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Abstract: Computer Tomography is shown to be an efficient and cost-effective tool for classification and 
segmentation of soft tissues in animal carcasses. By using 15 fixed anatomical sites based on vertebra 
columns, 120 lamb carcasses were CT scanned in Norway during autumn of 2005. Frequency distributions 
of CT values (HU [-200,200]) of soft tissues from each image were obtained. This yielded a 3-way data set 
(120 samples * 400 CT values * 15 anatomical sites). The classification of the soft tissues was done by 
multi way Parallel Factor Analysis (PARAFAC), which resulted in 3 components or soft tissues classified 
from the images; fat, marbled and lean muscle tissue. 

1 INTRODUCTION 

Computer Tomography is based on the attenuation 
of X-ray through a body. There is high correlation 
between the density of the body or body 
components, and the X-ray attenuation measured. 
This relationship is used to estimate the body 
composition, volume or weight of a biological 
sample. The attenuation of X-rays is visualized by 
reconstruction of 360o rotation of X-ray tube in a CT 
tomogram or CT image. Image data from Computer 
Tomography can be orientated in different ways. 
Single slice tomograms can be handled like 2-way 
(rows*columns) data arrays. Stacks of tomograms 
from 3D samples are often orientated as multi-way 
data arrays (rows*columns*stack). Combining CT 
data with other types of data, like MRI etc., can also 
yield multi-modal data arrays which can be handled 
either in a multi-dimensional fashion or be unfolded 
prior to analysis. Unfolding of multi-way data may 
sometimes lead to poor estimation and 
interpretability of variation between the different 
stacks or batches in a multi-way data array.  

There are two primary ways to perform 
classification. Supervised classification (1), where 
classes are known in advance (a priori), and un-
supervised classification (2), where classes are not 
known in advance. For classification of soft tissues 
from CT images of lamb carcasses, it can be difficult 
to obtain solid a priori knowledge or reference data 
of classes. Traditionally, reference data has been 

collected by using destructive dissection. This 
procedure is both expensive and not very accurate 
due to differences operators / butchers (Nissen et al. 
2006). The accuracy of classification of tissues may 
be influenced the accuracy of the reference method 
used, i.e. for calibration purposes or detection of 
false negatives or positives. By using non-supervised 
classification, validation techniques can ensure that 
the model works for new data and finds the optimal 
or true number of classes in the model. The non-
supervised approach will not be affected by 
reference or a priori error.  

Parallel Factor Analysis (PARAFAC) is one 
method designed to analyze and decompose multi-
way data, and was introduced by Harshman in 1971 
for Psychometrics. The PARAFAC method can be 
used as a non-supervised classification tool to 
classify soft tissues in CT image stacks sampled 
from whole lamb carcasses.  

The main purpose of this study is to apply 
PARAFAC decomposition of multi-way CT image 
data array as a classification tool of different lamb 
carcass soft tissues. 

2 MATERIALS & METHODS 

2.1 Sampled Animals 

120 lambs from a single Norwegian abattoir were 
sampled according to an experimental design from 
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August to September in 2005. The design was set up 
to cover the variation in all levels of fatness in the 
carcasses, and the principle of over-sampling at the 
extremes was applied (Engel et al. 2003): The 
carcasses were sampled in three groups; low, 
intermediate and high level of fatness. Selection was 
made using fatness score from the EUROP carcass 
grading system for lamb in Norway. Low fatness 
equals –2 standard deviations (st.dev.) and below 
mean value. High fatness + 2 std and above mean 
value (Kirton et al., 1995). Intermediate between 
high and low (table 1). 40% of the samples were 
selected for each of the groups low and high fatness 
and 20% selected for intermediate fatness (Tab. 1), 
yielding a 40-20-40 grouping of the designed 
samples. In addition, two subsets of equal size (50-
50) were constructed for validation by split-half-
analysis.  

Table 1: Sampling and experimental design. 

n = 120 Low Mid High 
 % n % n % n 
Design1 40 48 20 24 40 48 
Subset 12 38 23 20 12 42 25 
Subset 22 38 23 20 12 42 25 

1 40-20-40 design for sampling 

2 Data subsets for Split-half analysis 

2.2 Computer Tomography 

2.2.1 Settings 

The lambs were scanned at the Norwegian 
University of Life Sciences using a Siemens 
Somaton Emotion CT Scanner. Two persons were 
involved in the scanning of lamb carcasses: one 
operation the scanner, and the other preparing and 
entering the carcasses into the machine. The 
capacity of this procedure was approximately 8-10 
carcasses per hour. The protocol for CT scanning is 
described in Table 2. 

Table 2: CT protocol used for scanning of lamb carcasses. 

Topogram Sequence 
100 mA 
130 kV 
Slice width: 2.0 mm 
Length: 1024 mm 
Tube position: AP 
Direction: Caudiocranial 
Kernel: T80s (sharp) 
Window: 256-64 

170 mAs 
130 kV 
Scan time: 0.8s 
Slice width: 3 mm 
Number of scans: 15 
Direction: Caudiocranial 
Kernel: B50M 
Window: 100-50 
Field of view (FOV): 400 

2.2.2 Anatomical Sites 

 
Figure 1: Scanning sites CT, lamb carcass. 

Fifteen (15) anatomical scanning sites spanning the 
entire carcass were selected from a topogram using 
spine vertebras as fixing points (Fig. 1). A topogram 
is a survey picture produced by the CT-scanner. It is 
obtained by fixation of the X-ray tube in the upper 
position and moving the object at constant speed 
through the gantry. Each colour of the lines 
represents anatomical sections of the carcass 
(cervical, thoracic, lumbar, sacral and caudal). The 
anatomical sites were selected to span the entire 
variation of the carcass, but the number of images 
was limited due to capacity. High X-ray dose (170 
mAs) was selected to increase the resolution of the 
tomograms. The anatomical sites collected from the 
mid-section of the carcass, were selected using 
literature reference sites for grading of lamb 
carcasses (Berg et al. 1997;Bruwer et al. 
1987;Chandraratne et al. 2006;Chandraratne, 
Kulasiri, & Samarasinghe 2007;Cunha et al. 
2004;Jones et al. 1992;Kirton et al. 1995). In 
addition to literature reference sites, additional sites 
on the leg and shoulder were added using spine 
vertebras as fixing points.  

2.2.3 Import and Pre-processing of Images 

The CT scanner generated images in DICOM 
format, which is a common medical image format. 
The images were imported into MATLAB using the 
Image Processing Toolbox routine dicomread. 
 

 
Figure 2: Raw image, Binary image for arithmetic 
extraction and processed image after extraction. 

In the raw CT images, the couch material (non-
carcass component) was visible (Fig. 2). This was 
removed using arithmetic extraction in MATLAB. 
The extraction was performed using image array 

PARAFAC CLASSIFICATION OF LAMB CARCASS SOFT TISSUES IN COMPUTER TOMOGRAPHY (CT) IMAGE
STACKS

243



 

multiplication, subtracting the couch material from 
the raw image using a binary image (Fig. 2) 
containing zeros and ones to remove the couch area 
(zeros) of the image. The lamb area of the image 
was now extracted and ready for further analysis 
(fig.3).  

2.2.4 Frequency Distribution of Pixel Values 
(HU) 

 
Figure 3: 15 pre-processed CT images from all scanning 
sites, from neck (1) to knee joint of leg (15). 

A frequency distribution of the signal intensities 
(pixels) was generated for each anatomical site 
(Dobrowolski et al., 2004) (Fig. 5) from each of the 
pre-processed images (Fig. 5) using the frequency of 
Hounsfield Units [HU] in the interval [-200,200]. 
HU is related to density of biological tissues, where 
0 is regarded as the HU of pure water. The interval 
of 400 HU is expected to cover the soft animal 
tissues (fat and muscle) in the CT images 
(Dobrowolski et al. 2004;Romvari et al. 2002). Each 
image was represented as a frequency distribution 2-
way array [1 x 400]. For each sample, 15 images 
were generated, generating a 3-way array [1 x 400 x 
15], giving a [120 x 400 x 15] data array for the 
entire samples.  

2.3 PARAFAC 

PARAFAC is a generalization of Principal 
Component Analysis (PCA) to higher order arrays 
(Bro 1997). Decomposition of the data array is made 
into triads or trilinear components (Fig. 4), but 
instead of one score vector and one loading vector as 
in bilinear PCA, each component consist of one 
score vector and two loading vectors (trilinear). 
PARAFAC is regarded as a “strong” multi-way 
method utilizing the multi-mode structure for 

modelling without unfolding, and providing other 
attractive features (Huang et al. 2003).  

 
Figure 4: PARAFAC decomposition of a 3-way data 
array. 

In this study, PARAFAC is used to decompose 
the landscapes of the frequency distributions and 
anatomical positions into a number of trilinear 
components (f). 
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The element xijk represent the landscape of 
histogram spectra and anatomical positions of the 
lamb carcass sample i, frequency distribution j, 
anatomical position k. The landscapes are 
decomposed into sample scores aif, frequency 
distribution loadings bjf and anatomical position 
loadings ckf for each factor f or PARAFAC 
component f. The residuals eijk, contains variation 
not explained by the model.  

The PARAFAC components will be estimates of 
the CT histogram signals from the individual 
chemical components (fat & lean) if the data are 
approximately low-rank trilinear and when the 
correct number of components is used. If the optimal 
case is found, the scores for each of the components 
represent the relative content of  carcass soft tissues. 
The number of components will represent the non-
supervised classes of soft tissues suggested by the 
validated PARAFAC model. 

PARAFAC models of CT image histogram 
landscapes were estimated with 1 to 4 components. 
The models were mean-centred since this has proven 
to yield the best result and interpretation of the 
figures. Since each component is expected to 
represent a single peaked frequency distribution (one 
local maxima) of a soft tissue, unimodality 
constraints was imposed on the model (Johansen et 
al. 2006). When calibrating PARAFAC models of 
CT images against a dissection reference, 
unimodality constraints seemed to yield the most 
accurate results (Johansen, Egelandsdal, Røe, Kvaal, 
& Aastveit 2006). 
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The correct number of components was selected 
using core consistency and split-half analysis (Bro 
1997) as validation tools. The split was done using a 
50-50 split of the actual designed (table 1) samples, 
estimating independent PARAFAC models for both 
split data subsets. Due to the uniqueness of the 
PARAFAC model, the same loadings will be 
obtained from different samples if the samples 
reflect the same CT histogram variables, when the 
correct number of components is chosen and enough 
data are available in each of the split data subsets 
(Andersen & Bro 2003). 

All the models were constructed using the 
PLS_Toolbox 4.0, August 10, 2006, Copyright 
Eigenvector Research, Inc. 1995-2006 for 
MATLAB, the Image Processing Toolbox V5.3 
(R2006b) for MATLAB and MATLAB 7.3.0.267 
(R2006b), August 03, 2006 © 1984-2006The 
MathWorks Inc. 

3 RESULTS & DISCUSSION 

3.1 Landscapes 

 
Figure 5: 3D CT histogram landscape of one sample, raw 
data. 

From the landscape, a distinctive frequency 
distribution that appears between different 
anatomical sites is revealed (Fig. 5). There are two 
peaks identified as the shoulder site and the leg 
anatomical site. These sites are the “muscular” parts 
of the carcass (leg muscles), and therefore provide a 
high response or histogram intensity (number of 
pixels). There are two ridges in the landscapes, one 
larger than the other. The large ridge is identified as 
the lean tissue, and the small ridge as the fat tissue 
part. When comparing very fat animals with very 

lean animals, the fat ridge is almost absent in the 
very lean animals. These observations will be further 
investigated in the PARAFAC analysis. 

3.2 PARAFAC 

Table 3: PARAFAC diagnostics. Full model (n=120). # of 
components, explained variance, core consistency, number 
of iterations and computation time (s). 

# Expl. Var. 
(%) 

Core cons. # iter Time 
(s) 

1 50.06 100 5 6 
2 66.36 95 11 12 
3 73.18 78 18 20 
4 76.80 0 23 28 

 
The results from the PARAFAC models are shown 
in Table 3. Three components seem to yield a 
consistent model, with relatively low number of 
iterations and computation time. 

In order to validate the appropriate number of 
components in the model, the results from the split-
half analysis is shown in Figure 6. The figure shows 
the frequency distribution loadings for 1 to 4 
components, were subset 1 has solid lines, and 
subset two dashed lines. Due to the uniqueness of 
the PARAFAC model, the same loadings should be 
obtained if the samples reflect the same CT 
histogram and anatomical site pattern when the 
optimal number of components is chosen. The solid 
and dashed lines seem to be correlated for the 1-, 2- 
and 3-component models, while for the 4-component 
model; the solid and dashed lines do not correlate. 
Thus, the model seems to be valid with 3 
components. 

The PARAFAC decomposition of the CT 
histogram landscapes is shown in Figure 7, were the 
raw landscape in Figure 5 is decomposed into three 
PARAFAC components. The 1st component seems 
to model the fat tissue in the frequency distribution, 
and the 2nd seem to model muscle tissue. The 3rd 
component seems to model very lean muscle tissue. 
Component 2 and 3 seem to be two types of muscle 
tissue, “marbled” or muscle tissue with higher fat 
content (# 2) and lean muscle tissue (# 3)  

For practical purposes, the PARAFAC models 
yields a better understanding of the uniqueness and 
nature of the CT value (HU) frequency distribution. 
From the images in Figure 8, the PARAFAC 
loadings were applied to a test image from a lamb 
carcass belly. Loadings above a manually set 
baseline (0.02) were selected to ease interpretation 
of the test images. The first image from left 
represents the total area of soft tissue. The 2nd image  
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Figure 6: Validation of PARAFAC components (split-half analysis). 1 to 4 component PARAFAC models. 1 –and 2 –
component model (top), 3- and 4- component model (bottom). 

 
Figure 7: PARAFAC decomposition of a 3D CT frequency distribution. 3 components or classes identified. # 1 represent fat 
tissue, # 2 muscle tissue with marbling fat and the 3rd lean muscle tissue. 
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Figure 8; PARAFAC CT value frequency loadings > 0.02 applied on CT image from belly. From left, soft tissue HU= [-
200, 200], # 1, # 2, # 3. 

represents component 1, the 3rd component 2 and 4th 
(right) component 3. When inspecting the images 
visually, # 1 represent fat tissue, # 2 muscle tissue 
with marbling fat and the 3rd lean muscle tissue. 
PARAFAC yields a consistent decomposition of the 
3D frequency distribution of the CT images, and 
selected 3 unique soft tissue components 
representing fat, and two types of muscle tissue. 

4 CONCLUSIONS 

This paper presents modelling and decomposition of 
multi-way array CT image data, using PARAFAC as 
a non-supervised classification tool for different 
lamb carcass soft tissues. Multi-way modelling 
applying PARAFAC did yield sensible interpretation 
of the 3D CT value frequency distribution. Three 
components or classes of soft tissues were extracted 
from the model; fat, marbled and lean muscle. 
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