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Abstract: In this paper we present a fully-automated method for the detection of tumor areas in immunohistochemical 
confocal images. The image segmentation provided by the proposed technique allows quantitative protein 
activity evaluation on the target tumoral tissue disregarding tissue areas that are not affected by the pathol-
ogy, such as connective tissue. The automated method, that is based on an innovative unsupervised cluster-
ing approach, enables more accurate tissue segmentation compared to traditional supervised methods that 
can be found in literature, such as Support Vector Machine (SVM). Experimental results conducted on a 
large set of heterogeneous immunohistochemical lung cancer tissue images demonstrate that the proposed 
approach overcomes the performance of SVM by 8%, achieving on average an accuracy of 90%. 

1 INTRODUCTION 

Detecting tumor areas in cancer tissue images and 
disregarding non pathological portions such as con-
nective tissue are critical tasks for the analysis of 
disease state and dynamics. In fact, by monitoring 
the activity of proteins involved in the genesis and 
the development of multi-factorial genetic patholo-
gies we can obtain a useful diagnostic tool. It leads 
to classify the pathology in a more accurate way 
through its particular genetic alterations, and to cre-
ate new opportunities for early diagnosis and per-
sonalized predictive therapies (Taneja et al., 2004). 

An approach for monitoring and quantifying the 
protein activity in pathological tissues is to analyze, 
for example, images of the tissue where the localiza-
tion of proteins is highlighted by fluorescent marked 
antibodies that can detect and link the target pro-
teins. The antibodies are marked with particular 
stains whose intensity is related to protein activity 
intensity. This procedure is called immunohisto-
chemistry (IHC).  

The increased use of immunohistochemistry 
(IHC) in both clinical and basic research settings has 
led to the development of techniques for acquiring 
quantitative information from immunostains and 

automated imaging methods have been developed in 
an attempt to standardize IHC analysis. 

Tissue segmentation for tumor areas detection is 
the first fundamental step of automated IHC image 
processing and protein activity evaluation. In fact 
the quantification of a target protein activity should 
be performed on tumor portions of the tissue without 
taking into account the non pathological areas even-
tually present in the same IHC images. In Figure 1 
are reported examples of IHC tissue images where 
connective tissue (i.e. non tumoral tissue) is outlined 
in black (for details about these images see Section 
2).  

Several methods have been proposed in the last 
few years to perform automated segmentation of 
tissue images (Demandolx et al., 1997; Nedzved et 
al., 2000;  Malpica et al., 1997; Dybowzki, 2000; 
Nattkemper 2004). However the most accurate ap-
proaches are those that provide a well-suited frame-
work for incorporating primary expert knowledge 
into the adaptation of algorithms, such as supervised 
learning algorithm (e.g. Neural Networks, Machine 
Learning, kernel-based) (Nattkemper 2004). The 
most prominent algorithm among these is the sup-
port vector machine (SVM) proposed by V.Vapnik 
(V.Vapnik, 1998) for binary classification. SVM is a 
theoretically superior machine learning method 
which has often been shown to achieve great  classi-
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fication performance compared to other learning 
algorithms across most application fields and tasks, 
including image processing and tissue image proc-
essing in particular (Angelini et al., 2006; Osuna, 
1997). Moreover, the SVM method is more able to 
handle very high dimensional feature spaces than 
traditional learning approaches (Muller et al., 2001; 
Cai, 2003). This is in fact the case of the images 
targeted by our work. 

However, the IHC tissue images we considered 
in our study present an intrinsic complexity, such as 
very different characteristics of staining, intensity 
distribution, considerable variation of tissue shape 
and/or size and/or orientation and, finally, consider-
able variation of the signal intensity within the same 
tissue areas due for example to superimposed stain-
ing. 

 Because of the heterogeneity of the representa-
tive features related to each tissue, it is very difficult 
for the supervised methods to obtain a satisfying 
fixed classifier able to distinguish between tumor 
areas (i.e. epithelial tissue) and non cancerous tissue 
portions (such as connective tissue).  

For this reason we designed a fully-automated 
unsupervised approach that is based only on the 
characteristics of the input image rather than on a 
fixed model of the ground truth.  

In this paper we present our fully-automated un-
supervised method and we compare its performance 
to that provided by a SVM approach applied on the 
same IHC tissue image target. We demonstrate that 
our method enables more accurate tissue segmenta-
tion compared with traditional SVM. Experimental 
results conducted on a large set of heterogeneous 
immunohistochemical lung cancer images are re-
ported and discussed in Section 4.  In Section 2 we 
detail our fully-automated unsupervised method and 
we briefly introduce the SVM method. The imple-
mentation and the set-up are discussed in Section 3. 
Finally, the Conclusions are reported in Section 5. 

2 METHOD 

The images we analyzed in this work were acquired 
through high-resolution confocal microscopy and 
show lung cancer tissue cells stained with marked 
antibodies (see Figure 1). They are characterized by 
a blue hematoxylin stain as a background colour and 
a brown DAB stain in cellular regions where a re-
ceptor of the EGF-R/erb-B or TGF-alpha family is 
detected (i.e. membranes or cytoplasm, respec-
tively). Cellular nuclei are blue-coloured and show a 
staining intensity darker than background. 

In all the images a remarkable portion of connec-
tive or other no cancer tissue components is present, 
which appears as a blue-coloured mass (since brown 
DAB-stained cells are only in cancerous tissue) with 
quite well-defined borders. Connective tissue is usu-
ally characterized by shorter inter-cellular distances 
and smaller nuclei than epithelial component; how-
ever, a generalization of this remark is impossible 
because shape and dimensions distributions of can-
cer cells are often not predictable. As we outlined in 
the Introduction, in order to perform accurate and 
robust cell segmentation and protein activity quanti-
fication (Ficarra, 2006) these non cancerous tissue 
portions have to be identified and isolated from the 
representative epithelial tissue. Here we present two 
different segmentation approaches to perform this 
critical task: i) an unsupervised procedure based on a 
K-means clustering of brown intensities followed by 
some morphological and edge-based refinement 
steps (see Figure 3); ii) a supervised classification of 
RGB features through Support Vector Machine (see 
Figure 5).     

Experimental results obtained with each approach 
on the same real-life datasets are presented and 
compared in Section 4. 

Figure 1: IHC tissue images with connective tissue manually outlined in black (from the left, x400 image with EGF-R posi-
tive reactions; x400 image with EGF-R positive reactions; x200 image with TGF-alpha positive reactions).  
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2.1 Unsupervised Procedure 

Since non cancerous cells do not show positive reac-
tions at the EGF-R/TGF-alpha receptors, the mono-
chromatic pure-DAB component instead of the 
original RGB image can be analyzed to perform 
tissue segmentation: in fact in this simpler color 
space connective components can be easily identi-
fied as wide bright regions with a quite homogene-
ous appearance (see Figure 2(b)).  

An unsupervised learning algorithm (K-means, 
in our work) can be efficaciously applied to isolate 
bright regions; then areas which show morphologi-
cal and edge characteristics which are typical of 
connective tissue can be selected to refine tissue 
segmentation.  
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Figure 3: Unsupervised procedure based on K-means clus-
tering 

Main steps of the proposed procedure are (see 
Figure 3): 

1) DAB-Component Separation. To separate pure-
DAB from pure-hematoxylin component a color 
deconvolution algorithm based on stain-specific 
RGB absorption is applied on the original RGB im-
age (Ruifrok 2001, 2004); differently from classical 
color segmentation approaches based on transforma-
tion of RGB information to HSI or to another spe-
cific color representation (Brey, 2003), this method 
has been demonstrated to perform a good color sepa-
ration even with colocalized stains. This critical 
condition, due to chemical reactions of stains linking 
the target proteins and to the tissue superposition 
during the slicing of samples before image acquisi-
tion, is very common in the images targeted by our 
method.    

For this step, the free color deconvolution plugin 
developed by G. Landini was integrated to our algo-
rithm. 

2) Preprocessing. In pure-DAB images, connective 
tissue can be differentiated from epithelial tissue 
through its higher intensity (see Figure 2(b)); any-
way some preprocessing is needed in order to ho-
mogenize and separate the intensity distributions of 
the two tissues, thus improving K-means’ perform-
ance. 

First of all, a mean filter is performed: this opera-
tion replaces each pixel value with the average value 
in its neighbourhood, thus smoothing intensity peaks 
and decreasing the influence of single non-
representative pixels. Then a minimum filter is ap-
plied. The filter replaces pixels values with the 
minimum intensity values in their neighbourhood: 
this transformation reduces the intensity dynamic 
and performs a further separation of connective and 
epithelial intensity distributions, since the former 
shows minimum values higher than the latter. 

3) K-Means Clustering. To isolate bright pixels 
belonging to connective tissue a K-means clustering, 
the well-known unsupervised learning algorithm 
(Jain, 1988) which iteratively partitions a given 
dataset into a fixed number of clusters, is applied; 
this iterative partitioning minimizes the sum, over all 
clusters, of the within-cluster sums of point-to-
cluster-centroid distances. Thus the procedure 
minimizes the so-called objective function, J in 
Equation 1, where k is the number of clusters, n is 
the number of data points and the quadratic expres-
sion is the distance measure between a data point xi

(j) 
and the current cluster centroid cj. 

 
(1) 

The cluster with the highest centroid value is se-
lected as representative of the connective tissue (see 
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Figure 2: Unsupervised procedure: (a) original IHC image with connective regions manually outlined (in black); (b) pure-
DAB image (c) results after K-means clustering (pixels belonging to different clusters are mapped with grey intensity pro-
portional to the cluster centroid); (d) cluster with highest centroid value (in black); as outlined in section 2.1 point 4, some
small and round-shaped epithelial particles still have to be removed. 

(a) (b) (c) (d)
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Figure 2(c)). The number of clusters k was empiri-
cally set to four (see Section 3.1 for details about the 
parameter set-up). 

4) Refinement by Size and Circularity Analysis. 
Bright epithelial regions with low EGF-R/TGF-
alpha activity have to be removed from the connec-
tive cluster to refine tissue segmentation. As shown 
in Figure 2(d), a large number of these regions are 
approximately round-shaped and are considerably 
smaller than connective mass: then a selective re-
moval of particles with a low area and a high circu-
larity compared to threshold values TS and TC  is 
performed (parameters set-up in Section 3.1).  

Equation 2 shows the proposed index for circu-
larity evaluation (a value of 1 indicates a perfect 
circle, a value approaching 0 an increasingly elon-
gated polygon). 

 
(2) 

5) Refinement by Gradient Magnitude Analysis. 
Other bright epithelial regions can be removed from 
the connective cluster through their edge characteris-
tics, since connective tissue usually shows a well-
defined boundary w.r.t. epithelial background in 
terms of intensity gradient variation. On the base of 
this remark, in this step areas which show along 
their boundary a percentage of edge pixels (i.e. pix-
els with high gradient intensity variation w.r.t. back-
ground) lower than a threshold value TE are selec-
tively removed from connective cluster (parameter 
set-up in Section 3.1). Edge detection is performed 
through a Sobel detector followed by automated 
intensity global thresholding.  

2.2 Supervised Procedure 

An alternate approach for tissue segmentation is 
supervised learning; for this purpose a Support Vec-
tor Machine (SVM) classification is proposed. 

The SVM (Vapnik, 1998) is a theoretically supe-
rior machine learning method which has often been 
shown to achieve great  classification performance 
compared to other learning algorithms across most 
application fields and tasks including image process-
ing (Statnikov, 2005).  

Here we propose a procedure based on binary 
SVM classification, in which the input elements (in 
this work, small tissue regions) are associated to one 
of two different classes, connective or epithelial, on 
the base of a set of representative characteristics, the 
features vector. To perform a reliable classification, 
the SVM is previously trained with a set of elements 

whose class is well-known, the so-called training 
instances.  

The classification is based on the implicit map-
ping of data to a higher dimensional space via a ker-
nel function and on the consequent solving of an 
optimization problem to identify the maximum-
margin hyperplane that separates the given training 
instances (see Figure 4).  

Optimal margin
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Optimal hyperplane

Support vector

Optimal margin

CLASS 1

CLASS 2

Optimal hyperplane

Support vector

 
Figure 4: Maximum-margin hyperplane in SVMs (linearly 
separable case). The boundary training instances (support 
vectors) are indicated by an extra circle. 

This hyperplane is calculated on the base of 
boundary training instances (i.e. elements with char-
acteristics which are border-line between the two 
classes), the so-called support vectors; new instances 
are then classified according to the side of the hy-
perplane they fall into.  

In order to handle linearly nonseparable data, the 
optimization cost function includes an error minimi-
zation term to penalize the wrongly classified train-
ing instances.  

See the references provided in the text for a 
technical description of SVMs. 

TRAINING
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EXTRACTION
TRAINING CLASSIFICATION

TRAINING
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EXTRACTION
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Figure 5: Supervised procedure based on SVM. 

Our proposed supervised procedure for tissue 
segmentation consists in three main steps (see Figure 
5): 

1) Training Features Extraction.  In order to ob-
tain a good generalization of the SVM, a skilled op-
erator was asked to select from a large number of 
real-life tissue images small rectangular regions 
wherein both connective and epithelial tissue were 
present. The images showed various staining levels 
and very different characteristics of tissue shape and 
intensity distribution. 

In each representative sample the operator manu-
ally traced the boundaries of connective and epithe-
lial tissue. Then a NxN square sliding window was 
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horizontally and vertically shifted over the samples 
(shift value s), thus covering the entire surface of the 
image; for each shifted window, a features vector 
was generated with the RGB values of 256 equally-
spaced pixels (see Figure 6, parameters set-up in 
Section 3.2).  

In this way, a features vector of 3x256 variables 
was created for each single shift.  

A +1 label was assigned to windows with a 
prevalence of epithelial tissue pixels, a -1 label to 
windows with a prevalence of connective tissue pix-
els.  

2) Training.  The labelled features vectors were fed 
into the SVM for the training; for details about the 
parameters set-up see Section 3.2.  

3) Classification.  The optimized SVM obtained in 
the training step is used to perform tissue classifica-
tion for new images.  

For this purpose, the input images are processed 
to generate features vectors as in step 1 which are 
fed into the trained SVM. At the end of the classifi-
cation, the SVM automatically associates positive 
labels to epithelial patterns and negative labels to 
connective patterns. The output is then processed to 
reconstruct a two-dimensional result as in Figure 8.  

3 IMPLEMENTATION 

The algorithm was implemented in Java as a plugin 
for ImageJ, a public domain image analysis and 
processing software which runs on all the standard 
operating systems (Windows, Mac OS, Mac OS X 
and Linux): therefore it is totally hardware-
independent, flexible and upgradeable. We inherited 
the whole class hierarchy of the open-source ImageJ 
1.37 API and the free plugins for color deconvolu-
tion (Landini) and K-means clustering (Sacha) and 
we implemented our own functions and classes. A 

user-friendly interface enables the user to set differ-
ent parameters values without modifying the source 
code.  

For the supervised procedure we used the cSVM 
tool for binary classification (Anguita, 2005), since 
it uses the state-of-art optimization method SMO, 
i.e. Sequential Minimal Optimization (Platt, 1999). 
This cSVM tool implements the algorithm described 
in (Wang, 2004), which was successfully used to 
solve different real world problems. Our ImageJ 
plugins for features vectors generation and output 
reconstruction were integrated to the SVM tool.  

The parameters of the proposed algorithms were 
empirically tuned by a skilled operator after running 
several experiments on a large dataset of real tissue 
images which showed very different characteristics 
of staining intensity, resolution, EGF-R/TGF-alpha 
activity level, tissue shape. In the following subsec-
tions, we report some details about the implementa-
tion of both the unsupervised and the supervised 
classification procedures and we outline the experi-
mental set-up of the main parameters.  

3.1 Unsupervised Procedure 

The number of clusters k (see Section 2.1 point 3) 
was set to 4 after running the algorithm with values 
varying from 2 to 5 and evaluating each time K-
means performance in terms of sensibility (power to 
detect connective components) and selectivity 
(power to avoid misclassification of epithelial com-
ponents). For values lower than 4 we often experi-
enced a very good sensibility but a not sufficient 
selectivity; for higher values the sensibility was fre-
quently poor. A k value equal to 4 assured a good 
performance of K-means in all the tested images. 

The size threshold TS (see Section 2.1 point 4) 
was varied from 1000 to 5000 pixels with a step of 
1000 and was finally set to 3000. Increasing values 
led to a progressive improvement of selectivity in 
the connective tissue selection; with values higher 

Figure 6: Generation of the features vectors for SVM training. A NxN square window is horizontally and vertically shifted
on the sample, thus covering the entire surface of the image. For each shift a features vector is generated with RGB values of
256 equally spaced pixels, as for Window A and Window B. Epithelial instances are labelled with a +1, connective instances
with a -1. 

 
 
 

Features vector : [r1 g1 b1 r2 g2 b2 … r256 g256 b256] 
Label : -1 (CONNECTIVE TISSUE) 

Features vector : [r1 g1 b1 r2 g2 b2 … r256 g256 b256] 
Label : +1 (EPITHELIAL TISSUE) 
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than 3000 the lack in sensibility was often not ac-
ceptable. Similarly, the circularity threshold TC 
(see Section 2.1 point 4) was decreased from 0,9 to 
0,3. A value of 0,7 assured a good selectivity en-
hancement without altering sensibility in any of the 
images.       

The edge threshold TE (see Section 2.1 point 5) 
was increased from 20% to 35% with a step of 5%, 
evaluating each time the parameter performance in 
terms of selectivity enhancement and sensibility  
preservation. A value of 25% assured the best im-
provement in selectivity without altering sensibility 
in any of the tested images.  

3.2 Supervised Procedure 

The window size N for features vectors generation  
(see Section 2.2 point 1) should grant a visible 
differentiation between connective and epithelial 
tissue; since nuclei are blue-colored and quite 
similar in both the tissues, the window has to be 
large enough to contain a whole nucleus and some 
surrounding tissue. On the other hand, lower-sized 
windows allows a better selectivity.  

After running several experiments with values 
varying from 16 to 72 pixels, N was set to 32 for 
x200 images and to 64 for x400 images.  

Since the optimal window size depends on image 
resolution, x200 and x400 images were respectively 
classified with SVM trained with x200 and x400 
samples.  

The shift value s (see Section 2.2 point 1) was 
set to N/4, which granted the best compromise 
between selectivity of classification and 
computational time. 

After running experiments with linear, gaussian 
and polynomial kernels, we finally chose the 
normalized polynomial kernel shown in Equation 3, 
where x1 and x2 are feature vectors, n=768 is the 

input space dimension and p=2 is the kernel 
hyperparameter; see (Wang, 2004) for technical 
details). 

 

(3) 

4 EXPERIMENTAL RESULTS 

We tested the performance of both the algorithms on 
a large dataset extracted from real tissue images 
which presented positive reactions at the EGF-R or 
at the TGF-alpha receptor activation (see Figure 1 
for examples); reactions are localized in cellular 
membranes for EGF-R and in cytoplasm for TGF-
alpha. Images were acquired from different samples 
with two different enlargements, x200 or x400.  

A skilled operator was asked to manually draw 
the boundaries of connective tissue in each of the 
testing datasets. The manual segmentations per-
formed by the operator were pixel-by-pixel com-
pared to those obtained by both the unsupervised 
and the supervised algorithms. Connective tissue 
selection was evaluated in terms of sensibility (i.e. 
power to detect connective tissue) and selectivity 
(power to avoid misclassification of non-connective 
tissue): for this purpose, the percentage of respec-
tively connective and non-connective pixels which 
were equally classified by manual and automated 
segmentation was calculated. The segmentation ac-
curacy was then calculated as weighted average of 
sensibility and selectivity, as in Equation 4. 

 

 
(4) 

Different weights were used because sensibility 
is more critical for automated measures of protein 
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Table 1: Experimental results of unsupervised and supervised classifications. As outlined in Section 3.2, in supervised 
classification two different SVMs trained respectively with x200 and x400 samples were used (the number of training 
instances extracted from each dataset and the total number of training instances are reported for both x200 and x400 classi-
fiers). Training instances were removed from the validation dataset, which was considerably larger. 

 UNSUPERVISED ALGORITHM SUPERVISED ALGORITHM 

Dataset Sensibility 
(%) 

Selectivity 
(%) 

Accuracy 
(%)  Number of  

training instances 
Number of 

validation  instances 
Sensibility 

(%) 
Selectivity 

(%) 
Accuracy 

(%) 
1 81,89 90,54 84,77  1692 28308 57,91 91,38 69,07 
2 94,64 84,94 91,41  912 20263 94,05 79,20 89,10 
3 95,21 97,99 96,14  220 20192 91,09 94,75 92,31 
4 86,60 87,32 86,84  408 19142 84,41 91,18 86,66 x2

00
 

    tot 3232 91137    
5 91,77 86,20 89,91  558 6942 67,48 82,35 72,43 
6 91,30 78,56 87,05  640 6860 66,48 90,02 74,32 
7 99,67 93,33 97,56  252 7248 93,53 87,46 91,51 x4

00
 

8 89,21 86,28 88,23  300 5888 87,29 85,39 86,66 
     tot 1750 28688    

 

FULLY-AUTOMATED SEGMENTATION OF TUMOR AREAS IN TISSUE CONFOCAL IMAGES - Comparison
between a Custom Unsupervised and a Supervised SVM Approach

121



 

activity, which is the principal application targeted 
by our method: in fact, in order to obtain a reliable 
measure, it is fundamental to eliminate as much as 
possible non representative tissues from the range of 
interest; on the contrary, erroneous removal of some 
epithelial regions is more tolerable, since it has a 
lower influence on the final measure.   

Results obtained for both the automated algo-
rithms are reported in Table 1. The number of train-
ing instances extracted from each dataset and the 
total number of training instances are reported  too 
for both x200 and x400 SVMs. The classification 
performance was evaluated on a large validation 
dataset which did not include the patterns used for 
training.  

Some examples of tissue segmentation are shown 
in Figure 8. 

Accuracy of tissue segmentation
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Figure 7: Accuracy of tissue segmentation; comparison 
between unsupervised and supervised procedure. 

As shown in Table 1 and Figure 7, our unsuper-
vised procedure achieved the best results: this 
method performed tissue segmentations highly com-
parable with those provided by the skilled operator 
in all the testing datasets; mean accuracy was 
90,24%, with values generally around 90% and al-
ways above approximately 85%. SVM performed 
worse in all the tested datasets; mean accuracy was 
about 7,5% lower than our unsupervised method.  

As we previously outlined, SVM is a theoreti-
cally superior machine learning method which has 
often been shown to achieve great  classification 

performance compared to other learning algorithms 
across most application fields and tasks including 
image processing (Angelini et al., 2006; Cai, 2003; 
Muller et al., 2001; Osuna, 1997). However, in this 
case its classification performance was poor because 
of the intrinsic complexity of the images targeted by 
our method: in fact, these images showed very dif-
ferent characteristics of staining, tissue shape and 
intensity distribution. Because of the heterogeneity 
of the representative features of each class, it was 
impossible for the supervised method to obtain a  
satisfying separability of connective and epithelial 
tissue.   

Images heterogeneity was less critical for the un-
supervised approach, since differently from SVMs it 
is based only on the characteristics of the input im-
age and not on a fixed model of the ground truth.  

On the other hand, our unsupervised method’s 
selectivity is influenced by tissue composition: in 
fact, since the number of clusters is a-priori fixed, 
some epithelial regions with low brown staining are 
often misclassified in images without any connective 
tissue.  

Despite this eventuality is unlikely, since pure-
epithelial tissue samples are very uncommon (and 
we reasonably suppose that the operator would es-
cape the automated tissue segmentation in this case), 
we are working on the solution of the problem: in 
particular, the introduction of an adaptive number of 
clusters is in development. 

As regards the supervised approach, other learn-
ing methods such as neural networks and artificial 
neural networks (ANN) will be tested in the future.  

5 CONCLUSIONS 

We presented a fully-automated unsupervised tissue 
image segmentation method that allows to distin-
guish tumor areas in immunohistochemical images 
and disregard non pathological areas such as connec-
tive tissue. This procedure is critical for automated 
protein activity quantification in tumor tissues in 

Figure 8: Examples of tissue segmentation performed by the unsupervised (a) and the supervised (b) algorithm (manual 
segmentation in red, automated segmentation in black).   

(1-a) (2-a) (2-b)(1-b)
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order to analyze the pathology dynamics and devel-
opment.  

We described the original processing steps we 
designed. Finally, we carried out an extensive ex-
perimental evaluation on a large set of heterogene-
ous images that demonstrated the high accuracy 
achievable by the proposed technique (90% on aver-
age) compared to a more traditional approach based 
on Support Vector Machines (SVM).  
As future work, we will compare the proposed ap-
proach to artificial neural networks (ANN), and we 
will eventually study the possibility of their integra-
tion. 
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