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Abstract: Based on variational and level set approaches, we present a hybrid framework with quality control for 
confocal microscopy image segmentation. First, nuclei are modelled as blobs with additive noise and a filter 
derived from the Laplacian of a Gaussian kernel is applied for blob detection. Second, nuclei segmentation 
is reformulated as a front propagation problem and the energy minimization is obtained near the boundaries 
of the nuclei with the Fast-Marching algorithm. For each blob, multiple locally optimized points are selected 
as the initial condition of the front propagation to avoid image under-segmentation. In order to achieve 
higher accuracy, a graphical interface is provided for users to manually correct the errors. Finally, the 
estimated nuclei centres are used to mesh the image with a Voronoi network. Each mesh is considered as a 
Geodesic Active Contour and evolves to fit the boundaries of the nuclei. Additional post-processing tools 
are provided to eliminate potential residual errors. The method is tested on confocal microscopy images 
obtained during trophoblast elongation in ruminants. Experimental results show that cell nuclei can be 
segmented with controlled accuracy and difficulties such as inhomogeneous background or cell coalescence 
can be overcome. 

1 INTRODUCTION 

Confocal microscopy imaging is one of the most 
important technologies used to observe the cellular 
developmental process. Image segmentation is a 
major step to interpret the obtained images. 
Correctly explored, it will provide important 
information about cellular shape and tissue 
organisation. Appropriate and automatic image 
segmentation tools are usually necessary to assist the 
analysis. However, segmenting confocal images is a 
complex and laborious task. Several factors might 
raise difficulties: (1) uneven background: Most of 
the tissues are fluctuating during the image 
acquisition and background is rarely uniform; (2) 
local intensity variation inside a nucleus. Due to 
imperfect staining during the experiment or intrinsic 
cellular structure, one nucleus may be split into two 
or more parts; (3) cell coalescence: Cell over-
clustering makes it hard to tell the exact nuclei 
boundaries. 

Many segmentation approaches relating to 
biological images have been proposed in the 
literature. Research shows that traditional image 

segmentation methods such as thresholding, region 
growing and edge-based approaches (Pitas, 2000) 
can not be successfully applied to microscopy 
images. Reported successful methods usually 
focused on a specific type of images without 
generality (Wu et al., 2005). Watershed 
segmentation has been popular and considered as 
one effective method. Thomas (Thomas and 
Graham, 2007) modified watershed method to give 
more accuracy for identifying intracellular structures 
even in the presence of inhomogeneous background. 
Wahlby (Wahlby et al., 2004) and Long (Long et al., 
2007) used both the intensity and geometry 
information to appropriately detect nuclei. Those 
methods are robust but the system is complicated 
and need more time to adjust and analyse the 
parameters to give the accurate result according to 
the characteristics of images. All modified 
watershed algorithms face over-segmentation 
phenomena and have to provide post processes to 
adjust the result, especially on cellular microscopy 
images with high noise and cell coalescence. Based 
on partial differential equations and variation models, 
Solorzano (Solorzano et al., 2001), Chang (Chang et 
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al., 2007) and Dirk (Dirk et al., 2006) provide 
another direction by using level set segmentation. 
The solution is derived by minimizing a global 
energy function. This method benefits from well 
founded mathematical theories which allow 
developers to analyze, understand, improve the 
existing methods and work in a continuous setting in 
higher dimensional space. 

The paper is organized as follows: Section 2 
introduces a hybrid structure supporting quality 
control. Section 3 illustrates segmentation 
approaches. The system is evaluated in Section 4. 
Finally, Section 5 draws a conclusion. 

2 HYBRID FRAMEWORK 

Drawing outlines of cells with a mouse, the result 
can be regarded as absolutely accurate and objective, 
but it is a hard work and difficult to repeated. 
Automatic methods are fast and convenient, but 
some errors occur. Therefore, the solution for image 
segmentation is a trade-off between precision and 
speed. When high accuracy is needed, the system 
needs interactivity with the analyzer or provides an 
automatic result with limited errors. To deal with a 
wide variety of biological microscopy images, a 
hybrid framework with quality control will be 
preferable. 

We constructed such a hybrid framework 
combining PED-based level set approaches with 
selectable interaction which supports automatic and 
semi-automatic segmentation with a robust error-
checking stage, as shown in Figure 1. The nuclei are 
firstly modelled into blobs with some additive noise 
and Laplacian of Gaussian (LoG) filter is regarded 
as a blob-detector. Using gradient information, a 
front propagation fast marching is applied to 
segment cellular nuclei. The result can be directly 
outputted after morphology filter or used to enhance 
the last result. An interactive module is provided to 
prevent error propagation and Voronoi meshing is 
created from those appropriate centres. From cellular 
shape information, geodesic active contour (GAC) is 
introduced to refine nuclei boundaries. Post 
processing methods are added as supplementary 
module to correct for potential errors. 

 
Figure 1: Diagram of hybrid framework. 

3 METHOD DESCRIPTION 

3.1 Blob Detection 

On confocal images from ruminant trophoblast cells 
e.g. Figure. 2 (A), one sees that most nuclei are 
nearly round. Laplacian of Gaussian filter has been 
proved to be an effective blob-detector (Byun et al. 
2006) since LoG filter is able to detect particular 
edges by determining the peak point of the ridge. 
Therefore, we aimed at detecting regions which are 
brighter than the surrounding to overcome 
inhomogeneous background.  

Although the nuclei of trophoblast cells are not 
exactly round, our objective is focused on rotation 
invariance of objects, so that it is fitful to over-fit a 
circle model into the whole image. From the 
experimental results, we found that the diameter of 
LoG filter is proportional to nuclei average diameter 
and this initial value can be set in advance since the 
kind of cells are known, e.g. bovine or ovine  
trophoblast. LoG filter will get a smooth image local 
maximal values of which nearly correspond to the 
nuclei centres shown in Figure 2. (B). 

After blob-detector, an H-convex filter is added 
for enhancing the local maximum. H-convex 
belongs to a kind of morphological method and has 
the effect of extracting objects that are brighter than 
background by at least H-intensity units. It is 
relatively straightforward and does not require 
homogeneity in the background. The enhanced local 
maximal result can be gotten in Figure 2. (C). 
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Figure 2: Results in each module. 

3.2 Fast Marching 

Fast marching method (Sethian, 1996) has 
monotonically advancing front with positive speed 
to build solutions outward from the boundary 
condition by choosing the smallest time in its 
evolution, until it adopts the form of the enclosing 
nuclei delineated by the staining. The segmentation 
result from fast marching is gotten in Figure 2 (D). 

Our speed function is provided by sigmoid 
function: 
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where I is intensity of input pixel,  'I is the intensity 
of output pixel, Min and Max  are the minimum and 
maximum values of output image, α  defines the 
width of input intensity range and β defines 
intensity around which the range is centred. 

Since some cell nuclei are connected closely, 
segmentation results depend on initial seed 
positions, so that multiple seeds will have more 
chances not to miss objects. However, having seeds 
distributed inside the nuclei is not helpful for 
contour expansion. Therefore, instead of randomly 
selecting multiple points as initial condition, we 
searched the best seeds for each candidate by finding 
its local minimum through comparison with 
neighbours as shown in Figure 3. 

 
Figure 3: Seeds optimization by local searching. 

The selection of optimal seeds gives a better 
result in detecting nuclei, and that this result is stable 
shown Table 1. The more seeds can be assigned 
nearby the edge of nuclei, the more precise the fast 
marching segmentation can be. Table 1 also shows 
that the number of initial seeds is important. If too 
many seeds are put in one image, many single nuclei 
will be divided into multiple parts due to local 
intensity variations. Normally the distances we have 
selected are 16 pixels in row, 16 pixels in column 
and a searching radius of 3 pixels. For some special 
trophoblast images we had to adjust these 
parameters carefully. 

Table 1: Comparison between random and optimal seeds. 

radius 

(pixels) 

Number 

of nuclei 
4×4 8×8 

16× 

16 

32× 

32 

64× 

64 

Optimal 398 360 337 339 310 
3 

Random 419 364 332 319 307 

Optimal 319 312 303 304 302 
5 

Random 337 312 299 288 275 

3.3 Interactivity 

The centre of each nucleus can be estimated from 
the above results. Despite accuracy rate is averagely 
high, there is still a possibility of a few failures to 
occur as indicated by white arrows on Figure 2 (E). 
On our images, the error rate varies from 1% to 
10%.  If more than one seed is located inside a 
nucleus, this will cause over-segmentation, 
conversely when no seed is found within a nucleus, 
the object is lost. Therefore, the centres of nuclei are 
very important for the final result. In order to 
prevent error propagation, human interactivity is 
necessary to view and adjust results in this stage. 
Through an interface, the user can make decision 
based on visual examination of the nuclei, so that an 
immediate feedback enables the user to produce 
reliable results e.g.  Figure 2 (F). 
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Figure 4: Refinement by GAC in one Voronoi mesh. 

3.4  Geodesic Active Contour 

From nuclei centres, Voronoi mesh is directly 
produced in Figure 2 (G), which can be regarded as  
a reference map in refining nuclei by geodesic active 
contours (Vicent et al. 1997). Since Voronoi mesh 
gives a limited small region to minimize the GAC 
energy function, it is sure that one nucleus is gotten 
just in one Voronoi-mesh. The refining result is 
shown in Figure 2 (H). 

GAC consists of double forces which control the 
last shape and it is important to balance inside and 
outside forces. When the propagation term is set too 
high, the contour will go too far inside as illustrated 
in Figure 4. In our application to ruminant 
trophoblast cells, all nuclei are nearly rounded so 
that curvature term is responsible for smoothness. 

3.5 Post Processing 

When confocal images are very blurred or tightly 
clustered, a few errors cannot be avoided with 
automatic detection to correct these potential errors 
by human visual system. We provide a 
supplementary module. As an example (Figure 2: I), 
one lost nucleus has been recovered with this 
module. 

4 EXPERIMENTS 

This section describes how our hybrid framework is 
used to segment the nuclei on 2D confocal images 
from ruminant trophoblast. There are more than one 
thousand of images with varying cellular 
characteristics and varying background noise in 
dataset.  Selecting different modules, four types of 
pipeline are designed shown in Table 2.  
 
 
 

Table 2: Pipelines with different modules. 

Module 1 2 3 4 5 6 7 8 9 
Pipeline A × × × ×      
Pipeline B × × ×  ×  × ×  
Pipeline C × × ×  × × × ×  
Pipeline D × × ×  × × × × × 

 
Figure 5 gives four typical images as examples 

to show the results of our framework. Our approach 
is compared with the existing methods in ITK and 
ImageJ which are using fast marching and K-means 
clustering individually. In row 1, when confocal 
images have good quality, all methods can be used 
successfully, with similar errors. However, when 
nuclei are clustered together (see row 2), our method 
keeps stable whereas the other methods lose the 
ability to separate each nucleus in the clusters. For 
example, ITK can only detect the whole cluster edge 
and cannot divide it further while ImageJ produces 
many connected regions. In row 3, when nuclei are 
organised in a special structure, the exiting methods 
(ITK and ImageJ) cannot identify the objects 
whereas the nuclei are correctly detected by our 
method and the contour is closer to the true shape. 
When there are many small nuclei and their size 
changes continuously (row 4), our result is also 
stable and useful. 

Our framework is a scalable system with quality 
control through the selection of modules and the 
setting of the initial parameters based on the 
characteristics of the original image to balance terms 
in the energy function of level set. Through 
adjusting the parameters on propagation and smooth 
term, the nuclear edges can be detected and refined 
step by step by active contour as in Figure 6, from 
(a) to (d).  

It is often necessary to complete a confocal 
image automatic segmentation with an acceptable 
error rate. Successful results can be obtained with 
our scalable procedure. Since the modules related to 
the human interaction are selectable, we can use the 
level set methods directly. Figure 7 gives an 
example. The first column comes from the fast 
marching following the blob-detector and we use 
morphology filter to enhance the result. In the 
second column, results from GAC without 
interactivity are provided. Some error is propagated 
from fast marching module because the gravity 
centre of the nuclei is wrongly estimated from fast 
marching segmentation. GAC can skip the false 
nuclei but will produce good results with coherent 
nuclei. So, the number of nuclei from GAC 
decreases for factual objects. 
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Figure 5: Comparison of proposed algorithm with fast marching in ITK and K-mean clustering in ImageJ (high quality, 
nuclei coalescence, special structure and low quality from left column to right column). The first row is the original 
confocal images. The second, the third and the fourth row respectively correspond segmentation results from ITK, ImageJ 
and proposed algorithm (Pipeline C). 

Table 3: Segmentation results expressed as numbers of detected nuclei with each method. 

Image 
Actual 
number 

Fast marching 
in ITK 

K-means in 
ImageJ 

FM with blob-
detector       

(Pipeline A) 

GAC without 
interactivity 
(Pipeline B) 

GAC with 
interactivity 
(Pipeline C) 

With post 
processing   

(Pipeline D) 
(a) 280 253(-27) 265 (-15) 298 (+18) 294 (+14) 280 (+0) 280 
(b) 378 281(-97) 347 (-31) 402 (+24) 373 (-5) 374 (-4) 378 
(c) 294 236(-58) 179 (-115) 328 (+34) 318 (+24) 292 (-2) 294 
(d) 704 544(-160) 652 (-52) 737 (+33) 729 (+25) 711 (+7) 704 

Number 1656 1314 (-342) 1443 (-213) 1765 (+109) 1714 (+63,-5) 1657 (+7,-6) 1656 
Error rates  20.65% 12.86% 6.58% 4.11% 0.79% 0% 

In Table 3, we conclude and compare the 
error rates from all of the methods discussed 
above. “+” means over-segmented nuclei and “-” 
means under-segmented. Their sum is divided by 
factual total numbers to compute the error rate. 

Normally we do not use post processing module 
and the average error ratio is limited into 0.8%. 
The experimental results show that our hybrid 
segmentation framework is satisfactorily accurate.  
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Figure 6: Refining boundary by GAC method with 
quantity control. 

 
Figure 7: Automatic segmentation results by Pipeline A 
(first row) and Pipeline B (second row). 

5 CONCLUSIONS 

This paper demonstrates the effectiveness of a 
hybrid framework for cellular segmentation. It 
combines the efficiency of the automatic 
segmentation procedures with the accuracy of the 
human visual system. Based on confocal images of 
ruminant trophoblast, our experiments showed that 
the proposed approach provides reliable results and 
presents numerous advantages regarding to manual 
analysis or automatic methods in terms of objectivity 
and applicability.  
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