rameters. In this stage, the algorithm estimates both
the amplitude and the time-varying frequency of the
tremorous movement.

The algorithm proposed was evaluated with data
obtained from the patients measured in our experi-
ments. The estimation error of the first stage was
1.4±1.3 degrees. The second stage algorithm has a
convergence time always smaller than 2 s for all sig-
nals evaluated and the Mean Square Error (MSE) be-
tween the estimated tremor and thereal tremor, after
the convergence, is smaller than 1 degree. The com-
bination of both techniques resulted in a very efficient
algorithm with small processing cost for estimating in
real time the voluntary and the tremorous components
of the overall motion.

5 EXPERIMENTS AND RESULTS

The performance of the algorithm proposed was eval-
uated in two different contexts: 1)Tremor suppres-
sion based on exoskeleton devices, and 2)Filtering
tremorous movement from PC mouse cursor.
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5.1 Tremor Suppression based on
Exoskeleton Devices

The algorithm for tremor estimation was incorpo-
rated to the WOTAS (Wearable Orthosis for Tremor
Assessment and Suppression) active exoskeleton for
tremor suppression, (Rocon et al., 2007). In order
to evaluate the performance of the device developed
to suppress tremor we have planned an experimen-
tal phase involving 10 patients suffering from differ-
ent tremor diseases. During the first clinical trials the
algorithm was able to measure and estimate tremor
parameters, see Figure 3. The capacity of applying
dynamic internal forces to the upper limb for tremor
suppression (based on the information provided by
the tremor estimation algorithm) was also evaluated.
Based on this parameter it was found that the device
could achieve a consistent 30% tremor power reduc-
tion, with reduction peaks in the order of 80% in the
tremor power for patients exhibiting severe tremor,
see Figure 3. Moreover, patients related that they
felt small influence of the WOTAS device on their
intended motion, which indicates a proper function-
ing of the algorithms proposed in the precious section,
(Rocon et al., 2007).

5.2 Filtering Tremorous Movement
From PC Mouse Cursor

In these experiments the algorithm was integrated in
a device connected between the mouse and the com-
puter that should remove tremorous movements from
PC mouse cursor. These experiments were carried out
in cooperation with Spanish Foundation of Multiple
Sclerosis. Previously to the realization of the experi-
ment, the operation of the system was explained to the
user. After, the patient was asked to achieve a com-
fortable position in the chair and to grab and use the
mouse as natural as possible. After a time of adap-
tation and relaxation, roughly 10 minutes, the patient
was asked to perform 2 typical movements when us-
ing a computer mouse:

1. Draw a spiral - The patient was asked to follow
with the cursor of the mouse a path with the form
of a spiral drawn on the screen of the computer.
The trajectory described by the user is not illus-
trated in the screen; with this approach it is possi-
ble to avoid the attempts of the user to correct the
trajectory. The patient just has the reference of the
model spiral on the screen. During this tasks the
buttons are disabled and the trajectory described
by the user was recorded by the software.
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Figure 3: The graphics illustrated the reduction in the
tremor power when WOTAS is applying viscosity to the
tremorous movement.

2. Goal and click - To move the cursor over 10 icons
that appear in a random sequence on the screen of
the computer.The patient was asked to click over
the picture every time he/she reaches it. In this
way, the next picture will appear just after the pa-
tient click on the actual one. The trajectories and
the number of erroneous clicks were recorded.

The total time of each experiment was 40 minutes
and the main objective was to quantify the effective-
ness of the device in tremor suppression. Each task
was repeated 3 times, one with the filter disabled, an-
other one with the filter activated and in the last trial,
the filter is deactivated again. The order of trials was
randomized. The figures of merit used to quantify the
improvement in the ability of the patient in the real-
ization of the tasks were:

1. The relation between the number of times the user
leaves the boundaries of the path defined by the
spiral, with and without the help of the algorithms,
in the taskdraw a spiral, es.

2. The relation between the number of erroneous
clicks, with and without the help of the algo-
rithms, during theclick and goaltask,ec.

Table 1: Results of the experiments.

Patient es ec

1 20 % 44 %
2 33 % 100 %
3 30 % 28 %
4 50 % 33 %

Table 1 summarizes the results obtained in the
data analysis. The results show that all patients im-
proved their performance using the algorithm. In the
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Figure 4: Results of a patient performing the task of draw-
ing a spiral.

case of thedraw a espiraltask, the mean reduction in
the error during the realization of the task was in order
of 33,3%. This is a sign of a improvement of the pa-
tient ability in tracking a shape in the screen. The pa-
tients also presented a mean reduction of 52 % in the
number of erroneous clicks during the execution of
thegoal and clicktask. These results indicates a con-
sistent improvement in the ability of the patient in the
execution of the tasks, see Figure 4. During the trials
it was noticed that feedback of a smooth movement
has a positive impact. Two patients spontaneously re-
lated that they felt a decrease in the amplitude of their
tremorous movement.

6 CONCLUSIONS

This paper summarizes the work developed by the au-
thors in the study of tremor time series. First, it in-
troduces a novel technique for the study of tremor.
The main advantage of this technique it that it allows
an automatic estimate of the tremulous movement for
different pathologies. The technique presented is a
high-resolution technique that solves most of limita-
tions of the Fourier Analysis (the standard technique
to the study of tremor time series). This technique
provides, in a time-frequency-energy plot, a clear vi-
sualization of local activities of tremor energy over
the time.

The technique was used for the study of tremorous
movement in joints of the upper limb. This study

generates some conclusions about tremor behaviour
in upper limb.

Furthermore, an algorithm able to estimated in
real-time the voluntary and the tremorous movement
was presented. This algorithm was validated in two
contexts with successful results. The algorithm in-
troduced presents a learning behavior that adapts to
personal characteristics of each user. This algorithm
was implemented in a novel device able to filter
tremorous movement from a mouse cursor before it
reaches computer interface. The device was success-
fully tested with patients. The results of the experi-
ments showed an improvement of the patient ability
in tracking a shape in the screen and a consistent im-
provement in the ability of the patient in the accom-
plishment of tasks, for instance, the number of erro-
neous clicks was reduced in 52%.
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