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Abstract: Digital image stabilization (DIS) is the process that compensates the undesired fluctuations of a frame’s 
position in an image sequence by means of digital image processing techniques. DIS techniques usually 
comprise two successive units. The first one estimates the motion and the successive one compensates it. In 
this paper, a novel digital image stabilization technique is proposed, which is featured with a fuzzy Kalman 
estimation of the global motion vector in the log-polar plane. The global motion vector is extracted using 
four local motion vectors computed on respective sub-images in the log-polar plane. The proposed 
technique exploits both the advantages of the fuzzy Kalman system and the log-polar plane. The 
compensation is based on the motion estimation in the log-polar domain, filtered by the fuzzy Kalman 
system. The described technique outperforms in terms of response times, the output quality and the level of 
compensation. 

1 INTRODUCTION 

Digital stabilization aims at preserving the 
intentional camera movements, while it smoothes 
the video output from unwanted oscillations. Almost 
any acquired image sequence is affected by noise 
and undesired camera jitters. Depending on the 
application those unwanted fluctuations are caused 
by a rough terrain, the shaking of the hand carrying 
the camera etc. Image stabilization is a necessity, as 
vision plays a key role to many applications and, 
therefore, the output of the image sequence should 
be free from noise, and should be smooth enough so 
that useful results to be extracted. Image 
stabilization is application depended. In the case of a 
camera mounted on an active servo mechanism, the 
undesired oscillations are mostly the rotational ones 
and the stabilization is implemented by servo 
motors, which compensate the pan and the tilt 
camera movement, respectively. This technique is 
known as optical stabilization (Sato et al., 1993). In 
case that electronic hardware is utilized to 
compensate the sensed camera moves the 
stabilization is referred as electronic (Morimoto and 

Chellappa, 1996). Finally, when only pure image 
processing techniques are adopted then it is known 
as digital image stabilization. This is the process of 
preserving the intended camera motion, while 
removing the unwanted noise and motion effects 
with the utilization of digital image processing (Ko 
et al., 1998). DIS has been applied to many 
applications, either real-time or non real-time. 

A DIS system is composed by two successive 
units: the motion estimation and the motion 
compensation one. The first unit aims at the 
computation of the global motion vector. The 
estimation phase is being followed by the 
compensation processing unit. The produced 
compensation vector finally shifts the current frame 
to acquire an image sequence, which is free from 
irregularities, keeping only the desired global 
motion. There is a wide use of fuzzy logic in image 
processing applications (Chanon et al., 2002). In 
case of non-linear and ambiguous applications fuzzy 
logic is probably the finest solution. 

Various techniques have been developed for the 
global motion vector calculation, such as phase 
correlation matching (Kwon et al., 2005) or 
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normalized cross correlation (Hsu et al., 2005). A 
real-time implementation that adopts the two 
images’ matching through the Fourier-Mellin 
transformation has been reported in (Martinez et al., 
2004). The use of fuzzy logic for the global motion 
vector computation can produce optimal results 
(Güllü and Ertürk, 2004). In order to enhance the 
compensated frame position Kalman filtering was 
utilized (Hsu et al., 2005, Ertürk, 2002). The 
estimation of the motion in a sequence is also 
realized by optical flow techniques. The 
approximation of the image flow field provides both 
the translational and rotational information. The 
undesired motion effects are calculated in (Suk et 
al., 2005) by estimating the rotational center and the 
angular frequency from the local translational 
motion definition by fine-to-coarse multi-resolution 
motion estimation. In (Pauwels et al., 2007) the 
stabilization is accomplished by fixating at the 
central image region, whilst optical flow estimation 
optimizes this approximation. In most of the cases 
the global motion vector is computed via a series of 
local motion vectors. These describe the movement 
in a particle of the image, which results to a better 
estimation of the indented camera movement and the 
undesired motion. 

In this paper, a novel fuzzy Kalman digital 
image stabilization technique in the log-polar plane 
is proposed. First a transformation from the 
Cartesian plane to the log-polar one takes place. The 
acquired log-polar image sequence provides lesser 
information in the background of the scenery than in 
the foreground. This is due to the proper attribute of 
the log-polar transformation to preserve high-
resolution at the center of the image, which 
diminishes logarithmiticaly towards the periphery. 
The motion estimation in the log-polar plane 
provides a space-variant distribution of the local 
motion vectors due to the aforementioned nature of 
the log-polar plane. Consequently, the extracted 
local motion vectors are imported into a recursive 
fuzzy system based to the one presented in (Güllü 
and Ertürk, 2004). However there are some distinct 
differences. One lies to the fact that in this paper, the 
fuzzy system utilizes the Kalman filter’s 
mathematical model to filter the inputs 
straightforwardly. Moreover, no mean operation 
filtering takes place to the measured fluctuations. 
Finally, the filtered vectors, define the global motion 
vector from which the compensation vector is 
calculated. The innovation of using log-polar images 
for the motion field extraction provided optimal 
results not only to the stabilization of each frame, 
but also to the visual quality of the video output. The 
advantages of the log-polar plane are well exploited, 

as (i) the processing time is lesser, (ii) a single 
motion estimation extraction provides information 
for both the rotational and translational irregularities 
and (iii) the center of attention has a higher impact 
to the whole process without further preprocessing. 

2 LOG-POLAR 
TRANSFORMATION 

The motion estimation process preserves high 
computational burden, so it is normally improper for 
real-time applications. One way to overcome the 
computational burden is to sub-sample the images. 
Yet, to estimate the motion field, all available 
information is needed. Thus, a resolution decrease is 
inappropriate as it causes loss of major information 
and the provided results are sparse and inaccurate. 
However, the volume of the image data can be 
reduced by a topological arrangement, without loss 
of information. Notably, a space-variant 
arrangement such as log-polar provides lesser image 
data without constraining the field of view, or the 
image resolution at the fixation point. The log-polar 
transformation is based on the human’s eyes 
projections of the retina plane to the visual cortex. It 
finds its origins into studies on the vision 
mechanisms of the primates. The adoption of this 
topology into artificial vision systems exhibits 
several advantages as in visual attention, throughput 
rate and real-time processing. Many applications of 
the log-polar transformation have been reported, 
such as the time-to-impact estimation (Tistarelli and 
Sandini, 1993), wavelet extraction based on log-
polar mapping (Pun and Lee, 2003), tracking (Metta 
et al., 2004) and disparity estimation and vergence 
control in (Manzotti et al., 2001). 

  
Figure 1: The log-polar transformation maps radial lines 
and concentric circles into lines parallel to the coordinate 
axes. 

The mathematical model of the log-polar 
mapping can be expressed as a transformation 
between the polar plane (ρ, θ) (retinal plane), the 
log-polar plane (η, ξ) (cortical plane) and the 
Cartesian plane (x, y) (image plane). 
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Assuming that Nr is the number of cells in the 
radial direction and Na is the number of cells in the 
angular direction the mapping from the polar 
coordinates (ρ, θ) to the log-polar ones (η, ξ) is 
defined as: 
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where ξ  counts the rows, γ the column and 0ρ  is 
the radius of the fovea circle. The logarithmic basis 
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Figure 2: (a) Cartesian image; (b) log-polar image and (c) 
reconstructed Cartesian from log-polar image. 

3 ESTIMATION OF THE 
MOTION 

The proposed system intents to produce stabilization 
control signals from an image sequence by digital 
image processing in the log-polar plane. 
Independently of the adopted technique for the 
motion estimation, the whole process has shown 
robustness and the output video had been 
compensated in a way that the visual quality to be as 
smooth as possible. 

To test the proposed concept two different 
motion estimation techniques were implemented: a 
differential optical flow method, from where the two 
dimensional image displacements are extracted, and 
a block matching algorithm (Mahmoud et al., 2006). 
The measures from the block-matching algorithm 
are accurate enough, despite the erroneous flow 
values introduced in polar deformation, due to the 
fictitious gray-value curvature in the polar image 

(Daniilidis and Krüger, 1995). In order to attenuate 
the aliasing effects and to reduce the error in the 
computation of the spatial gradient appropriate 
filtering is needed. Notwithstanding, a full-search 
frame matching is robust enough but suffers from 
high computational cost even when the amount of 
information has already been reduced due to the log-
polar transformation. On the other hand, the optical 
flow technique provided shorter processing time and 
it was finally selected for the system 
implementation. 

The global motion estimation vector is fed to 
the proposed fuzzy Kalman system. This 
accomplishes the operation of the motion estimation 
filtering from which the compensation vector is 
extracted. The compensation unit processes the 
provided information of the estimation unit and 
produces the final stabilized video. The block 
diagram of the proposed system is shown in the 
Figure 3. 

Figure 3: The block diagram of the proposed system. 

3.1 Optical Flow and Image 
Translation 

The image motion is basically the three dimension 
motion projection of the real world onto the two-
dimensional image plane. This is expressed as either 
image velocities or image displacements in the x and 
y axes. These vectors comprise the optical flow 
field. Optical flow techniques are widely used in 
many applications and calculating approaches and 
are divided in three main categories: the differential 
techniques, the frequency based ones and the 
matching methods (Barron et al., 1997). The 
implemented calculation method is a differential 
one. The image velocity is computed from 
spatiotemporal derivatives of the image intensities 
assuming continuity to the image domain. 

The Horn and Schunk optical flow technique, 
which was implemented in this paper, combines the 
gradient constraint with a global smoothness factor 
in order to constraint also the optical flow field 
v(x,t)=(u(x,t),v(x,t)), which by minimization gives: 
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where D is the domain in which the equation is 
defined, and the magnitude of λ influences the 
smoothness factor. 

By solving iteratively a new set of velocities is 
computed from the derivatives and the average of 
the previous velocities. The velocities equations 
obtained are: 
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where k denotes the iteration number, which by 
experiments was set to 25, as it provided better 
results. 

The initial velocities u0, v0 are set to zero. The 
local averages k

u  and k
v are defined as a 3×3 

distance weighted Laplacian mask.  
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Figure 4: The selected sub-images for motion estimation, 
in the (a) Cartesian and (b) log-polar plane, respectively. 

The horizontal and vertical axes displacements 
were initially extracted from selected image regions. 
These have a rectangular shape of 440×100 pixels 
along the x axis, whist the dimensions along the y 
axis are 100×280 pixels, respectively (Figure 4.(a)). 
The local motion vectors were calculated from the 
respective sub-images at the log-polar plane (Figure 
4(b)). 

Yet, the motion estimation in the log-polar 
plane has some special features that should be taken 
into consideration, i.e. the motion vectors are not 
transferred straightforwardly from the Cartesian to 
the log-polar plane. The final motion estimation 
vectors, where computed according to the foretold 
considerations, in order to obtain the global motion 
vector. The displacements are straightly imported to 
the fuzzy Kalman system without any other 
processing, such as mean filtering or median values 
extraction. However, the high number of iterations 
during the optical flow technique implementation 
provided as optimal results as possible. 
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Figure 5: The optical flow field of two successive images¨ 
(a) the first frame, (b) is the successive one, (c) the log-
polar transformation of the first frame, (d) the log-polar 
transformation of the second one and (e) the optical flow, 
estimated on the log-polar plane. 

3.2 Motion Estimation Phase 

Another critical issue is the noise factor, which 
needs to be filtered. The noise is divided into the 
measurement and the process noise, which are the 
error during the variables calculation and the error 
during the whole process, respectively. These 
perturb the estimation of the image motion field, and 
are present during the global motion vector 
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estimation. The fuzzy system operates as a recursive 
filter, since its inputs stem from the Kalman filter. 
Two phases occur: the estimation and the correction 
one. The recursiveness lies on the fact that an a 
priori estimation is calculated and is being corrected 
by an a posteriori estimation. The Kalman filter’s 
rules are illustrated in (Welch and Bishop, 2001). 
The adopted rules from the Kalman filter to the 
fuzzy system result in a fuzzy Kalman filtering 
system. 

The distributed fuzzy Kalman system has two 
inputs. The first one is the filtered value in the 
current time interval, whilst the second one is the 
measured value from the previous time interval. The 
estimation equations can be defined as: 

1ˆ1 −−= kk xzInput  (9) 

1112 −−= kk InputInputInput  (10) 

whilst the correction ones as: 

)ˆ(ˆˆ kkkkk xHzKxx −+= −  (11) 

where k is the time index, kx̂  is the a posteriori 

estimate of x and kz  denotes the measurement in the 
k time index.  

The image translation results, exported from the 
optical flow, are imported into the proposed fuzzy 
Kalman system. The system has two inputs, one for 
the current time index and one for the previous time 
index, described by (9) and (10). The fuzzy 
membership functions for the first input’s 
displacements are called negative big, negative, 
zero, positive and positive big, whilst the same rules 
define the second input’s displacements. Although 
the complexity of the problem is quite high, the five 
membership functions are sufficient to grant optimal 
results. The final utilization of the membership 
function is illustrated in Figure 6. 

Although the rule set is composed of 25 if-then 
rules, the response time of the filter was quick and 
accurate. Experiments were made introducing two 
more membership functions for each input and 
output. The effort was focused to cover in a higher 
level the step between the positive and negative big 
with the positive and negative membership 
functions, respectively. The final output showed that 
there is a boundary for the accuracy in terms of 
complexity, i.e. the higher the complexity, the higher 
the accuracy. Still, the same relationship stands for 
the response time. Thus, there is a trade-off between 
time and accuracy. 
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Figure 6: The membership functions of the fuzzy Kalman 
filter. 

Furthermore, experiments were made for the 
computation of the compensation motion vector. 
Initially, the output of the fuzzy Kalman system was 
directly utilized for the compensation vector. In 
addition, a median filtering was implemented to the 
output values of the fuzzy system. However, the 
compensation vector, which exhibited optimal 
results is defined as: 
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where t represents the frame number, 0 ≤ a  ≤ 1 and 
k is a factor for determining the weight between 
current frame stabilization and indented camera 
movement. Finally, frame shifting is applied when 
both horizontal and vertical CMVs are specified. 

4 EXPERIMENTAL RESULTS 

Image sequences were captured with an active stereo 
vision head. Some of the testing input videos were 
acquired during an optical stabilization operation of 
the head’s servo motors. All of these sequences 
suffer from high frequency image jitters, produced 
intentionally by the user for testing. They also suffer 
from high illumination changes as well as from 
fluctuations caused by the servo motors. Further 
experiments were made, capturing video on a free 
course. These sequences suffer from motion blurred 
frames. The remedy to such sequences is a higher 
frame rate. As the acquired videos were tuned to 
25fps, the fast oscillatory movements during the 
course provoked loss of information to a high 
degree. The purpose of capturing such noisy and 
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shaky sequences is to assess the proposed algorithm 
against complicated and challenging situations. 
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Figure 7: The red line presents each frame position before 
stabilization the blue line the stabilized one. 

The global motion estimation did not have much 
computational burden, as the amount of image data 
has been reduced by the log-polar topology 
rearrangement, further restricted to four image 
regions. On the other hand, the differential flow 
technique is resource demanding. Increasing the 
number of iterations leads to a quite big 
computational load, especially to the image 
sequences with higher resolution. The finest results 
were made with a decrease of the frame resolution 
from the 640×480 initial Cartesian images to the 
640×348 log-polar ones. Figure 7 depicts the 
compensation of the sequence in regard with the non 
stabilized frame positions. 

In order to measure the performance of the 
stabilization made in the Cartesian and into the log-
polar domain, the Mean Square Error (MSE), the 
Least Square Error (LSE) and the Least Mean 
Square Error (LSME) were calculated. From the 
results, it is clearly shown the superior performance 
of the presented technique in this paper. The 
estimation of the global motion vector into the log-
polar plane, apart from lesser processing times, it 
provides also better performance. 

Table 1: Error Calculation Table: The image stabilization 
was performed with both cartesian and log-polar images 
and the error calculation matrics were computed for both 
cases. 

 Log-polar Cartesian 

MSE 0.07946845 0.08332407 

LSE 0.00000226 0.00063480 

LSME 0.05219010 0.0705261 

5 CONCLUSIONS 

A new digital image stabilization system was 
proposed, which employs a motion estimation 
optical flow model in the log-polar plane and a fuzzy 
system model based on Kalman filtering method. 
The system was fast enough although digital image 
stabilization is a high time consuming procedure. 
The global motion vector that was provided by the 
membership functions interaction resulted in a quite 
smooth output after the completion of the 
compensation unit. Additionally, the filtering has 
provided low noise levels producing a video which 
was free from high frequency motion effects, 
maintaining optimal visual quality. Concluding, the 
proposed system apart from having robustness and 
resource demands provides also optimal results fast 
and accurately. 
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