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Abstract: This paper presents two algorithms needed to perform a dense 3D-reconstruction from video streams recorded
with uncalibrated cameras. Our algorithm for camera self-calibration makes extensive use of the constant focal
length. Furthermore, a fast dense reconstruction can be performed by fusion of tessellations obtained from
different sub-sequences (LIFT). Moreover, we will present our system for performing the reconstruction in a
projective coordinate system. Since critical motions are common in the majority of practical situations, care
has been taken to recognize and deal with them.

1 INTRODUCTION

Considerable progress was made in the recent
years in the areas ofComputer Vision and 3D-
Reconstructionfrom video sequences recorded with
a single uncalibrated camera. There are two princi-
pal approaches for reconstruction: the first uses meth-
ods of projective geometry; the task is to determine
projective matrices and 3D-points in some projective
frame and then to use the additional knowledge (such
as known principal point or zero skew of the cameras)
to transform the cameras and points into a Euclid-
ean frame. In the second approach, these constraints
are imposed at the beginning, in order to avoid any
spurious results. If necessary, some additional infor-
mation is roughly estimated (such as unknown focal
length), and by the end of reconstruction, all irreg-
ularities are supposed to be corrected by means of
bundle adjustment. Examples of successfully dealing
with projective geometry (the first strategy) are shown
in (Nister2001) and (Pollefeys2002). On the other
hand, (Mar2006) shows excellent results of dealing
with the second strategy. Nevertheless, many of these
algorithms are developed for ”favorable videos” and
”favorable geometry”, such as slow, smooth, almost
circular motion around a non-planar object: these al-
gorithms work well after being applied to these fa-
vorable scenes, but often turn out to be not success-
ful for almost anycritical motion such as forward
motion, pure translation etc. But in reality, every
practical application of ”structure from motion” al-

gorithms – consider the area of robotics, navigation
or military applications – constantly requires dealing
with critical motions. Our videos, recorded mostly
for military applications, are usually taken from mini-
planes or mini-drones, carrying some small cameras
(see Fig. 1), so in general, the resolution is poor, the
effects of the interlacing, lens distortion and blurring
are strong, and since the motion of these unmanned
vehicles is influenced by wind and other similar ef-
fects, the trajectory of the camera is usually not suit-
able for the reconstruction. Therefore it turned out to
be quite important to recognize and to deal with criti-
cal motions.

In many cases, we will use methods from projec-
tive geometry, see for example (HarZis2000). These
methods allow working extensively with linear equa-
tions and contribute to numerical stability and robust-
ness of the majority of the problems. In our imple-
mentation, the cameras and points in space are ob-
tained in some projective frame from interest points
detected in the images. ”Projective” means here
that the cameras and points are projectively distorted:
for example, the ratios between line segments will
not be the same as in the world coordinate frame.
Although it is not possible to recover the absolute
position, orientation and scaling of the scene just
from the video stream, our task will be to deter-
mine a 3D-rectification homography which trans-
forms the projectively distorted model to a Euclidean
(i.e. ratio- and angle-preserving) coordinate frame.
Detecting the rectification homography is the key-
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Figure 1: a) mini-plane, b) mini-drone M3D (product of
EADS LFK) carrying small cameras c) used for recording
cityscapes as shown in d). Note the effects of interlacing,
blurring and lens distortion.

point of our method: if it works well, the object will
be clearly recognizable and all additional (rather time-
consuming) steps, such asbundle adjustment in or-
der to refine the results ortessellationfor better visu-
alization can optionally follow.

Notation: we denote 2D-/3D- points in the pro-
jective coordinates by column vectors:x = (x y w)T ∈
P

2, X = (X Y Z W )T ∈ P
3 respectively. Points in

Euclidean coordinates will be denoted byx̂ andX̂ re-
spectively.

By xi
j, respectivelŷxi

j, we will refer to the point
numberi in view numberj. Camera matrices (to what
we shall simply refer as ”cameras”) are denoted by
P in the projective, andP̂ in the Euclidean frame.
We denote byK the calibration matrix, byR rota-
tion matrices and byt camera centers in the world
coordinate system. Then, the well-known relation
P̂ = KR[I3 | − t] holds. HereIk is thek× k identity
matrix.

For a matrixA, the symbols(A)l,(A)l denote the
l-th row/column ofA, and (A){l},(A){l} denote the
matrix after itsl-th row/column has been extracted.
As usual,AT denotes the transpose ofA. The opera-
tor [x]× denotes,as usually, the cross product with the
vectorx.

By ℑr, we will refer to the image contained in a
frame numberr of the sequence. All other notation
will be introduced later.

Organization: in Sect. 2, we will give a brief in-
troduction of our system whose main part takes place
in the projective coordinate frame. Section 3 de-
scribes our calibration algorithm for Euclidean rec-
tification as well as the method to perform a dense re-

contruction. Section 4 shows experimental results of
the algorithm for different kinds of video sequences.
Conclusions and outlook are given in Sect. 5.

2 PROJECTIVE
RECONSTRUCTION

Given a video sequence,interest points are found in
the first frame using Harris Corner Detector, see (Har-
ris1998) for details. Moreover, new features will be
found in periodic lags (refreshing). These features are
tracked from frame to frame by the Lucas-Kanade al-
gorithm ((KLT1981)). It is quite important to have
correspondence points over many images in order to
obtain a wide baseline. For the reconstruction, the
sequence will be automatically partitioned into sub-
sequences. The first frame of every sub-sequence
will be called firstkey-frame of this sub-sequence.
We find the second key-frame such as the pair of
key-frames has a favorable geometry for reconstruc-
tion: we calculate two penalty terms,GRIC(F) and
GRIC(H), using formulae (2) and (3) as proposed in
(Pollefeys2003) (GRIC is the abbreviation forGeo-
metric Robust Information Criterion , introduced
by Pollefeys). Since we work with fundamental ma-
trices, the error termsεF for the fundamental matrix
respectivelyεH for the homography are:

εF(x1,x2) = max

(

xT
2 Fx1

||x1||
,

xT
2 Fx1

||x2||

)

, and

εH(x1,x2) = ||x̂2− x̂∗2||, x∗2 = Hx1.

The reconstruction begins as soon asGRIC(F) <
GRIC(H). Note that if eitherGRIC(F) ≥ GRIC(H)
for a rather large number of frames or the number
of points seen in the first and in the current image
of the sub-sequence reduces dramatically, reconstruc-
tion has to be performed even though the geometry
is apparently not favorable. Once two key-frames
are determined, the fundamental matrixF between
them is calculated via RANSAC and the relative ori-
entation of two cameras is obtained as pointed out in
(HarZis2000):P1 = [I3 | 03], P2 = [[e2]×F | e2] where
e2 is the epipole (projection of the first camera center
into the second image).

The task now is to determine the points in space
(resulting from the inliers of the fundamental matrix)
and the parameters of the intermediate cameras. We
triangulate the points seen in both key-frames linearly
((HarZis2000), chapter 12) and obtain the camera ma-
trices by means ofRANSAC with Td,d-test as de-
scribed in (Mat2004). Generating models (fundamen-
tal matrices, camera matrices, homographies) from
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parameter sets contaminated with outliers is an indis-
pensable part of our algorithms, so in the majority of
cases, robust methods must be applied and every pos-
sibility of speeding up the processing must be consid-
ered. Therefore, manipulating simple RANSAC by
means ofTd,d test (withd = 1 or 2) has turned out to
be quite useful in our implementation. Also, we must
take care of critical motions since the results obtained
during this stage of reconstruction of a sub-sequence
will be used to obtain camera parameters in the fol-
lowing frames. The following observations have been
made:

• If for a large number of framesGRIG(F) >
GRIG(H), then either the scene contains some
dominant plane(s) or the baseline made up by
the cameras between two key-frames is not wide
enough. In the first case, the linear solution for
camera resection will not work ((HarZis2000),
pp. 178–180). In certain cases, one can use
homography-based reconstruction methods as
the method of camera resection byplane-by-
parallax, as proposed in (HarZis2000), chapter
18, see also (Mat2005).

• If the epipole lies inside of the image domain, the
points close to the epipole should be discarded
from triangulation, because their position in at
least one direction will be unstable. Another pos-
sibility is to take only the points which satisfy
some severe cost function such as:

2

∑
i=1

(x̂∗i − x̂i)
2 < s ·exp

(

−
b

d2
i

)

, x∗i = PiX ,

where P1,P2 are the camera matrices extracted
from the key-frames,x,X is a 2D (respectively:
corresponding 3D) point,di is the distance from
x̂i to the epipolêei ands,b are some positive con-
stants.

• The forward and backward motion usually has
both of the negative effects described above. Ac-
tually, the homography will be the suitable model
to describe the position of points in the direction
of the epipole and the epipole will be found inside
of the image. In this case, we not only discard
the points close to the epipole but also reduce the
thresholds by the factor 2.

The reconstruction of a sub-sequence continues by
extrapolation of the previous results to the frames af-
ter the second key frame. We obtain new camera ma-
trices by resection with the already known 3D-points
(via RANSAC followed by a non-linear error mini-
mization) and we obtain new 3D-points by triangu-
lation from the known cameras (usually 3–5). The
frame, where the number of either triangulation- or

resection-inliers is small, marks the end of the sub-
sequence. If the number of the unfeasible frame is
n, then the frame numbern− 1 is the last frame of
the first sub-sequence and the first key-frame of the
next sub-sequence isn−2. This is because we cannot
trust the camera numbern of the first sub-sequence,
and, as we will see below, we need at least a dou-
ble camera overlap. Of course, the second recon-
struction will be obtained in a different coordinate
system, therefore both reconstructions are ”fused” by
means of the common camerasPold

n−2,P
old
n−1,P

new
1 ,Pnew

2

and pointsXnew,Xold seen both in old and new views.
The task is to find a 3D-homographyH which satisfies
Pold = PnewH andXold = H−1Xnew (such a homogra-
phy exists by Theorem 9.10 in (HarZis2000)). The
method we propose works as follows:

First of all, the linear solution is calculated: if
we consider camera matricesPold,PnewH as row
vectors with 12 elements, the vector representing
the algebraic error from a single camera pair is
(Pold)k(PnewH)1− (Pold)1(PnewH)k for k = 2, ...,12.
Clearly, each pair of projection matrices contributes
11 equations, therefore a double camera overlap is
enough to determine 16 entries of the homogeneous
quantityH. In order to refine the initial value forH,
the squared geometric error

ε =
overlap

∑
j=1

(

Pnew
j HXold − x̂n− j

)2
(1)

is calculated for each 3D-pointsXold obtained in the
first reconstruction and visible in the relevant views.
Similar error is obtained for 3D-points in the new co-
ordinate frame. Now, if the error obtained by repro-
jecting an old 3D-point with the new cameras (as in
(1) ) or vice versa is low, this point is considered to
be an inlier. In the case where there are only a few
inliers, the initial estimate ofH is poor. In this sit-
uation (which, for example, can happen if the cen-
ters of both cameras coincide), we consider just a
single camera overlapPnew

1 ,Pold
n−2 and the correspon-

dences of reprojected pointsX,x, as pointed out in
(Nister2001), pp. 64–65. Four such correspondences
are enough to generate a RANSAC-hypothesis from
which H can be computed. At each case, after an
initial estimate ofH has been obtained, the iterative
minimization of the error given by (1) is performed
over all inliers. GivenH, the new cameras and points
can be mapped into the old coordinate frame.
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3 AUTO-CALIBRATION AND
EUCLIDEAN
RECONSTRUCTION

3.1 Auto-Calibration

The starting point of any rectification algorithm is a
projective reconstruction given by a set ofn cam-
erasPi and points in space,X j. The task is to find
a so called rectifying spatial homographyH such as
the transformed cameraŝPi = PiH and pointsX̂ j =

H−1X j represent a ratio- and angle-preserving re-
construction of the scene. If the first camera is
given in the formP1 = [I3 | 03], then, according to
(HarZis2000), pg. 460,H can be chosen as follows:

H =

[

K 03

−p̂T
∞K 1

]

, (2)

whereK is the constant but unknowncalibration ma-
trix andp̂∞ is theplane at infinity . We store the un-
known entries ofK in the column vectork = k(K) =
[ f a s u v]T , they correspond respectively to the fo-
cal length, aspect ratio, skew and two coordinates of
the principal point. There are 8 degrees of freedom
(5 for k and 3 forp̂∞), so the minimization of some
geometrically meaningful cost function is to be per-
formed over the 8-tuples[kT p̂∞]. Before this can
be done, initial values of the parameters must be ob-
tained. At the beginning of the optimization, we set
a = s = u = v = 0. For the focal lengthf , the formula
obtained in (Bougnoux1998),

f 2 = −
b′T [e′]× Ĩ2FbbT FT b′

b′T [e′]× Ĩ2FĨ2FT b′
,

with Ĩ2 = diag(1 1 0),b,b′ principal points of some
pair of cameras,F the fundamental matrix resulting
from these cameras ande′ the epipole, can be taken
into consideration. Also, the image diagonal is an ac-
ceptable initial estimate off . The parameters ofp∞
(the homogeneous representation ofp̂∞) can be es-
timated with cheirality inequalities as Nistér pointed
out in (Nister2000s). The main theorem proved in his
paper says that if there is some planep0 which for all
i = 2, ...,n satisfies the relation:

sgn[(p0 ·C(Pi−1))(p0 ·C(Pi))] =
sgn[(p∞ ·C(Pi−1))(p∞ ·C(Pi))] ,

(3)

then there is a continuous path fromp0 to p∞ such that
no camera center is met on this path. Here we denote
by C(P) = [c1 c2 c3 c4]

T the camera center, normal-
ized as follows:cl = (−1)l det(P{l}), l ∈ {1, ...,4}.

If all 3D-points have the last homogeneous coor-
dinate 1, then sgn(depth(X,P)) = sgn(w · c4) where

w = (PX)3 is the third element ofPX . For all points
X j visible by the pair of camerasPi−1,Pi, we calculate
ξ j = sgn[(PiX j)3(Pi−1X j)3]. Then, by multiplying
Pi, i ∈ {2, ...,n} by sgn

(

0.5+ ∑ j ξ j
)

, we ensure that
the majority ofX j are either in front or behind both
of the cameras (with respect top∞, which in (Nis-
ter2000s) is denoted by ”untwisted pair” ). With this
normalization, allp∞ ·C(Pi) must have the same sign,
so recalling (3) and settingp0 ·C(P1) > 0, the task is
to find p0 which satisfiesp0 ·C(Pi) > 0 for all i. The
problem formulated as:

• find a maximal scalarδ subject to:

[Ci −|Ci|]

[

p0
δ

]

> 0 and
∣

∣

∣
pl

0

∣

∣

∣
≤ 1, l ∈ {1, ...,4}

can be solved, for example, by theSimplex Algo-
rithm . Note that the last condition allows obtaining
a unique solution for the homogeneous quantityp0.
This p0 is an acceptable initial estimate forp∞ be-
cause in the optimization round, we can move along a
continuous path not crossing the camera centers. We
refine the initial estimate using the knowledge about
(nearly) square pixels and the principal point. Since
PH = P̂ = KR[I3| − t], we have(PH){4} = KR. For
a matrix A, we define the operatorR (A) = K/K3,3
whereK is the upper triangular matrix resulting from
the RQ-decomposition ofA, in other words

K =
(

chol
[

(AAT )−1])−1

for a non-singular matrixA. Then we know that the
matrixAK−1 is a rotation matrix and our cost function
results in comparingR (PH){4} with the ”ideal” cal-
ibration matrix diag[ f f 1] which corresponds to the
vectork0 = [ f 0 0 0 0]:

∑
1≤ j≤5

1≤i≤n

(

k(K) j −k0
j

(Γi jk1)

)2

, K = R

(

PiH (k, p̂∞){4}
)

(4)

HereH(k, p̂∞) is the term forH as in (2),k1 is the
new focal obtained as the result of an iteration and
Γi j are the weights representing the reliability of the
constraints. For example, we can chooseΓi j = γiγ j,
whereγi is the average reprojection error of all points
observed in the camera numberi and γ j say how
reliable the knowledge about camera parameters is
(we takeγ2 = γ3 = γ4 = γ5 = 1,γ1 = 1000 which
means that the focal length is unknown but constant).
After several iterations, the improved estimates of
skew, aspect ratio, principal point and focal length
are obtained, we updatek0 by k(K) in (4) and
we setγ1 = 1. We optimize (4) by means of the
Levenberg-Marquardt iterative algorithm .

Remark 1. The optimization stage of auto-calibration
is fast, because all derivatives needed for the Ja-
cobian can be written analytically since the terms
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for the inverse of a 3× 3 matrix and itsCholesky-
Decompositioncan be performed manually. More-
over, this method usually converges after only 6–8
iterations. Other advantages of this algorithm com-
pared to other algorithms are: the fact of constant fo-
cal length is used extensively, the quality of every sin-
gle camera is taken into account and the initial value
of the plane at infinity is determined in a robust way
(such as notall scene points have to lie in front ofall
cameras, as for example in the case of forward mo-
tion).

3.2 Dense Reconstruction

In this subsection, we describe our method used to
generate textured maps. The points visible in the first
key-frameℑ of a sub-sequence are partitioned into tri-
angles (for example, by means of theDelaunay Tri-
angulation). If we assume that a triangle△ j in the
image plane corresponds to a feasible (covered with
the object texture) triangle in space, we can calculate
the support plane for△ j which we callε j . If x ∈△ j,
then the corresponding 3D-pointX can be calculated
in the projective frame either from the relation:

{

PX = x
ε jX = 0 ,

(5)

or, to speed up the processing, by means of 2D-
homographies. Using operators(·)l ,(·){l},(·)

l ,(·){l}

defined above, we have:
Result. Any of three homographies

Hl =
(

(P){l}− (P)l · (ε){l}/(ε)l
)−1

,

such asεl 6= 0, l ∈{1,2,3}, maps the triangle in image
ℑ into the corresponding triangle in space. The point
X corresponding tox is obtained as follows:

(X){l} = Hlx,(X)l = −(ε){l} · (X){l}/(ε)l.

To prove the formula above, we consider (5), and
we extract(X)l from its second equation. Now we
insert(X)l = −(ε){l} · (X){l}/(ε)l into the first equa-

tion and obtainx = H−1
l (X){l}. We only allow l ∈

{1,2,3}, because we suppose that the Euclidean re-
construction is given on this stage, soX has the last
coordinate 1.

For better numerical conditioning, we choosel =
argmax(|(εk)|),k ∈ {1,2,3}. Now we can store the
numbersl j, planesε j and the corresponding homo-
graphiesH j

l for every triangle△ j. Also, we sta-
bilize the calculations by selecting dominant planes
(via RANSAC), correcting the positions of 3D-points
and preferring the triangles lying completely in these
planes. Now, obtaining an initial hypothesis of every

pixel x̂ inside of the convex hull of all detected points
can be performed rather quickly, as pointed out in the
scheme below:

x̂ →△ j → l,H j
l ,ε j → X̂ (6)

Then, the unfeasible triangles can be detected by the
back-projection of the hypothesized pointsX into the
images close toℑ. If the scene is not too homoge-
neous, then the intensity differences between the out-
liers must be large. Letn the number of images to
compare (n = 3–5 in our experiments),ℑ1 our refer-
ence image andℑ2, ...,ℑn images used to determine
the feasibility of△ j ⊆ ℑ1. Let A j be the total number
of local overlaps (how many times a point from△ j

was projected inside the imagesℑ2, ...,ℑn). The cost
function we use to determine the feasibility of△ j is:

ε( j) = (2− ξ j) log(A j)−2 ∑
x̂∈△ j

i=2,...,n

δ j(x̂, i)2 , (7)

whereδ j(x̂, i) = ℑ1(U(x̂))−ℑi(U(P̂iX)) is the inten-
sity difference inside of a small windowU around a
relevant pixel andξ j is zero if△ j does not lie inside
one of the dominant planes and 1 if it does. All tri-
angles, for which the cost function does not exceed a
given threshold, are declared as feasible. Contrary to
(MorKan2000) who proposes optimizing the results
of the triangulation over all possible triangulations,
we prefer use the 3D-points generated from other sub-
sequences in order to fill the holes caused by unfea-
sible triangles. This seems to be a logical approach
because partitioning the video sequences into sub-
sequences (and stitching these sub-sequences as de-
scribed in Sect. 2) is a consequence of the fact that the
object is seen from different positions. In order to pro-
vide the texture of every of these views, a reference
image from a sub-sequence must be taken. We call
this method”Local Incremental Fusion of Tessella-
tions” , LIFT . Suppose we are givenm sub-sequences
(i.e. reference imagesℑr1, ...,ℑrm for which we have
triangulations, support planes and homographies. The
task is to compute the feasibilities for the triangles
of the last sub-sequence. The computation algorithm
works as follows (s1,s2,s3 are constant thresholds):

for every pixel x̂ = x̂rm in ℑrm

determine j such as x̂ ∈△ j

extract ε j and H j , then calculate X̂ using (6)
increase area A j and set status = 0;
for i = 1, ...,m−1

reproject X̂ with camera P̂ri to obtain x̂ri

if x̂ri lies inside of a feasible triangle in ℑri

compare the support plane ε of this triangle with ε j

if ||ε- ε j || < s1

(it is approximately the same point)
increase overlap j , set status = 1 and break

if status == 0
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(an occluded point or is not inside of all previous images)
reproject X̂ into the neigboring images ℑrm+1, ...,ℑrm +n

calculate intensity differences proceeding from x̂ with (7)
add the squared sum of these errors to δ j .

for every j
if overlap j/A j > s2 or ε j > s3 (as in (7))

the triangle j is declared unfeasible

Finally, feasible triangles from all sub-sequences
will be given their texture, as shown in the images
below.

4 RESULTS

We will present results from three movies taken with
three different cameras. The first movie (”House” ,
400 frames, 105 camera positions – because every 4-
th frame was taken) was recorded with a handheld
camera around a toy-house, so its resolution as well
as the trajectory of the camera is good. The only
difficulties the system has to deal with are the large
number of outliers and the configuration of inliers: in
many frames they are nearly coplanar which makes
the camera resection quite difficult. The result of the
calibration algorithm is illustrated in two Fig. 2, with
the texturation obtained with our method of local in-
cremental fusion LIFT.

The second sequence (”Infrared” , some 150
frames) was recorded by an infrared camera and
shows a sky-scraper in Frankfurt-upon-Oder. As in
most infrared sequences, the percentage of tracking
outliers is large, due to dead pixels. Moreover, al-
most all of the 3D-points are situated either far away
from the object or in some dominant planes, which
makes the usual determination ofp∞ quite hard. Nev-
ertheless, the result of our calibration algorithm was
refined by bundle adjustment, and the results of our
method are shown in Fig. 3.

The sequence (”Cityscape” , 20 frames) is ob-
tained from our mini-plane and shows a typical view
of a cityscape as in Fig. 1. Also here, the results of
reconstruction are good (Fig. 4) compared with the
quality of the input video.

In all sequences, the calibration matrix was very
close to what we have estimated by using a calibra-
tion plane, therefore we can assume that the small de-
viations were caused by lens distortion effects. The
small effects of projective distortion in the sequence
”Infrared” were eliminated by means of bundle ad-
justment.

5 CONCLUSIONS AND FUTURE
WORK

Conclusions. We have presented a system which is
able to perform the Euclidean reconstruction from
video sequences recorded with a single camera. The
system can recognize some important critical motions
(such as forward and backward motion) and deal with
them, such that even in the case of not favorable
geometry, the results of reconstruction are acceptable.
Another advantage is that the system is robust: for ex-
ample, outliers caused by small moving objects in the
images will be detected by robust algorithms and ex-
cluded from consideration.

The structure of the system allows detecting and
tracking points, performing and stitching projective
reconstructions from frame to frame. In other words,
there is no need of exhaustive matching of pairs or
triples of frames (as in (Mar2006) or (Nister2000)) to
find a pair or a triple with a favorable geometry. The
reconstruction can be stopped anytime, if necessary,
given that the reconstruction between the first pair
of key-frames was performed. Then, the calibration
process is quite fast and as result, a sparse cloud of
3D-points and the camera trajectory will be obtained.
The computation times of the first draft of our algo-
rithm lie between 10 and 15 frames/sec., therefore the
hope to achieve a real-time reconstruction exists. Ex-
tracting and fusing dense models obtained from sev-
eral sub-sequences as described above is also a fast
process (because the optimization is performed over
triangles rather than over points), but before this can
be done, the error minimization over all points and
all cameras must be performed to optimize the results
of the sparse reconstruction which is a rather time-
consuming process.

Future Work. Our next step towards the dense re-
construction will be the search of a global algorithm
which considers the triangulation from the reference
frames of all sub-sequences at the same time and deals
with occlusions. The task is to refine the initial result
obtained by LIFT. Thus, the local cost function given
by (7) has to be modified. Still, our biggest prob-
lem remains the quality of our videos. We deinter-
lace the images, if necessary, but the blurring effects
are in many cases very strong. Lens distortion is also
a serious problem: without distortion correction, the
assumption of linear transformations between images
does not hold, so the complete reconstruction algo-
rithm is likely to collapse. At the moment, we esti-
mate the distortion coefficients before the flight and
undistort the images, but future work includes auto-
matic recognition and correction of lens distortion.
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Figure 2: Results of reconstruction of sequence”House” : three views from the original sequence, result of sparse reconstruc-
tion given in points and straight lines and camera trajectory. Below are two snap-shots from the textured model. Note the
small number of undetected unfeasible triangles.
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Figure 3: Results of reconstruction of sequence”Infrared” .

Figure 4: Results of reconstruction of sequence
”Cityscape” . We show cameras trajectory and a
dense point cloud inside of the convex hull of Harris-Points
detected only in the first view. Points outside the convex
hull are marked by red.
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