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Abstract: Quality assessment of steel processing essentially relies on the continuous monitoring and control of the 
steel temperature and the flow patterns of the molten material. Among the various sensors developed to 
control that process, CCD cameras emerge as a good alternative to more classical measuring devices. Multi-
spectral imaging systems based on cameras working in the visible spectrum offer a viable alternative to high 
cost thermographic infrared cameras. This paper presents a slag monitoring system based on dual 
wavelength thermographic cameras. The system allows a real-time and contactless monitoring of the slag 
temperature and a continuous monitoring of the flow patterns of the ingot slag topping in order to assess the 
quality of the produced steel. 

1 INTRODUCTION 

Precisely controlling the solidification of liquid steel 
is one of the cornerstones in quality steel making. 
By varying the amount of heating, usually by 
adjusting the current going through an electrode 
immersed the liquid steel one can precisely control 
the solidification process. This is why monitoring 
the temperature of the liquid phase of the steel is of 
great importance to steel producers. 

Given the very high temperatures of liquid steel 
and the slag on top of it  (usually between 1300°C 
and 1800°C) and the particularly harsh environment 
at the producing plant, only very few sensors 
(usually thermocouple probes and pyrometers) are 
able to accurately measure the temperature of the 
steel. Conventionally, for measuring the temperature 
an operator has to immerse a probe with a 
thermocouple into the liquid steel slag at periodic 
intervals. Since thermocouple probes cannot work 
reliably under the influence of the high currents, the 
heating electrode has to be removed from the mould 
before a measurement is done. This periodic 
removal of heating power disturbs the solidification 
process. An alternative way of measuring the 
temperature was therefore sought, provided that it 
can guarantee at least the same accuracy as 
thermocouple probes: +/- 5 °C. 

 Due to their high cost thermographic infrared 
cameras were often discarded as an option. At a 
fraction of the cost of infrared cameras a dual 

wavelength camera solution working in the visible 
spectrum offers a viable alternative (Meriaudeau, 
2003). Such a system can deliver images of high 
spatial resolution while at the same time measuring 
temperature with an accuracy better than +/- 5 °C. 
Using thermal cameras is also beneficial to the 
observation of the flow patterns of the molten 
material. That important process information was 
until now only estimated by a trained operator. 

Still it is pretty hard to determine the 
temperature of liquid steel from images. Within an 
image of the surface one can see regions where the 
material forms a “crust” (i.e. “cold” regions), while 
other regions display a laminar flow of hot material 
from below up to the surface with from time to time 
spontaneous “bubbles” bringing up hot liquid at a 
fast rate. One of the difficult tasks for an image 
processing algorithm is therefore to distinguish those 
areas and at the same time yield a accurate 
temperature. 

2 TEMPERATURE MEASURE 

2.1 Monochromatic Method 

Contactless temperature measurement is based on 
the analysis of the radiations emitted by the object 
under inspection. Planck’s law relates the 
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electromagnetic energy radiated from a black body 
to its absolute temperature: 
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with 0
λT the temperature, λ the wavelength, 
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first radiation constant: 1.191062×108 Wμm4sr-1, C2 
the second radiation constant: 1.438786×104 Wμm 
and 0

λL the spectral radiance. As ideal emitter a 
black body emits the maximum radiation compared 
to any other object for a given temperature. The non-
ideal behaviour of real objects is generally 
accounted by the emissivity ελ. It corresponds, for 
the same spectral wavelength λ, to the ratio of the 
actually emitted total radiation to its theoretical 
maximum (i.e. black body radiation). Since 1≤λε  
the apparent temperature of a real object measured 
by a radiometer is always lower than its true 
temperature. A derivation of Eq. (1) is then used to 
determine the true target temperature tTλ  from the 
measured temperature mTλ : 
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Due to surface properties and experimental 
conditions determining a reliable value for ελ can 
prove a difficult and error prone task.  

2.2 Dual-wavelength Method 

Measuring temperature with a dual wavelength 
method was first introduced by Campbell et al. 
(Campbell, 1925). The method consists in measuring 
the ratio of two spectral radiances. Using spectral 
filters, two radiances emitted by the object are 
acquired simultaneously at two different 
wavelengths λ1 and λ2. The temperature tT

21 ,λλ is 

then inferred from the ratio temperature RT
21,λλ : 
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Rε  being the ratio emissivity: 
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According to Eq. (3), the ratio temperature 

RT
21,λλ corresponds to the true target temperature 

tT
21 ,λλ whenever 

1λε  and 
2λε  are equal (i.e. 1=Rε ) 

which is the definition of a gray body. 

2.3 System Layout 

Urban et al. (Urban, 2005), following Meriaudeau et 
al. (Meriaudeau, 2003), presented a temperature 
measurement system composed of a beam splitter 
and two CCD cameras equipped with different 
interferential filters. That system, based on dual 
wavelength, estimates the temperature of gray 
bodies with a maximum error of 0.5% of the 
experimental temperature range with the assumption 
that the emissivity does not change too much as a 
function of the wavelength (i.e. gray body 
assumption). In other words, 

1λε and 
2λε have to be 

chosen sufficiently close from each other while at 
the same time distant enough to allow sufficient 
sensitivity of the instrument. 

That system has several advantages. As long as 
the gray body assumption holds the measured object 
and the calibration object do not need to be of the 
same material. This means the measuring instrument 
can be calibrated with one radiation source (e.g. a 
tungsten filament inside a lamp bulb) but can then be 
used to measure the temperature of another object of 
totally different material (e.g. the molten slag). 
Another advantage of the dual wavelength approach 
is its inherent robustness with regard to dust. Dust 
depositing on the front lens will equally influence 
intensities measured at both wavelengths and 
therefore does not deteriorate the measurement 
accuracy. 

2.4 Practical Considerations 

Under immediate vicinity to the melting process the 
system must still reliably perform under 
environmental challenges such as: 

 Extreme heat radiation from the melted steel: 
The camera system is built into a massive 
housing, an extra air cooled radiation shield is 
needed to keep the cameras within their specified 
operating temperature range (i.e. below 50°C). 

 Extremely strong magnetic fields in the vicinity 
of the melting electrode: Proper choice of 
location and heavy magnetic shielding of the 
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camera housing and the cabling have to be taken 
into account. 

 High levels of dust / smoke during the process: 
All the sensitive optics and electronics have been 
built into a fully sealed housing while a circular 
ventilation slit around the first optical element in 
the system (heat protection filter) avoids 
deposition of dust. 

 Gears occluding the camera field of view: The  
gear manipulating the heating electrode can 
temporarily occlude the camera field of view 
therefore the measurement location has to be 
chosen with care. 

Because calibrated blackbodies were only 
available up to 1500°C and the temperatures under 
consideration are above the fusion point for most 
metals an alternative approach was chosen to 
calibrate the instrument up to 2000°C. The 
relationship between the temperature and the current 
of a 250 W halogen lamp was established using a 
classic Hartmann und Braun filament pyrometer. 
The tungsten filament of the halogen bulb was used 
as a rough calibration. For better accuracy a NIST 
traceable black body can be used for calibration. 

2.5 Temperature Measurement Results 

Temperature measurement results are shown in 
Figure 1. The curves represent about 2.5 hours of the 
process at a sampling rate of one measurement per 
second. The deep notches in the temperature curves 
show the influence of a thermocouple measurement: 
when the electrode is taken out, the fluid steel 
circulation stops resulting in a sharp drop in surface 
temperature. The upper curve represents the 
measurement of the hottest spot (typically a bubble 
rising from below the slag surface). The lower curve 
displays the average temperature over the whole 
liquid steel surface. That curve correlates quite well 
with thermocouple measurements. The most precise 
measurements come from measuring the temperature 
from areas that are reliably visible at all stages of the 
process such as large laminar flowing areas that 
bring up to the surface a continuous stream of hot 
material. 

 
Figure 1: Temperature measurement results. 

3 FLOW MONITORING 

During the steel producing process the flow pattern 
of the slag is a visible indicator of the process 
quality. Currently a worker checks on an irregular 
basis the slag motion and interprets its motion. In a 
qualitative manner the motion can be specified as 
‘good’ if the direction of the homogeneous slag is 
flowing towards the electrode from all directions. 
On the other hand if the slag flows from the centre 
of the electrode towards the border of the mould the 
slag motion is qualified as ‘bad’. 

3.1 Active Slag Region of Interest 

To speed up the qualitative slag motion computation 
we restrict ourselves to the most active regions 
where the most active motion will be observed. 

Contrary to regions where the slag is solidified 
(i.e. cold slag), active regions are the hottest and 
therefore correspond to the regions with the highest 
intensity in the images of the slag. Segmenting these 
regions is simply performed by an optimal 
thresholding method (Otsu, 1979) and by discarding 
the regions of too small area. Figure 2 shows the 
segmentation result on a test image. 

 
Figure 2: Segmented image region of slag active motion. 

3.2 Slag Motion Analysis 

In an image sequence the moving patterns of the slag 
cause temporal variations of the image brightness. If 
we assume that all temporal intensity changes are 
due to motion only, analysing the slag motion 
requires to compute how much each image pixel 
moves between adjacent images. For determining 
the motion parameters we use a pyramidal variant 
(Bouguet, 2000) of the well-known tracking 
algorithm presented by Lucas and Kanade (Lucas, 
1981). This algorithm was chosen because it is 
general enough, reliable, robust and fast enough to 
handle the required frame rate of our monitoring 
system. 
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3.2.1 Motion Tracking 

The basis of the Motion Constraint Equation 
assumes that if ),( yxI  is the centre pixel of 
neighbourhood Ω  and moves by a displacement 
vector ( )yxd δδ ,=  within an adjacent image J 
(with )( tIJ δ= ), since ),( yxI  and 

),( yyxxJ δδ ++  represent the same point one 
can write: 

),,(),,( ttyyxxItyxI δδδ +++=                 (7) 

Providing that xδ , yδ  and tδ are not too big, one 
can perform a first order Taylor series expansion 
about ),,( tyxI : 
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whereε  is assumed to be small and can be 
neglected. Using Eq. (7) and Eq. (8) we obtain: 
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can be rewritten more compactly as: 

t
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where ),( yx III =∇  is the spatial intensity 
gradient and ),( yx υυυ =  is the image velocity or 
optical flow at pixel ),( yx at time t. 

A weighted least-squares fit of the local first-
order constraints of Eq. (10) to a constant model for 
υ  in each small spatial neighbourhood Ω  can be 
implemented by minimizing: 
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where ),( yxW  denotes a window function that 
gives more influence to constraints at the centre of 
the neighbourhood than those at the periphery. 

),( yxW  are typically 2D Gaussian coefficients but 
can be set to 1.0 with little effect on the accuracy. 
The solution to Eq. (11) is given by: 

[ ] bAAA TT 1−
=υ                                               (12) 

where for N pixels in Ω at a single time t: 

[ ]),(),...,,( 11 NN yxIyxIA ∇∇=                    (13) 

( )),(),...,,( 11 NNtt yxIyxIb −=                     (14) 

The solution to Eq. (12) can be solved in closed 
form when AAT  is a non-singular matrix: 
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3.2.2 Accuracy and Robustness 

The two key components for determining the optical 
flow are accuracy and robustness. The accuracy 
component relates to the ability of taking into 
account the details contained in the images. 
Intuitively, a small neighbourhood Ω  would be 
preferable in order not to “smooth out" image 
details. The robustness component relates to the 
sensitivity to changes of lighting, size of image 
motion, etc... In particular, in order to handle large 
motions, it is intuitively preferable to pick a large 
neighbourhood Ω . Therefore there is a natural 
trade-off between local accuracy and robustness 
when choosing the neighbourhood size. 

In order to provide a solution to that problem, 
we use a pyramidal implementation of the classical 
Lucas-Kanade algorithm (Bouguet, 2000). In that 
variant implementation an image pyramid is first 
built by recursively sub-sampling (by a factor of 2) 
the highest resolution image up to a user defined 
pyramid height/level mL . The optical flow is 
computed at the deepest pyramid level mL and 
propagated to the upper levels up to level 0 (the 
original image). The final solution d  is the sum of 
the residual pixel displacement vectors available 
after the finest optical flow computation: 

∑
=

=
mL

L

LL dd
0
2 . The clear advantage of a pyramidal 

implementation is that it allows large pixel 
displacements, while keeping the size of the 
neighbourhood relatively small. 

3.2.3 Differentiation 

Image intensity derivatives are required for 
computing the optical flow. Differentiation is done 
using matched balanced filters (Simoncelli, 1994) of 
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size 5 for low pass filtering (e.g. blurring) and high 
pass filtering (e.g. differentiation). Matched filters 
allow comparisons between the signal and its 
derivatives as the high pass filter is simply the 
derivative of the low pass filter and, from 
experimental observations, yields more accurate 
derivative values. 

For instance for computing xI , we first 
convolve with the low pass filter in the t dimension 
to reduce 5 images to one, then convolve that image 
with the same filter in the y dimension and finally 
convolve with the differentiation filter in the x 
dimension to obtain xI . 

3.2.4 Tracking Points 

Instead of tracking all the points within areas where 
the slag is active, we limit ourselves to tracking 
featured points. Following Shi and Tomasi (Shi, 
1994) the selection of featured points is more than a 
traditional measure of  “interest”: it is determining 
the right features that make the tracker work best. 

A measure of  “textureness” is derived over 
non-overlapping square windows of size 15 in the 
areas of interest. That measure is based on the 
assumption that if the inter-frame displacement is 
sufficiently small with respect to the texture 
fluctuations within the window, the displacement 
vector can be found minimizing the error residue: 

( )[ ] dxwxJdxI∫
Ω

−−=
2

)(ε                          (16) 

In this expression, w is a weighting function 
and could be set to 1 or alternatively, could be a 
Gaussian-like function that emphasizes the central 
area of the window. Solving that linear system 
requires the coefficients to be both above the image 
noise level and well conditioned. Using Singular 
Value Decomposition (SVD) for solving the system 
and  one can decide by examining the resulting eigen 
values (e.g. the smallest of the eigen values should 
be superior to a user specified threshold) if the 
system well conditioned and if the window is a valid 
one for that measure. 

In order to avoid tracking too many feature 
points we restrict their number to a user defined 
value (e.g. from 600 to 1000). To prevent the feature 
points to be crowded in some few spots, which 
results in a poor distribution of trackable points (see 
Figure 3), we use a parameter to specify the desired 
minimum distance (in pixels) between the candidate 
points. Experience showed that using a minimum 
distance of 4 pixels delivers good results in well 
distributing the points. Increasing this factor too 

much results in poor tracking resolution because the 
points get spread too far apart. 

  
       Minimum distance = 0      Minimum distance = 2 

  
       Minimum distance = 3      Minimum distance = 4 
Figure 3: Effect of different minimum distance values on 
tracking point distribution. 

3.2.5 Re-initialisation of Tracking Points 

During the tracking process the algorithm tries to 
track every feature point found at the initialization 
step over the next frames. If the point is lost for 
instance by moving out of the active slag area or by 
not being identified again in the new frame, the 
algorithm initializes (using the procedure described 
in the previous section) a new point for the one lost 
to keep the total number of tracking points constant.  

3.3 Finding the Electrode Centre 

Before analyzing the overall slag motion we first 
have to define a reference point, which the motion of 
the slag can be related to. We use the approximate 
centre of the electrode as reference point. 

Starting from the resulting image mask by 
segmenting the region of active slag motion (Figure 
4 left), this mask contour is first converted into a 
polygon. From this polygonal representation the 
convex hull is computed. 

The convex hull of a set of points is the 
intersection of all convex sets containing that set. 
For N points NPP ,...,1  the convex hull is then given 
by the expression: 
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From the convex hull the centre of mass (Figure 
4 right) is computed and taken as an approximation 
for the centre of the electrode which is used to relate 
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the direction of the tracking vectors for analysing the 
slag motion. 

 
Figure 4: The electrode centre as the convex hull centroid. 

3.4 Direction of the Slag Flow 

To determine the overall slag motion, the region of 
active slag motion is divided into sectors of a circle 
centred at the approximated electrode centre (Figure 
5). The number of sectors and the distance between 
them is user dependant. Experiments showed that in 
combination with 600 to 1000 tracking points, 12 
sectors delivered good results. 

Within each sector the tracking vectors are 
accumulated into a histogram of directions. To 
improve robustness in detecting the main direction 
in each sector we do not take into account vectors 
whose length do not exceed 3 pixels. Finding the 
maximum in the directional histogram provides the 
preferred direction of the slag motion of the 
considered sector. Figure 5 displays the main 
directions found for each sector. 

 
Figure 5: Sectors of active slag areas and detected flow. 

For the final quantification of the slag motion, 
we have to determine if most of the slag is moving 
towards the electrode or in the opposite direction. 
For this purpose each vector direction is compared 
to the direction of the sector they belong to. The 
direction of a sector is simply the direction of the 
line bisecting the sector towards the centre of the 
electrode. If the absolute angular difference between 
a vector direction and the direction of its sector lays 
within a range of 0-60° the slag motion for this 
vector is “good”, if the absolute difference is 
between 60° and 120° the slag motion is 
“undetermined” and otherwise the slag motion is 
“bad”. For quantifying the overall slag motion in a 

given sector a majority voting is performed among 
the slag motion vectors belonging to the same sector. 

4 CONCLUSIONS 

We presented an experimental industrial vision 
system capable of measuring the slag temperature in 
a contactless manner with an accuracy of ± 5° C. By 
tracking the flow patterns of the slag,  that system 
can also monitor and help assessing the quality of 
the produced steel. As future development we plan 
on investigating the relationship between the slag 
motion flow and its temperature in order to give the 
operator a better insight about the produced steel.  
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