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Abstract: A dynamic multiple scale neural model for recognising colour images of textured scenes is proposed. This 
model combines colour and textural information to recognise coloured textures through the operation of two 
main components: segmentation component formed by the Colour Opponent System (COS) and the 
Chromatic Segmentation System (CSS); and recognition component formed by pattern generation stages 
and Fuzzy ARTMAP neural network. Firstly, the COS module transforms the RGB chromatic input signals 
into a bio-inspired codification system (L, M, S and luminance signals), and then it generates the opponent 
channels (black-white, L-M and S-(L+M)). The CSS module incorporates contour extraction, double 
opponency mechanisms and diffusion processes in order to generate coherent enhancing regions in colour 
image segmentation. These colour region enhancements along with the local textural features of the scene 
constitute the recognition pattern to be sent into the Fuzzy ARTMAP network. The structure of the CSS 
architecture is based on BCS/FCS systems, thus, maintaining their essential qualities such as illusory 
contours extraction, perceptual grouping and discounting the illuminant. But base models have been 
extended to allow colour stimuli processing in order to obtain general purpose architecture for image 
segmentation with later applications on computer vision and object recognition. Some comparative testing 
with other models is included here in order to prove the recognition capabilities of this neural architecture. 

1 INTRODUCTION 

In biological vision, we can distinguish two main 
operating modes: pre-attentive and attentive vision. 
The first one performs a parallel and instantaneous 
processing which is independent of the number of 
patterns being processed, thus covering a large 
region of the visual field. Attentive vision, 
nevertheless, acts over limited regions of the visual 
field (small aperture) establishing a serialised search 
by means of focal attention (Julesz & Bergen, 1987). 

The proposed model works on the pre-attentive 
and attentive mode: pre-attentive segmentation and 
attentive recognition. In the pre-attentive process, 
the network processes, in a consistent way, colour 
and textural information for enhancing regions and 
extracting perceptual boundaries to form up the 
segmented image. In the attentive mode, the model 
merges textural information and the intensity of the 
region enhancement in order to punctually recognise 

scenes that include complex textures, both natural 
and artificial. 

The skill of identifying, grouping and 
distinguishing among textures and colours is 
inherent to the human visual system. For the last few 
years many techniques and models have been 
proposed in the area of textures and colour analysis 
(Gonzalez & Woods, 2002), resulting in a detailed 
characterisation of both parameters as well as certain 
rules that model their nature. Many of these 
initiatives, however, have used geometric models, 
omitting the human vision physiologic base and so, 
wasting the context dependence. A clear example of 
such a feature is the illusory contour formation, in 
which context data is used to complete (Grossberg, 
1984) the received information, which is partial or 
incomplete in many cases.  

The architecture described in this work extracts 
both colour and textural features from a scene, 
segments it into textural regions and brings this 
information to an ART classifier, which categorizes 
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the textures using a biologically-motivated learning 
algorithm.  Humans learn to discriminate textures by 
looking at them and becoming sensitive to their 
statistical properties in small regions (Grossberg and 
Williamson, 1999). 

The proposed neural model architecture is based 
on the later version of BCS/FCS neural model 
(Grossberg et al., 1995; Mingolla et al., 1999), and 
on the Fuzzy ARTMAP recognition architecture 
(Carpenter et al., 1992). The BCS/FCS model 
suggests a neural dynamics for perceptual 
segmentation of monochromatic visual stimuli and 
offers a multiple scale unified analysis process for 
different data referring to monocular perception, 
grouping, textural segmentation and illusory figures 
perception. The BCS system obtains a map of image 
contours based on contrast detection processes, 
whereas the FCS performs diffusion processes with 
luminance filling-in within those regions limited by 
high contour activities. Consequently, regions that 
show certain homogeneity and are globally 
independent are intensified.  

In pre-processing, the main improvement 
introduced to the BCS/FCS original model hereby in 
this paper, resides in offering a complete colour 
image processing neural architecture for extracting 
contours and enhancing the homogeneous areas in a 
colour image. In order to do this, the neural 
architecture develops processing stages, coming 
from the original RGB image up to the segmentation 
level, following analogous behaviours to those of the 
early mammalian visual system. This adaptation has 
been performed by trying to preserve the original 
BCS/FCS model structure and its qualities, 
establishing a parallelism among different visual 
information channels and modelling physiological 
behaviours of the visual system processes. 
Therefore, the envisaged region enhancement is 
based on the feature extraction and perceptual 
grouping of region points with similar and 
distinctive values of luminance, colour, texture and 
shading information.  

The adaptive categorization and predictive 
theory is called Adaptive Resonance Theory, ART. 
ART models are capable of stably self-organizing 
their recognition codes using either unsupervised or 
supervised incremental learning (Carpenter et al., 
1991). ARTMAP theory extends the ART designs to 
include supervised learning. Fuzzy ARTMAP 
architecture falls into this supervised theory. In 
Fuzzy ARTMAP, the ART chosen categories learn 
to make predictions which take the form of 
mappings to the names of output classes. And thus 
many categories can map the same output name. 

In section 2, each of the stages composing the 
architecture will be explained. Afterwards, section 3 
studies its performance over input images presenting 
complex textures in order to, in section 4, establish 
the conclusions of the analysis and finally assess the 
validity of the model depicted here. 

2 PROPOSED NEURAL MODEL 

The architecture of the proposed model (Figure 1) is 
composed of two main components, colour 
segmentation module and recognition module. The 
first component consists of two systems called 
Colour Opponent System (COS) and Chromatic 
Segmentation System (CSS). The recognition 
module is made up by a feature smooth stage, an 
orientational invariances stage, and a Fuzzy 
ARTMAP neural network. 
 

 
Figure 1: Proposed model architecture. At the bottom, the 
detailed COS module structure: on the left, it shows type 1 
cells whereas on the right, elements correspond to type 2 
opponent cells. In the middle, the detailed structure of the 
Chromatic Segmentation System (CSS) based on the 
BCS/FCS model. At the top, the recognition module, 
based on a Fuzzy ARTMAP network. 

The COS module transforms the chromatic 
components of the input signals (RGB) into a bio-
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inspired codification system, made up of two 
opponent chromatic channels, L-M and S-(L+M), 
and an achromatic channel. 

Resulting signals from COS are used as inputs 
for the CSS module where the contour map 
extraction and two intensified region images 
corresponding to the enhancement of L-M and S-
(L+M) opponent chromatic channels are generated 
in multiple scale processing, according to various 
perceptual mechanisms (perceptual grouping, 
illusory contours, discounting the illuminant and 
emergent features). The two enhanced images along 
with the textural response from the simple cells form 
up the punctual pattern of features that will be sent 
to the recognition module where the Fuzzy 
ARTMAP architecture generates a context-sensitive 
classification of local patterns. The final output of 
the proposed neural architecture is a prediction class 
image where each point is associated to the texture 
class label which it belongs to. 

2.1 Colour Opponent System (COS) 

The COS module performs colour opponent 
processes based on opponent mechanisms that are 
present on the retina and on the LGN of the 
mammalian visual system (Hubel, 1995). Firstly, 
luminance (I signal) and activations of the long (L 
signal), middle (M signal), short (S signal) 
wavelength cones and (L+M) channel activation (Y 
signal) are generated from R, G and B input signals. 
The luminance signal (I) is computed as a weighted 
sum (Gonzalez & Woods, 2002); the L, M and S 
signals are obtained as the transformation matrix 
(Hubel & Livingstone, 1990). 

In the COS stage, two kinds of cells are 
suggested, called type 1 and type 2 cells (see Figure 
1). These follow opponent profiles intended for 
detecting contours (type 1, simple opponency) and 
colour diffusion (type 2 cells initiate double 
opponent processes).  

2.1.1 Type 1 Opponent Cells 

Type 1 opponent cells perform two opponent L-M, 
S-(L+M), and luminance (Wh-Bl) channels (see 
Figure 1). These cells are modelled through two 
centre-surround multiple scale competitive 
networks, and form the ON and OFF channels 
composed of ON-centre OFF-surround and OFF-
centre ON-surround competitive fields, respectively. 
These competitive processes establish a gain control 
network over the inputs from chromatic and 
luminance channels, maintaining the sensibility of 
cells to contrasts, compensating variable 

illumination, and normalizing image intensity 
(Grossberg & Mingolla, 1988). The equations 
governing the activation of type 1 cells ((1) and (2)) 
have been taken from the Contrast Enhancement 
Stage in the original models (Grossberg et al., 1995; 
Mingolla et al., 1999), but adapted to compute 
colour images. The equations for the ON and OFF 
channel are: 
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with ec as central signal, es as peripheral signal 

(see Table 1), the superscript g=0,1,2 with suitable 
values for the small, medium and large scales. The 
weight functions have been defined as normalised 
Gaussian functions for central (Gc) and peripheral 
(Gsg) connectivity.  

Table 1: Inputs of different channels on type 1 opponent 
cells. 

 L-M Opponency S-(L+M) Opp. Luminance 
 L+-M- L--M+ S+-Y- S--Y+ W+-Bl- W--Bl+ 

ec Lij Sij Iij 
esg Mij Yij Iij 

2.1.2 Type 2 Opponent Cells 

The type 2 opponent cells initiate the double 
opponent process that take place in superior level, 
chromatic diffusive stages (see Figure 1). The 
double opponent mechanisms are fundamental in 
human visual colour processing (Hubel, 1995). 

The receptive fields of type 2 cells are composed 
of a unique Gaussian profile. Two opponent colour 
processes occur, corresponding L-M and S-(L+M) 
channels. Each opponent process is modelled by a 
multiplicative competitive central field, presenting 
simultaneously an excitation and an inhibition 
caused by different types of cone signals (L, M, S 
and Y as sum of L and M). These processes are 
applied over three different spatial scales in the 
multiple scale model shown. Equations (4) and (5) 
model the behaviour of these cells, ON and OFF 
channels, respectively. 
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with e(1) and e(2) being the input signals of the 
opponent process (see Table 2). The weight 
functions have been defined as normalised 
Gaussians with different central connectivity (Gg) 
for the different spatial scales g=0, 1, 2: 

Table 2: Inputs for different type 2 cells channels. 

 L-M Opponency S-(L+M) Opponency 
 L+-M- L--M+ S+-Y- S--Y+ 

e(1) Lij Sij 
e(2) Mij Yij 

2.2 Chromatic Segmentation System 
(CSS) 

As previously mentioned, the Chromatic 
Segmentation System bases its structure on the 
modified BCS/FCS model (Grossberg et al., 1995; 
Mingolla et al., 1999), adapting its functionality to 
chromatic opponent signals, for colour image 
processing. The detailed structure of CSS can be 
seen in Figure 1. 

The CSS module consists of the Colour BCS 
stage and two chromatic diffusive stages, processing 
one chromatic channel each. 

2.2.1 Colour BCS Stage 

The Colour BCS stage constitutes our colour 
extension of the original BCS model. It processes 
visual information from three parallel channels, two 
chromatic and a luminance channels to obtain a 
unified contour map. Analogous to the original 
model, the Colour BCS module has two 
differentiated phases: the first one (simple and 
complex cells) extracts real contours from the output 
signals of the COS and the second is represented by 
a competition and cooperation loop, in which real 
contours are completed and refined, thus generating 

contour interpolation and illusory contours (see 
Figure 1). Colour BCS preserves all of the original 
model perceptual characteristics such as perceptual 
grouping, emergent features and illusory perception. 

The achieved output coming from the 
competition stage is a contour map and it will act as 
a control signal serving as a barrier in chromatic 
diffusions. 

The simple cells are in charge of extracting real 
contours from each of the chromatic and luminance 
channels. In this stage, the filters from the original 
model have been replaced by two pairs of Gabor 
filters with opposite polarity, due to their high 
sensibility to orientation, spatial frequency and 
position (Daugman, 1980). Their presence has been 
proved on the simple cells situated at V1 area of 
visual cortex (Pollen & Ronner, 1983). Figure 2 
shows a visual representation of Gabor filter pair 
profiles. 
 

 

 
Figure 2: Receptive fields of the filters used to model 
simple cells. Top-left: Anti-symmetric light-dark receptive 
field. Top-right: Anti-symmetric dark-light receptive field. 
Bottom-left: Symmetric receptive field with central 
excitation. Bottom-right: Symmetric receptive field with 
central inhibition. 

The complex cell stage, using two cellular layers, 
fuses information from simple cells giving rise to a 
final map which contains real contours for each of 
the three scales used (see Figure 1).  

Detected real contours are passed into a 
cooperative-competitive loop, as it is shown in 
Figure 1. This nonlinear feedback network detects, 
regulates, and completes boundaries into globally 
consistent contrast positions and orientations, while 
it suppresses activations from redundant and less 
important contours, thus eliminating image noise. 
The loop completes the real contours in a consistent 
way generating, as a result, the illusory contours. In 
order to achieve this feature it makes use of a short-
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range competition, and a long-range cooperation 
stage (Grossberg et al., 1995; Mingolla et al., 1999).  

Cooperation is carried out by dipole cells. Dipole 
cells act like long-range statistical AND gates, 
providing active responses if they perceive enough 
activity over both dipole receptive fields lobes (left 
and right). Thus, this module performs a long-range 
orientation-dependent cooperation in such a way that 
dipole cells are excited by collinear (or close to 
collinearity) competition outputs and inhibited by 
perpendicularly oriented cells. This property is 
known as spatial impermeability and prevents 
boundary completions towards regions containing 
substantial amounts of perpendicular or oblique 
contours (Grossberg et al., 1995). The equations 
used in competitive and cooperative stages are taken 
from the original model (Grossberg et al., 1995). 

2.2.2 Chromatic Diffusive Stages 

As mentioned above, the chromatic diffusion stage 
has undergone changes that entailed the introduction 
of Chromatic Double Opponency Cells (CDOC), 
resulting in a new stage in the segmentation process. 
CDOC stage models chromatic double opponent 
cells. The model for these cells has the same 
receptive field as COS type 1 opponent cells (centre-
surround competition), but their behaviour is quite a 
lot more complex since they are highly sensitive to 
chromatic contrasts. Double opponent cell receptive 
fields are excited on their central region by COS 
type 2 opponent cells, and are inhibited by the same 
cell type. We apply double opponency to the L-M 
and S-Y channels. This is to say, we apply a greater 
sensibility to contrast as well as a more correct 
attenuation toward illumination effects, therefore 
bringing a positive solution to the noise-saturation 
dilemma. 

The mathematical model that governs the 
behaviour of chromatic double opponent cells is the 
one defined by (1) and successive equations, by 
varying only their inputs. These inputs are now 
constituted by the outputs of the COS type 2 
opponent cells for each chromatic channel (see 
Table 3). 

Table 3: Inputs of the included Chromatic Double 
Opponent Cells. 

 L-M Opponency S-(L+M) Opponency 
 L+-M- L--M+ S+-Y- S--Y+ 

ec (L+-M-)ij (L--M+)ij (S+-Y-)ij
 (S--Y+)ij 

esg (L+-M-)ij (L--M+)ij (S+-Y-)ij (S--Y+)ij 
 
Chromatic diffusion stages perform four nonlinear 
and independent diffusions for L-M (ON and OFF) 

and S-Y (ON and OFF) chromatic channels. These 
diffusions are controlled by means of a final contour 
map obtained from the competition stage while the 
outputs of CDOC are the signals being diffused.  

At this stage, each spatial position diffuses its 
chromatic features in all directions except those in 
which a boundary is detected. By means of this 
process, image regions that are surrounded by closed 
boundaries tend to obtain uniform chromatic 
features, even in noise presence, and therefore 
producing the enhancement of the regions detected 
in the image. The equations that model the diffusive 
filling-in can be found in (Grossberg et al., 1995).  

As in previous stages, diffusion is independently 
performed over three spatial scales in an iterative 
manner, obtaining new results from previous 
excitations, simulating a liquid expansion over a 
surface.  

Scale fusion constitutes the last stage of this pre-
processing architecture. A simple linear combination 
of the three scales, see equation (9), obtains suitable 
visual results at this point.  

01 02 11 12
0 1

21 22
2

( ) ( )

( )
ij ij ij ij ij

ij ij

V A F F A F F

A F F

= − + −

+ −
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where A0, A1 and A2 are linear combination  
parameters, gt

ijF  represents diffusion outputs, with 
g indicating the spatial scale (g=0,1,2) and t 
denoting the diffused double opponent cell, 1 for ON 
and 2 for OFF. 

2.3 Recognition Module 

The attentive recognition process generates a pattern 
by merging the textural response information 
coming from the simple cells and the diffusion 
intensities of the chromatic channels from the scale 
fusion stage. The assorted pattern will be made up 
with the responses from the three scales of the 
receptive fields, small, medium, and large, the k 
orientations, and its two last components being the 
chromatic diffusion intensities from the scale fusion 
stage of L-M and S-(L+M) channels. Thus a n-
dimensional pattern from each point of the scene 
will be created and sent to the Fuzzy ARTMAP 
architecture to be learned in the supervised training 
process or be categorized in the prediction process. 
The ART architecture must learn a mapping from 
the input space populated by these feature vectors to 
a discrete output space of associated region class 
labels. The architecture’s output corresponds with an 
image of the class prediction labels in each point. 

The recognition stage is composed of three 
components: texture feature smooth stage, 

MULTIPLE SCALE NEURAL ARCHITECTURE FOR RECOGNISING COLOURED AND TEXTURED SCENES

181



 

orientational invariances stage, and the Fuzzy 
ARTMAP neural network stage.  

2.3.1 Texture Feature Smooth Stage  

Due to the high spatial variability shown in Gabor’s 
filters response a smooth stage is proposed through a 
Gaussian Kernel convolution with σsmooth deviation, 
in all orientations.  

2.3.2 Orientational Invariance Stage 

In the pattern categorization process some 
orientational invariances are generated by means of 
the group displacement of components following the 
pattern’s existing orientations. 

The two last components from diffusion do not 
participate in this displacement. Thanks to these 
invariances it’s achieved that the same texture 
pattern may be viewed from different angles. 

3 TESTS AND RESULTS 

This section introduces our tests’ simulations over 
the proposed architecture.  

The recognition process takes place by 
generating patterns in every position of the scene, 
obtaining them from the outputs of the simple cells. 
Those patterns contain textural and colour 
information. The textural information for pattern 
generation is obtained of the luminance channel. The 
colour information is included in the diffusion 
components inserted into the pattern. 

In order to shape the patterns, the responses 
coming from two simple cells filters are used, the 
Anti-symmetric light-dark receptive field and the 
Symmetric receptive field with central excitation 
(see Figure 2). With them, we used three spatial 
scales y four orientations. Thus, obtaining a 24-
dimensional textural vector, which, with the two 
intensities coming from the scale fusion stage, 
generate a 26-dimensional pattern to use as input to 
the recognition stage. 

In order to show processing nature of the 
depicted model, its responses will be analysed and 
compared versus other methods, using images which 
include complex textures. We begin with a first test 
“two textures problem”. The textures image (see 
Figure 3a) is composed of two near-regular textures 
(weave and brick) which are widely used in texture 
benchmarks (Grossberg and Williamson, 1999). 

 

  

  

  

 
Figure 3: Images of the “two textures test”. a) Original 
image, 128x128 pixels. b) Image of the contours map for 
large scale, c) Output of the scale fusion stage for the L-M 
channel, d) Output of the scale fusion stage for the S-
(L+M) channel, e) Image of extracted contours using 
Canny’s extractor, f) Image segmentation with a 
pyramidal method, g) Classification result of ‘two 
textures’ test. The darker grey level corresponds to the 
brick texture prediction while the lighter grey level 
corresponds to the weave texture prediction. 

Figures 3b, 3c and 3d, display the different stage 
outputs of the proposed model. Figure 3b includes 
the contour map for large scales, Figures 3c and 3d 
include the two outputs coming from the diffusion 
stages. Those outputs will constitute the last two 
components of the recognition patterns. Figure 3e 
include the results from the Canny extractor, using 
the cvCanny() with 1, 100, and 70 as parameters; 
and 3f shows the output of the pyramidal 
segmentation using function cvPyrSegmentation() 
with 30000, 30000, and 7 as parameters. cvCanny() 
and cvPyrSegmentation() are functions from Intel 
Computer Vision Library, OpenCv (Intel, 2006). 

Comparing the results, it can be clearly observed 
that the proposed architecture behaves in a 
compatible manner with the human visual system. 
The presented system detects a texture boundary 
contour map with perceptual behaviour by extracting 
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the illusory contour which marks off both textures. 
The shown model perceptually differentiates two 
textures through filling-in processes controlled by 
the illusory vertical contour. Those two comparative 
methods do not exhibit a concordance with the 
Visual System, and so both extraction and 
segmentation obtain worse quality visual results.  

Another recognition test was run with a two 
textures image. A smooth value of σsmooth=4.85 was 
chosen for the textural patterns, which corresponds 
to a 8x8 resolution, that is, each patch of 8x8 pixels 
in the input image yields a single pixel in an output 
image for each orientation (Grossberg and 
Williamson, 1999). The image was divided into 
lower and upper parts. The patterns from the lower 
half were taken for Fuzzy ARTMAP network 
training using a vigilance parameter of 0.95. The 
network was then tested using the patterns coming 
from the upper half part. In the supervisory process, 
the categories created for the patterns on the left 
texture (weave) were associated to a class prediction 
pictured light grey, while the patterns coming from 
the right texture (brick) where associated to another 
class prediction depicted in a darker grey.  

In the training process as well as in the testing 
one a frame of 10 pixels were left without any 
processing. In Figure 3g we can see its resulting 
class prediction. The errors committed in the upper 
half prediction were of 115 points in the left side 
(weave texture) and 112 points in the right side 
(brick texture) which brings the error toll to a 3.17% 
(96.83% of success). Those statistics are of a similar 
magnitude to those obtained in (Grossberg and 
Williamson, 1999), where a score of 95.7% was 
obtained for a texture mosaic test with 5 textures 
instead of two like in our case.  

 

   

   

  
 

Figure 4: 8-colour texture database (t1 a t8) and multitex 
test image. 

In order to accomplish this comparison of texture 
recognition methods, a test was run, similar to the 
“10-texture library problem” proposed in (Grossberg 
and Williamson, 1999). We took 8 different classes 
of textures with 3 colour images per class (see 
Figure 3, only one of each class is presented). Each 
texture image consists of 128x128 pixels. 

Those 8 classes are included or are of similar 
complexity to the black & white image texture 
database used in (Grossberg and Williamson, 1999). 
Our architecture was trained with points from two of 
the images from each class. The training phases 
were executed using three different resolutions like 
in (Grossberg and Williamson, 1999), 8x8, 16x16, 
and 32x32. The third image from each class was 
used to evaluate the prediction level of our 
architecture. Both training and testing was 
performed with two different levels of vigilance, 
ρ=0.95 and ρ=0.98 for training and ρ=0.9 and 
ρ=0.97, respectively for testing. The results are 
shown in Table 4, where the statistics for each class 
of texture are depicted. It can be observed that the 
success rate of the predictions increase with low 
resolutions. The global results are shown in the last 
row of Table 4. Our recognition system achieved 
96,4%, 98.0% and 97.4% corrects with ρ=0.95; and 
98.0%, 99.6% and 97.4% corrects with ρ=0.98 in 
8x8, 16x16 and 32x32 resolution, respectively. The 
ARTEX system proposed in (Grossberg and 
Williamson, 1999) achieved worse results in the two 
first resolutions. ARTEX system achieved 95.8%, 
97.2% and 100.0% corrects with all its features and 
one training epoch (no information about the 
vigilance parameter is given). In Table 4, it can be 
seen that the first texture sharply decreases the 
success rate because it is a highly irregular (no 
regular brick size and colour). The others statistical 
values are over those obtained by ARTEX system.  

Table 4: 8-textures recognition statistics for each texture 
class and global. 

ρ=0.95 ρ=0.98  
8x8 16x16 32x32 8x8 16x16 32x32

T1 90.0 86.9 80.3 90.9 87.2 79.3 
T2 97.3 100 100 97.1 100 100 
T3 98.1 98.5 99.0 98.8 99.8 100 
T4 98.7 99.8 99.8 99.9 100 100 
T5 97.8 100 100 99.2 100 100 
T6 99.9 99.9 100 100 100 100 
T7 97.6 100 100 99.9 100 100 
T8 92.1 98.5 100 98.4 100 100 

total 96.4 98.0 97.4 98.0 99.6 97.4 

Our architecture was also trained and tested over 
a “multitex problem”, analog but more complex than 
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the “texture mosaic problem” proposed in 
(Grossberg and Williamson, 1999). Our mosaic 
includes 9 textural areas versus the 5 textural areas 
from (Grossberg and Williamson, 1999). As 
explained before, with the third image from each 
texture class, we built a 210x210 pixels multitex test 
image (see Figure 4 row 3-right) in order to evaluate 
the frontier precision between textures in the 
prediction of our architecture. Both the training and 
the testing was performed with two different levels 
of vigilance, ρ=0.95 and ρ=0.98 for training and 
ρ=0.9 and ρ=0.97, respectively for testing. The 
results are shown in Table 5. Those results show a 
better class rate in all resolutions and vigilance 
levels than those obtained in (Grossberg and 
Williamson, 1999) as our worst result (95.89%) 
beats the best result (95.7%) shown in this work. 

Table 5: Multitex prediction statistics. 

Resolution Train vigilance 
parameter 

Samples
/class 

Class rate 
(%) 

8x8 0.95 300 95.89 
16x16 0.95 125 96.67 
32x32 0.95 40 97.30 

8x8 0.98 300 99.75 
16x16 0.98 125 99.48 
32x32 0.98 40 99.18 

The images of the predictions can be seen in 
Figure 5 where only those corresponding to a 
vigilance parameter value of ρ=0.95 are shown. 
Each prediction class is depicted with a level of 
grey, from black to white. Those images reveal two 
remarkable points. First, the best prediction for the 
interior points shows up for a 32x32 resolution. 
However, it is the 8x8 resolution the one which 
accurately resolve texture transitions. 

The main differences between our architecture 
and the one shown in (Grossberg and Williamson, 
1999) are basically the inclusion of colour 
information (the two output signals coming from the 
chromatic channels in the diffusion stage) and the 
use of one additional receptive field in the pattern’s 
textural components. Our architecture also includes 
in the patterns the processing of the symetric 
receptive field with central excitation simple cells. 
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