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Abstract: This paper introduces multifractal analysis to the Fuzzy Markov Random Field (MRF) Model, used for 
brain tissue classification of Magnetic Resonance Images (MRI). The traditional classifying method using 
Fuzzy MRF Model is already able to calculate out the memberships of each voxel, to solve the Partial 
Volume Effect (PVE). But its accuracy is relatively low, for its spatial resolution is not high enough. 
Therefore the multifractal analysis is brought in to raise the accuracy by providing local information. The 
improved method is tests on both simulated data and real images, where results on membership average 
errors and position errors are calculated. These results show that the improved method can provide much 
higher accuracy.        

1 INTRODUCTION 

Magnetic Resonance Images (MRI) have been 
widely used for brain diagnosis and disorder 
detections. Accordingly, segmenting brain images 
into different tissues, such as cerebrospinal fluid 
(CSF), grey matter (GM) and white matter (WM), 
for clinical uses, has become a classical problem. 

Many different tissue segmenting methods and 
algorithms are proposed these years. Some methods 
are using T1 weighted images (Rajapakse et al, 
1996), while others use multispectral MR data (Taxt 
and Lundervold, 1994). Algorithms can be based on 
histogram determination Suzuki and Toriwaki, 
1991), or on a priori information on anatomy (Joliot 
and Mazoyer, 1993). Mathematical models are used, 
from cluster analysis (Simmons et al, 1994) to 
Bayesian estimation (Chang et al, 1996). All these 
methods assume that each voxel in the images to be 
segmented belongs to only one specific tissue. 
However, due to the partial volume effect (PVE), 
one voxel may contain information from several 
different tissues, flawing the segmenting results of 
the methods proposed. 

To solve the effect of PVE, Markov Random 
Field (MRF) Model is applied to tissue classification 
(Ruan and Cyril et al, 2000). The a priori 
information from an image and the classifying 
criteria are combined into energy functions of 

MRF’s distribution, and then the voxels with mixed 
tissues can be classified by the iterated conditional 
mode (ICM). This method achieves a so-called 
‘Hard Classifying’, classifying each voxel into one 
tissue who contributes the most, and contributions 
from other tissues are neglected. Considering that 
the neglected information is usually useful, a further 
model, the Fuzzy MRF Model, is brought in (Ruan 
and Moretti et al, 2001). The Fuzzy MRF Model 
takes into account the contextual information, the 
statistical information and the anatomical 
information of the brain. And ‘Hard Classifying’ is 
replaced by ‘Fuzzy Classifying’, providing 
‘memberships’ for each voxel, indicating each 
voxel’s partial volume degree, in other words,  
representing how much these tissues occupy one 
voxel respectively. 

The fuzzy MRF Model is proved effective on 
PVE, but still limitations it has. Experiments show 
that this method performs poorly at brinks of brain 
images, where grey-level of voxels changes 
suddenly, which implies its spatial resolution is not 
high enough. Also, this method being noise sensitive, 
when it encounters images with high noise, its 
accuracy becomes even worse. These limitations can 
be attributed to the lack of local properties extracted 
from images, so what we need to do is to provide the 
Fuzzy MRF abundant local information.  

As a new signal processing method, multifractal 
analysis is competent for this object. Multifractal is 
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first studied mathematically (Halsey et al, 1986), 
and introduced to image processing by Sarkar and 
Katsuragawa (1995). It has derived various methods 
for image analysis, and has shown its advantages in 
local feature extraction (Liu and Li, 1997). It is also 
adapted to MRI brain tissue classifying, to remove 
ambiguities in the ‘Hard Classifying’ caused by 
intensity overlap, and performed well (Ruan et al, 
2000) 

Our research aims to raise the spatial resolution 
by local information while using fuzzy MRF model. 
We propose a combining both fuzzy MRF model 
and multifractal analysis together, to achieve a more 
accurate ‘Fuzzy Classifying’. In this paper, we 
firstly show an overall of the proposed scheme and 
two kenel algorithms, fuzzy MRF and multifractal 
analysis, then explain how to combine these two 
parts in section 2. The validation of this improved 
scheme is done both by some experiments and in 
comparison with traditional fuzzy MRF method. The 
results and discussion are shown in section 3. This 
improved algorithm takes the same frame as the 
original method, while changes are done 
mathematically. Experiments and tests are done on 
various images, including real and virtual data with 
different amount of added noise. 

2 ALGORITHMS  

In this section we will introduce the algorithms for 
Fuzzy MRF Model along with multifractal analysis. 
We will show how the Fuzzy MRF Model works 
and how the multifractal information improves its 
classifying results. 

2.1 A Whole Algorithm for Fuzzy MRF 
Model with Multifractal Analysis 

Here we give out the flowchart of the whole 
algorithm using Fuzzy MRF Model with multifractal 
analysis, as Figure 1. 

A parallel treatment, such as a preteatment for 
the  parameter estimation of Fuzzy MRF Model  and 
a multifractal analysis for producing a novel 
parameter U3 to adjust a traditional Fuzzy MRF 
Model, is the contribution of this scheme. 

The region framed by dashed line rectangle is the 
multifractal part added to the original frame. The 
other modules form the ICM iteration of Fuzzy MRF 
(Ruan and Moretti et al, 2001), and the multifractal 
part provides a ‘tendence’ to instruct the iterating 
course. We will discuss them in detail in following 
subsections. 

 
Figure 1: Flowchart of the whole algorithm. 

2.2 Fuzzy MRF Model  

The MRF Model is an a priori model, it represents 
the spatial correlation of image data. Considering a 
random field A with its realization a, in practice we 
usually use the joint probability density function of 
A on the whole image. Particularly when the 
probability density is distributed Gibbsian, the 
density function takes form as (1): 
 

1( ) exp( ( )),  

 exp( ( ))
x

P X x U x
Z

Z U x

= = −

= −∑
 (1) 

  
where U(a) stands for the energy function, and Z the 
normalizing constant. 

Fuzzy MRF Model applied to image 
segmentation, there are two random fields. One is 
the membership field A, whose realization is a, the 
other is the grey-level field Y, whose realization is y, 
which is known a priori. The goal of tissue 
classifying is to achieve the maximum joint 
probability density distribution of these two random 
field: 
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The joint probability can be represented by 

conditional probability as:  
 

, |( , ) ( ) ( | )A Y A Y AP a y P a P y a=  (3) 
 
Comparing (1) and (3), we can get the 

probability distribution of Fuzzy MRF of image: 
 

, 1 2
1( , ) exp( ( , ) ( ))A YP a y U a y U a
Z

= − −  (4) 

 
Here U1 represents the incompatibility between the 
grey-levels and the memberships, and U2 represents 
the inhomogeneity of memberships themselves. 
They can be calculated using statistical parameters, 
which are acquired by fitting the grey-level 
histogram with several Gaussian functions (Ruan 
and Jaggi et al, 2000). 

Once the two parts of energy function are 
calculated out, we can use the deterministic 
relaxation iterated conditional modes (ICM) to find 
the optimum realization of membership a, to ensure 
the energy function U being minimum, which means 
the joint probability in (1) being maximum. 

The original algorithm concerns only these two 
parts of energy function, and information about the 
partial details are not taken into account. So we can 
see the shortcome of the original algorithms clearly 
by calculating the set-difference between classifying 
resluts and standard modules. Here we use a noise-
free virtual image of normal brain with no RF. The 
original image is shown in Figure 2. Classifying 
results are shown in Figure 3 and differences in 
Figure 4, as we can see, the spatial differences 
mainly locate on the brinks, stings and nicks of the 
image, where grey level changes suddenly. If we 
could provide the algorithm enough local 
information to raise its spatial resolution, the result 
should be more accurate. 

2.3 Multifractal Analysis 

The multifractal analysis is first adopted into ‘Hard 
Classification’ by Ruan (Ruan and Bloyet, 2000), to 
remove the ambiguity caused by intensity overlap. 
The intensity overlap has nothing to do with the 
fuzzy model, since in fuzzy circumstances, we need 
not to reclassify a mixed voxel into one particular 
pure tissue. But the local information provided by 
multifractal still helps in raising the spatial 

resolution, thus we introduce the multifractal method 
to the Fuzzy MRF Model.  
 

 
Figure 2: The original image named Vn00. 

 
Figure 3: The classifying results of a virtual image. 

 
Figure 4: The spatial difference between classifying 
results and standard modules of a virtual image. 

2.3.1 Multifractal in Signals 

It is well known that fractal is widely used to 
process self-similar signals, by providing its global 
information of similarity to the ‘fractal dimension’. 
But to provide local information, we need the 
‘fractal dimension’ to vary from part to part of the 
signal. This is multifractal. 

Therefore Multifractal dimension is defined 
locally by the measurement and length of a 
shrinking small region, as (5):  

 

0

loglim
loga

b
a

α
→

=  (5) 

 
where α denotes the multifractal dimension, also 
called Hölder exponent, b denotes the measurement, 
and a the length of the region. 
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Each small region has its own Hölder exponent, 
and then the whole signal can be considered as the 
union of many subsets that combining with each 
other. To characterize the local characteristics, we 
need another parameter to decompose these small 
regions, and group all voxels being in the same kind 
of detail into a set. The parameter brought in is 
called ‘multifractal spectrum’, defined as ( )f α . 

( )f α ’s definition can be Hausdorff, Legendrea, or 
others. We can also define it particularly. 

2.3.2 Multifractal in Brain Images 

To describe the local details of brain images, first we 
need to abstract these details into several simple 
models. Observe the images, we can find out three 
kinds of details shown in Figure 5.  
 

 
Figure 5: The details of brain image. 

 
(a)  plain detail 

 
(b)  hill detail 

 
(c)  valley detail 

Figure 6: The models of details. The intensity model is on 
the left, while grey-level model is on the right. 

Grey levels of voxels in plain region has little 
difference from the central voxel, most of the small 
regions are proved to be plain. Hill region has 
several voxels much lighter in the centre, and valley 

region has a much darker centre. The models can be 
illustrated as Figure 6. 

After defined the three detail models, the Hölder 
exponent α  is ready to be calculated out for each 
model. From the equation (5) we could know that α  
is defined to be a limit process. Because the image is 
composed by discrete voxels, the values of length a 
must also be discrete, thus the limit process is 
discrete: first a takes the radius of the small region R 
as its value, then each time a minus 1 until a 
becomes 0. The corresponding value of b is the sum 
of grey level of voxels in a diminishing spherical 
small region whose radius is a. Both a and b gotten, 
the Hölder exponent α  can be gotten in succession. 
Since we only care about the relative size of the 
Hölder exponentα , the values themselves make no 
sense to us; we can also use some approximate 
method, such as linear fitting, instead of the 
complicate limit process. 

At last, we can get the relative size of the Hölder 
exponent α  in different details: for hill, α is 
relatively smaller, and for valley, α is relatively 
bigger, while for plain, it’s in the middle. 

To decompose image details and group the 
voxels into three sets, ( )f α needs to be generated 
from α . And for concision, we define ( )f α as α ’s 
histogram, that means:  

( ) ( ( ), )i i
k I

f kα δ α α
∈

=∑  (6) 

where I represents the whole image, ( )kα is the 
Hölder exponent at voxel k, ( ( ),  )ikδ α α  is 
Kronecker Function, which takes the value 1 while 

( ) ikα α= , and 0 while ( ) ikα α≠ . 
 

 
Figure 7: Multifractal spectrum of MR brain image. 

Then we get the histogram as spectrum, shown in 
Figure 7. A correctly collected MR Brain image 
must has a multiractal spectrum in this shape, 
because most voxels are in plain regions, which 
makes the high peak in the middle. Therefore we 
need only to find the position of the peak, denoted as 

plain 
 
 
hill 
 
 
valley 
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0α , representing the corresponding voxels being in 
plain detail, and voxels with an α  smaller than 

0α are in hill regions, others are in valley regions. 

2.4 Multifractal Applied to Fuzzy MRF 

Using multifractal, we can label every voxel the 
detail type it belongs to, and the rest to be done is to 
combine the multifractal and Fuzzy MRF together, 
by influencing the ICM iterating process with these 
detail labels. 

We consider translating the labels into some sort 
of ‘tendence’. If a voxel is labelled ‘hill’, that means 
it’s brighter than its neighbours, then it should have 
a tendence to be classified into a brighter tissue. If 
the voxel is labelled ‘valley’, on contrary, it should 
have a tendence to be classified into a darker tissue. 
If the voxel is labelled ‘plain’, its brightness is 
almost the same as its neighbours’, so it should have 
no tendence. 

Then the main problem is how to translate the 
detail labels into ‘tendences’. Here we propose the 
3rd energy function U3, to change the value of U, 
therefore to impose the ‘tendence’ to the iterating 
process. From  to gradient label (denoted by D), then 
to U3, can be defined as equation (7): 

 

3

1 ( )
0 ( ) ,
1 ( )

1
0  ,  0,
1

hill

hill valley

valley

current

fractal current fractal

current

hill
D plain

valley

a a
U D a a

a a

α α
α α α

α α

β β

⎧ <
⎪= ≤ ≤⎨
⎪− >⎩

− >⎧
⎪= ⋅ ⋅ = >⎨
⎪ <⎩

 
(7) 

 
For equation (7), hillα  and valleyα  are thresholds 

generated from the spectrum ( )f α  shown in Figure 
7, e.g, 0 0max( | ( ) ( ) / 2 & )hill f fα α α α α α= < <  
and 0 0min( | ( ) ( ) / 2 & )valley f fα α α α α α= < > . 
And 

fractalβ  is a positive weight coefficient for U3, 
whose value depends on how much you want the 
multifractal part to affect the whole system. 

Using (7), the detail ‘hill’ can make U with 
brighter membership a smaller, and U with darker 
membership a bigger. For the detail ‘valley’, the 
performance is on the contrary. Thus multifractal 
can be applied to the algorithm frame shown in 
Figure 1. 

3 EXPERIMENTS AND RESULTS 

3.1 Experiment Materials 

Experiments are done on 9 data sets to test the 
improved algorithm. These 9 sets of data includes 
various conditions, such as virtual data and real 
images, data with different noise levels and RF 
levels, data of normal brains and brains with defect. 
We name each image the way as following. The 1st 
letter indicates its source in V (virtual) and R (real). 
The 2nd letter indicates the defect of the brain, in n 
(normal), s (multiple sclerosis) and t (tumour). The 
1st number indicates its noise level in percent. And 
the 2nd number indicates whether RF is added, in 1 if 
added or 0 if not.  

The information of the 9 sets of data is listed in 
Table 1. 

Table 1: Information of data sets used for tests. 

Name Source Defect Noise RF 

Vn00 virtual normal 0% 0% 

Vn30 virtual normal 3% 0% 

Vn50 virtual normal 5% 0% 

Vn70 virtual normal 7% 0% 

Vn01 virtual normal 0% 20% 

Vn71 virtual normal 7% 20% 

Vs00 virtual 
multiple 
sclerosis 0% 0% 

Rn real normal   

Rt real tumour   
 
To quantify the tests of accuracy, we mainly use 

the virtual data and their standard modules. The 
virtual data is from Montréal Neurological Institute, 
McGill University, McConnell Brain Imaging 
Centre (Website: http://www.bic.mni.mcgill.ca/ 
brainweb/ ). 

3.2 Evaluating Method 

The classifying results of virtual images are 
evaluated in two ways. The 1st way is the position 
error ep, which is the number of voxels classified 
differently from the standard module.  The position 
error is defined as equation (8).  
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And the 2nd way is the membership average error 
em, which indicates the average error of 
memberships from the whole images. The 
membership average error is defined as equation (9), 
where N(I) represents the number of voxels. 

 
( , , ) ( , , )

( , , )

( )

result i j k std i j k
i j k I

m

a a
e

N I
∈

−
=
∑

 (9) 

3.3 Result and Discussion 

The position error of each image data using each 
algorithm is listed in Table 2, the membership 
average errors are listed in Table 3. 

Both Table 2 and Table 3 show that the 
algorithm with multifractal has lower errors, in other 
words, higher accuracy than the original one. (In 
spite of some exceptions caused by noise and RF, 
such as GMs of Vn50 and Vn01 in Table 2, the 
flaws can be compensated by better results on the 
other tissues. ) 

Table 2: Position errors of two algorithms. 

ep  (number of voxels) 
Data Multi- 

fractal CSF GM WM 

without 68232 105738 55071 
Vn00 

with 66398 98904 54122 

without 114829 140443 139721 
Vn30 

with 115507 134358 139774 

without 188361 193855 223821 
Vn50 

with 183362 194035 222067 

without 228503 238072 281032 
Vn70 

with 228273 230507 278875 

without 165458 255996 195482 
Vn01 

with 166628 256531 190323 

without 232630 256904 306778 
Vn71 

with 232336 250765 302827 

without 72145 124560 72968 
Vs00 

with 72170 119322 69315 

Table 3: Membership average errors of two algorithms. 

em 
Data Multi-

fractal CSF GM WM 

without 1.6322 3.3685 1.3824 
Vn00 

with 1.5104 3.1752 1.3422 

without 2.1395 4.9949 2.7958 
Vn30 

with 2.0264 4.8018 2.7688 

without 2.9763 7.4779 4.6330 
Vn50 

with 2.8443 7.2597 4.5960 

without 4.3948 9.4826 5.9437 
Vn70 

with 3.5422 9.1410 5.9312 

without 2.3392 6.2700 3.9262 
Vn01 

with 2.2365 6.1273 3.8102 

without 3.8495 10.526 7.0626 
Vn71 

with 3.6663 10.136 7.0032 

without 1.6992 3.4159 1.4649 
Vs00 

with 1.6233 3.2771 1.4197 
 
Because of the effect of other tissues such as 

muscles and bones, the errors are still not very low, 
but we could observe just the voxels at brinks, which 
we care about. Comparing the result images, we find 
that the voxels improved are mainly what we wanted 
to improve. Compare to the results from original 
method, the results of multifractal method have 
much less error voxels at the brinks of images. One 
comparison of position error using Vn00, the same 
data as Figure 2, is shown in Figure 8. 

 

 
Figure 8: Position error of original algorithm (above) and 
improved algorithm with multifractal (below). 
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Figure 9: Membership average error of original algorithm 
(real line) and improved algorithm with multifractal 
(dotted line). 

Another improvement is the better robustness on 
noise. We chart the average errors of Vn00 to Vn07 
in Table 2, the curves are shown in Figure 9. 

The higher the noise level becomes, the greater 
the accuracy improves. The improved method with 
multifractal is improved less sensitive to noise, and 
can be used to contain the deterioration caused by 
high noise. 

Results of real image Rn and Rt have been 
compared to some manual segmenting results, and 
they match each other. The improved method can be 
well used for real applications. 

4 CONCLUSIONS 

An improvement from multifractal analysis has been 
done to the traditional tissue classifying algorithm 
using Fuzzy MRF Model. The original mathematical 
models and fuzzy features are reserved, when spatial 
resolution is increased, thus accuracy is improved. In 
numbers of tests on various sorts of data, the 
improved method shows its advantage on accuracy 
to the original method. Also an entire algorithm 
using the improved method is proposed and tested, 
doing well in real applications. 
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