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Abstract: The simulation of soft tissue deformations has many practical uses in the medical field such as diagnosing 
medical conditions, training medical professionals and surgical planning. While there are many good 
computational models that are used in these simulations, carrying out the simulations is time consuming 
especially for large systems. In order to improve the performance of these simulators, field-programmable-
gate-arrays (FPGA) based accelerators for carrying out Matrix-by-Vector multiplications (MVM), the core 
operation required for simulation, have been proposed recently. A better approach, yet, is to implement a 
full accelerator for carrying out all operations required for simulation on FPGA. In this paper we propose an 
FPGA accelerator tested for simulating soft-tissue deformation using finite-difference approximation of 
elastodynamics equations and conjugate-gradient inversion of sparse matrices. The resource and timing 
requirements show that this approach can achieve speeds capable of carrying out real-time simulation.  

1 INTRODUCTION 

Some of the most common procedures in clinical 
practice (e.g. the insertion of subcutaneous needles 
in the tissue for biopsy of deep-seated tumors) are 
extremely sensitive to guiding algorithms and initial 
placement of the needle. One of the current trends in 
this field is the development of virtual simulators for 
tissue deformation. Realistic simulation of tissue 
deformation undergoing needle insertion is the 
bottleneck of all virtual simulators.  

The deformation of soft tissue is determined by 
elastodynamic partial differential equations (PDEs) 
(Fung, 1987), defined over irregular domains 
(human organs).  A solution to these PDEs cannot be 
obtained analytically due to their nonlinearity and 
irregular shape of the domain.  In order to solve 
these equations we need one of commonly used 
discretizaion techniques: the finite-difference 
method (FDM) and the finite-element method 
(FEM). In both methods, the domain of interest is 
discretized and the corresponding PDEs are 
transformed into linear equations. The resulting 
linear system is then solved using numerical 
methods such as Newtons method, conjugate-
gradient method (CGM) etc.  

Most of the resent work done in this area focused 
on speeding up numerical methods by implementing 
efficient matrix-by-vector multiplier units (MVU) on 

FPGA. In (Ramachandran, 1998) the author 
investigated the performance effects of using an 
FPGA based MVU to carry out an MVM. The MVU 
was able to achieve a performance of 36 MFLOPS 
with a matrix generated using the Finite-Element 
method. In (Zhuo et. Al, 2005) the authors also 
developed an MVU for MVMs that involved sparse 
matrices. Their method involved using only the non-
zero elements of a matrix to carry an MVM. The 
design in (Zhuo et al, 2005) attained a performance 
of 350 MFLOPS for all their test cases. This is a 
900% increase in performance when compared with 
results in (Ramachandran, 1998). Note however, that 
as of 2005, FPGAs were capable of higher clock 
frequencies than in 1998, which most likely was one 
of rather important factors for such improvement. 

In this paper we propose an FPGA platform for 
real-time simulation of tissue deformation using 
FDM model and CGM for solving the corresponding 
linear system. We will implement the CGM, a full 
numerical method, in hardware on an FPGA. We 
will also exploit the fact that the “stiffness” matrix is 
sparse and band-limited. Our preliminary results 
indicate that we can achieve sufficiently high 
computational rate even with larger size meshes. 
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2 BACKGROUND 
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Figure 1: Connection Pattern Models. 

We model the soft tissue as a three-dimensional grid 
of uniformly distributed nodes (material points) 
connected together by springs that model the elastic 
properties of the tissue.  To model the connection 
between two material points we use two connection 
patterns shown in Figure 1.  Using a quasi-static 
approach when an external force acts on a certain 
node, it causes a change in the length of the springs 
connected to that node. This also creates opposing 
forces in these springs so as to keep the system of 
connected springs in equilibrium. This relationship, 
for a given direction d at a node i,j,k, is given in (1) 
by the function f i, j,k
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Assembling these nodal equations for every node 
yields a set of linear simultaneous equation that 
describes the system in direction d . These equations 
can be represented in matrix form as shown in (2), 
where d,K d , f d are the displacement vector, 

                                        d df K d= (2) 

characteristic (“stiffness”) matrix, and load vector 
respectively, in the direction of d . To solve the 
equation in (2), for each direction d , we utilize the 
CGM, which is an iterative technique that can be 
carried out amenably on FPGA at speeds capable of 
real-time simulations. 

3 CGM ACCELERATION  

The CGM consists of a series of one or more MVM 
and vector-by-vector multiplication (VVM). Since 
MVMs are more computationally intensive than 
VVMs, the effective bottleneck of this numerical 
method are the MVMs. The acceleration of the 
CGM involves designing hardware optimised for 
carrying out operations needed by the CGM (CGM 
Accelerator), and the speeding up of MVMs. 

Speeding up MVMs involves dividing the 
multiplying matrix K and vector v into smaller 
appropriately dimensioned sub-matrices and sub-
vectors. Each of these sub-matrices and sub-vectors 
are then used by a series of MVUs working in 
parallel, to carry out the required MVM. Each of 
these sub-matrices must be stored in separate 
memory blocks, one for each of the MVUs that will 
be working in parallel.  

The CGM accelerator consists of a series of 
MVU for carrying out MVMs, and a Scalar-Vector 
Unit (SVU) for carrying out the remaining scalar 
and vector operations in the CGM. 

3.1 SVU Design 

As mentioned earlier, the SVU carries out all the 
required operations in the CGM except for the 
MVM. In Figure 2, we show the set-up that carries 
out these operations. Most of the operations in the 
CGMs main loop (shown below) are dependent on 
each other hence; they must be carried out 
sequentially in the order of dependence. For 
example α must be updated before x or r is updated, 
and r must be updated before β is updated. The 
updating of x and r are, however, independent of one 
another, so they can be carried out simultaneously. 
However, the amount of time, one clock cycle, that 
is saved is not justified when considering that the  
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Figure 2: SVU Design. 
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amount of resources that is required to update x and 
r will be doubled. However, we can double the size 
of the system that the SVU can handle by allowing 
an extra clock cycle. The completion time for the 
SVU is always fixed, unlike the MVU were the 
completion time will vary with the size of the matrix 
that it uses for the MVM.  

As seen in Figure 2, the three main modules used 
in the SVU data-path are a Divider, a Vector ALU 
(VecALU), and an Accumulator. The operations 
performed by these modules are described next. 
Divider: This module is used to calculate α and β, 
which are used by VecALU. 
VecALU: This is an arithmetic logic unit (ALU) 
that specifically carries out vector-vector or vector-
scalar operations. The residual r, search direction g, 
and deformation x are updated here. The module 
uses previous values along with α and β to generate 
new values. The new value of r is passed to the 
Accumulator.  
Accumulator: This module basically sums the 
elements of the register r2 reg. The result of this 
summation is the 2-norm of vector r. Hence, each 
element of register r2 Reg is the square of the 
corresponding element in r. The divider uses this 2-
norm value in the calculation of α and β.  

The SVU-Control controls the flow of 
information among the registers and modules in the 
SVUs data-path. As seen in Figure 2, there are three 
registers, shown by dashed lines, one for the 
multiplying vector, while the others are for the MVU 
results. These are the three registers used to pass 
information between the SVU and the MVU. The 
multiplying vector register g Reg is used for passing 
the direction vector to the MVU, while the result 
registers, pTKp Reg and Kp Reg, are used for 
receiving the MVU results (pTKp and Kp). 

3.2 MVU Design 

This MVU is designed specifically for MVMs, of 
the form Kp and pTKp, which may involve sparse 
matrices. The design, shown in Figure 3, requires 
only the non-zero elements of the matrix to be stored 
in the memory. The non-zero elements are stored in 
memory as part of a simple 32-bit instruction format, 
shown below, that was designed for the MVU. 
Further, these non-zero elements are stored in 
memory using fixed-point format. 

a(1bit) b(1bit) c(9bits) d(21bits) 
      a  1st bit determine s end of matrix. 
      b  2nd bit determine s end of row. 
      c  3rd to 11th bits used to determine the column of    
          the nonzero value. 
      d  last 21 bits give the nonzero value. 

 
Figure 3: MVU Design. 

The MVU data-path is pipelined and divided into 
three modules, namely, Instruction Fetch module 
(IFetch), Instruction Decode module (IDecode), and 
Execute module (IExecute). 
IFetch: This module just fetch’s the next instruction 
from memory and forwards it to IDecode for use. 
The instructions are read sequentially with the 
addresses gotten from a sequential counter. 
IDecode: The instruction is decoded here using the 
format described earlier. It is determined here if the 
end of the current row or column (ERC) or the end 
of matrix (EM) has been reached. The address of the 
next vector element needed for the next 
multiplication is also determined here. 
IExecute: This module basically performs the 
traditional MVM (i.e. taking the inner product of 
each row and the multiplying vector, starting with 
the first row) using a set of multipliers and 
accumulators. The calculation of pTKp and Kp are 
done concurrently, with the appropriate values 
stored in the appropriate result registers. 

The MVU-Controller controls the flow of 
information among the registers and modules in the 
MVU data-path. As discussed earlier, the MVU 
result registers, and multiplying vector register are 
used for passing information between the SVU and 
MVU. 

4 RESOURCE USAGE AND 
PERFORMANCE 

FPGAs contain three main resources namely, 
multipliers, logic elements and registers. Of these 
three, the multipliers are of least abundance. This 
makes them the bottleneck of any design for 
applications that are heavily dependent on the usage 
of multipliers. For this reason, we use the multiplier 
usage as the primary measure of our designs 
resource usage, as it is the deciding factor in the 
maximum size of the system that can be solved on 
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one FPGA. Figure 4 shows the multiplier usage of 
our CGM accelerator implementation for different 
number of MVUs and problem sizes n (number of 
nodes). We implemented the CGM accelerator on 
Altera’s DE2 development board using the Quartus 
II development software. The implementation can be 
clocked at speeds up to 133MHz. 

The completion time for one iteration of the 
CGM is given by (5), the sum of the completion 
times for the SVU and MVU. Of these two, TMVU  

                       MVU SVUT T T= +  (3) 

is the only time that can be improved on by using the 
technique described in section 3. Minimizing TMVU  
effectively reduces the to time to carry out the CGM. 
Hence T  is a good measure of performance for our 
CGM accelerator. We used a two-pronged approach 
to test for the timing performance of the CGM 
accelerator. Firstly, we used Quartus II simulator to 
get preliminary test results for the CGM accelerator. 
Secondly, we will verify these simulation results 
with test results from the hardware implementation 
of the CGM accelerator. These tests are done at 
100MHz. In Figure 5 we show the preliminary 
results for the computation time, T , of one iteration 
of the CGM as a function of number of MVUs and 
problem size n.  

MFLOPS, given by (4), is another common 
measure of performance. MFLOPS is a measure of 
the number of floating point operations per second.  
n  is the size of the problem and m is the of average 
number of nonzero elements per row. In Figure 6, 
we show the MFLOPS performance as a function of 
problem size for systems generated using connection 
pattern B in Figure 1. Our CGM accelerator was 
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Figure 4: Multiplier Usage. 

 
Figure 5: Computation time. 

 
Figure 6: MFLOPS Performance. 

able to achieve more than 540 MFLOPS with 5 
MVUs working in parallel. As you can see in Figure 
6, the performance of the system plateaus as n gets 
larger. This is mainly due to the fact that the number 
of MVUs is fixed. However, for better performance, 
we can use more MVUs in parallel. Note, however, 
that the use of more than one MVU in parallel 
means that fewer multipliers are available for use by 
the SVU, as the number of multipliers available on 
the FPGA is fixed. Hence, the amount of resources 
available determines the optimal number of MVUs 
that can be used in parallel, and size of problems that 
can be solved. 

5 CONCLUSIONS 

We proposed and implemented an FPGA based 
CGM accelerator for carrying out real-time 
simulation of tissue deformation. Our design does 
not require any information on the sparsity of the 
stiffness matrix. Further more, we gave a brief 
discussion on improving the speed of MVMs using 
parallel computing. We then looked at the resource 
requirements and the performance of the CGM 
accelerator. Our preliminary performance results 
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show that developing FPGA accelerators for use in 
real-time simulation is feasible. Our next step is to 
verify these results as described in section 4. 
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