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Abstract: An efficient articulated hand tracking method underlying the 3D graphical model from monocular image 
sequences is proposed in this paper. Due to the inaccurate dependences among the components of human 
hand leading to distorted estimates in previous work, we design a pertinence graphical model combined 
with domain–specific heuristics among the components of human hand describing the hand’s 3D structure, 
kinematics, and dynamics. The proposed model decomposes multivariate, joint distributions into a set of 
local interactions among small subsets. The modular structure provides an intuitive language for expressing 
domain–specific knowledge about the variable relationships, and facilitates tracking each hand component 
independently. And then, we provide a novel belief propagation algorithm to inference in hand graphical 
model. The algorithm can accommodate an extremely broad class of potential functions besides the 
potentials appropriate for our model. The experimental results show the robustness and efficiency of 
tracking each hand component. 

1 INTRODUCTION 

Tracking unrestricted 3D human hand movement 
has fundamental importance for human-computer 
interaction (HCI). Articulated human hand tracking 
is inherently a very difficult problem due to: 1) high 
degree of freedom (about 27 degrees) of the 
articulated hand movement (Wu et al., 2005); 2) 
occlusion among hand components; 3) the posterior 
distribution of hand configuration is multimodal and 
spiky and so forth. 

The existing methods for tracking hand motion 
could be divided into two categories. One is the 
appearance-based approach that estimates articulated 
motion states directly from images by learning the 
mapping from an image feature space to the hand 
configuration space. The other is the model-based 
approach that estimates articulated motion states by 
projecting a 3D model on to the image space and 
then compares the projections with the observations 
(Stenger et al., 2001; Wu et al., 2001; Isard and 
Blake, 1998). One advantage of the former is that 
real time tracking can be processed. However, large 
and dense reference images should be collected in 

advance to get an accurate estimation. Also, 
effective learning or retrieval in a large image set is 
very demanding. The latter approach can provide an 
accurate estimation when a 3D model is well 
initialized, while inevitably perform searching in a 
high dimensional space. 

The performance of a model-based tracker 
depends on the type of the used model. The tracking 
results are more accurate if the model is more  
complex enough. However, there is a trade-off 
between accurate modelling and efficient 
observation (Lin et al., 2002). 

Fortunately, the natural human motion is often 
highly constrained and the motions among various 
joints are closely correlated (Chao et al., 1989). Till 
now some simple and closed form constraints have 
been found in biomechanics and applied to hand 
motion analysis (Tony et al., 2006), further 
investigations on the representations and utilizations 
of complex motion constraints and the configuration 
space have not yet been conducted. With the rich 
restrictions of hand motion, the intrinsic and feasible 
hand motion seems to be constrained within a subset 
(or the feasible configuration space) of original high 
DOF (degree of freedom) space. Once the feasible 
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configuration space is characterized, it could 
dramatically reduce the search space in hand 
configuration space. 

Graphical models provide a powerful 
framework for specifying precise, modular 
descriptions of computer vision tasks and 
developing corresponding learning and inference 
algorithms. Inference algorithms for visual scenes 
must then be tailored to the high–dimensional, 
continuous variables and complex distributions. The 
graphical model decomposes multivariate, joint 
distributions into a set of local interactions among 
small subsets. The modular structure provides an 
intuitive language for expressing domain–specific 
knowledge about the variable relationships, and 
facilitates tracking each hand component 
independently. Recently, graphical models are 
widely used in tracking articulated objects such as 
human hand and body (Isard, 2003; Sigal et al., 
2004; Frey et al., 1998). Sudderth et al. apply a 
graphical model describing the 3D hand structure, 
kinematics, and dynamics (Sudderth et al., 2004). 
This graph encodes global hand pose via the 3D 
position and orientation of several rigid components, 
and thus exposes local structure in a high-
dimensional articulated model. The tracking 
problem is formulated as one of inference in a 
graphical model and belief propagation (Frey et al., 
1998) can be used to estimate the pose of the hand at 
each time-step. 

In this paper, we extract the occlusion 
constraints from the image cues and syncretize these 
relationships with the traditional restrictions for 
articulated human hand tracking. In section 4, the 
experimental results demonstrate our model can deal 
with self occlusion while tracking hand. Then, we 
provide a novel belief propagation algorithm to 
inference over hand graphical model. The algorithm 
can accommodate an extremely broad class of 
potential functions besides the potentials appropriate 
for our model. 

Our work has three main contributions: 1) We 
introduce occlusion constraints into the existing 
models to allow graphical model-based hand 
tracking method handle the self-occlusion instance. 
2) Novel potential functions appropriate for the 
proposed hand model are incorporated in the 
tracking process, thus leading to a very efficient 
computation. 3) We design a more efficient belief 
propagation method by embedding Continuously 
Adaptive Mean Shift (CAMSHIFT) algorithm in 
sampling procedure of NBP to focus the samples on 
the more likely locations. Moreover we use 
sequential density mode propagation in the feasible 

configuration space derived from the above 
procedure to accelerate the efficiency of NBP 
remarkably. 

2 A SELF-ASSEMBLING HAND 
MODEL 

Human hand is composed of sixteen approximately 
rigid components: three phalanges or links for each 
finger and thumb, as well as the palm (Wu and 
Huang, 2001). Following Stenger’s work (Stenger et 
al., 2001), we model each rigid body by cylinders 
with fixed size, as illustrated in figure 1(b) and the 
real hand image is showed by figure 1(a). These 
geometric primitives are well matched to the true 
geometry of the hand, and in contrast to 2.5D 
“cardboard” models (Wu et al., 2001), allow 
tracking from arbitrary orientations. 

 
(a)                      (b)              (c) 

 
(d)                           (e)                       (f) 

Figure 1: Self-assembling hand model: (a) human hand (b) 
cylinders with fixed size to represent each hand phalanx 
(c) kinematic constraints (d) structure constraints (e) 
temporal dynamics (f) occlusion relationships. 

Each component has an associated 
configuration vector defining the component’s 
position and orientation in 3D space. Placing each 
part in a global coordinate frame enables the part 
detectors to operate independently while the full 
hand is assembled by inference over the graphical 
model. 
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2.1 Kinematic Representation and 
Constraints 

To determine the image evidence for a given hand 
configuration, the 3D position and orientation (or 
pose) of each hand component should be 
determined. As traditional graphical models, we 
assume the variables in a node are independent of 
those in non-neighbourhood. Each 
component/phalange is modelled by a cylinder 
having two fixed (person specific) and six estimated 
parameters. The fixed parameters ( , )i i if L W=  
correspond to the phalange’s length, width 
respectively. The estimated parameters ( , )i i ie X θ=  
represent the configuration of the part i    in a global 
coordinate frame where 3

iX R∈  and (3)i SOθ ∈  are 
the 3D position of the proximal joint and the angular 
orientation of the part respectively. The rotations are 
represented by unit quaternions. The configuration 
of the whole hand is represented by }{ 1 16, ,e eΕ = ⋅⋅ ⋅ . 

Let kE  be the set of all pairs of rigid bodies 
which are connected by joints, or equivalently the 
edges in the kinematic graph of figure 1(c).The 
kinematics constraints are written as 

,

( , )

1
( , )

( , )
0

i j
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i j i j
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Viewing the component configurations as random 
variables, the following prior explicitly enforces all 
constraints implied by the original joint angle 
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It is noticeable that the position and orientation of 
each finger are determined by an independent set of 
joint angles. So, , (.)k

i jψ  is statistically independent. 
The kinematics constraints avoid irregular hand 

configuration. 

2.2 Structural Constraints 

Obviously, the hand’s joint angles are coupled 
because different fingers can never occupy the same 
physical volume. As proposed by Sudderth et 
al.(Sudderth et al., 2004), the structure constraints  

, ( , )S
i j i je eψ  are written as 
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where ,i jδ  is a threshold determined by fixed 

parameters if  and jf . So the structural prior is  

,
( , )

( ) ( , )
s

s
s i j i j

i j E

p x x xψ
∈

∝ ∏  (4) 

sE  describes those pairs of bodies which are likely 
to intersect (Figure 1(d)). This constraint prevents 
different fingers from tracking the same image data. 

2.3 Temporal Dynamics 

The hand configuration at time t is denoted by tx , 
and its history is 1{ , , }t tX x x= ⋅⋅⋅ . Similarly the set 
of image features at time t is tz  with history 

1{ , , }t tZ z z= ⋅⋅⋅ . All these methods estimate 1tx +  at 
time t+1 through Bayesian formulation. 

1 1 1 1 1( | ) ( | ) ( | )t t t t t tp x Z p z x p x Z+ + + + +∝  (5) 

where 1 1( | ) ( | ) ( | )
t

t t t t t t tx
p x Z p x x p x Z dx+ += ∫ . A 

general assumption is made for the probabilistic 
framework that the object dynamics form a temporal 
Markov chain. So the new state is conditioned 
directly only on the immediately preceding state，
independent of the earlier history. And we assume 
that for each component, 1( | )t tp x x+  represents our 
dynamical model of hand motion which obeys the 
Gaussian distribution. 

2.4 Occlusion Constraints 

We employ edge (Figure 2) and color cues to 
construct the observation model. Edges and colors 
should be transformed into likelihood measurements 
consistently with the hand constraints described 
above. We utilize both color and edge cues by 
selecting the technique of histograms, therefore the 
resulting probability distribution forms through a 
Bayesian formulation are represented as ( | )ep U x   
and ( | )cp U x  ( x  denotes 3D hand pose and U , the 
image). We let u  represent the color and intensity 
of an individual pixel, and { }U u η= ∈  the full image 
defined by some rectangular pixel lattice η . 

In this paper, the cylinder model of each hand 
component with the hypothetical configuration is 
projected in the real image plan. A gradient based 
edge detection mask is used to detect edges of the 
real image. For the likelihood described by 
occlusion–sensitive color and edge cues, the 
occlusion masks k  must be chosen consistently 

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

510



 

with the 3D hand pose x . These consistency 
constraints can be expressed by the following 
potential function 

( ) ( )

0 , ( ),
( , , ) 1

1

j i j

j i u i i u

if x occludes x u x
O x k x and k

otherwise

π∈⎧
⎪= =⎨
⎪
⎩

 
(6) 

( ) ( )

0
{ | },

1
i i u i u

if pixel u in the projection
k k u k of i is occluded by other part

otherwise
η

⎧
⎪= ∈ = ⎨
⎪
⎩

(7) 

( )xπ  denotes the set of pixels in the projected 
silhouette of 3D hand pose x . 

The following potential encodes all of the 
occlusion relationships between rigid bodies   and 

, ( ) ( )( , , , ) ( , , ) ( , , )O
i j i i j j j i u i i j u j

u r

x k x k O x k x O x k xψ
∈

=∏   
(8) 

These occlusion constraints exist between all pairs 
of nodes. However, as with the structural prior, we 
enforce only those pairs   (Figure 1(f)) most prone to 
occlusion 

( , ) , ,
( , )

( , , )
O

O
O x z i j i i j j

i j E

p x k x kψ
∈

∝ ∏   
(9) 

 
Figure 2: Feature extraction. A real image is on the left, 
the resulting edge is on the right. 

3 EFFICIENT BELIEF 
PROPAGATION ON FEASIBLE 
CONFIGURATION SPACE 

3.1 Potential Functions 

We have shown that a local representation of the 
geometric hand model’s configuration tx  allows 

( | )t tp x Z , the posterior distribution of the hand 

model at time t  given observed image tz , to be 
expressed as 

16

1

( | ) ( ) ( ) ( | , ) ( | , )

( ) ( ) ( | , ) ( | , )

t t t t t t t t t t
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t t t t t t t t
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(10) 

When τ  video frames are observed, the overall 
posterior distribution then equals 

1

1

( | ) ( | ) ( | )t t t t
T

t

p x Z p x Z p x x
τ

−

=

∝ ∏  
 

(11) 

Equation (11) is an example of a pairwise Markov 
random field, which takes the following general 
form 

,
( , )

( | ) ( , ) ( , )i j i i i i
i j E i

p x Z x x x Zψ ψ
∈ ∈Θ

∝ ∏ ∏   

(12) 

Here, the nodes Θ  correspond to the sixteen 
components of the hand model at each time point, 
and the edges E arise from the union of the graphs 
encoding kinematic, structural, and temporal 
constraints. Visual hand tracking can thus be posed 
as inference in graphical model. Thus, the resulting 
distribution probability are factored into two 
potential types: one can be considered as the 
relationships between two neighbouring nodes in the 
hyper graph which encodes kinematic, structural, 
and temporal constraints, another can be viewed as 
the node’s local information at each point at time 
including image cues and occlusion instances. This 
framework is general for tracking articulated objects 
besides human hand by varying the potential 
functions. 

3.2 NBP Embedded With CAMSHIFT 

Inferring the hand pose in our framework is defined 
as estimating belief in the graphical model. To cope 
with the continuous 6D parameter space of each 
hand component, the non-Gaussian conditionals 
between nodes, and the non-Gaussian likelihood, we 
develop an efficient nonparametric belief 
propagation algorithm underlying the work in 
(Sudderth et al, 2004). 

Each NBP message update involves two stages: 
sampling from the estimated marginal, followed by 
Monte Carlo approximation of the outgoing 
message. NBP uses mixture of Gaussians to 
approximate the continuous potential functions of 
the graph. For each iteration, the parameters of the 
mixture of Gaussians are recomputed using Gibbs 
sampling. The computational complexity for each 
node is 2( )O dkM , where d is the degree of the node, 
M the number of samples and k the fixed iteration 
number of the Gibbs sampler. To ensure good 
approximation, the Gibbs sampler require a large 
number of particles (a typical setting is M = 100 and 
κ = 100, which make the NBP algorithm inevitably 
slow. According to (Sudderth et al, 2004), with 200 
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particles, the matlab implementation requires about 
one minute for each NBP iteration. 

Repeatedly sampling from products of mixture 
of Gaussians makes the algorithm computationally 
very expensive. To tackle this problem we embed 
Continuously Adaptive Mean Shift (CAMSHIFT) 
algorithm into NBP to drive the samples around the 
more likely locations, meanwhile its scalable widow 
size increases the accuracy of projected rigid hand 
component size. Actually our method merge the 
“indistinguishable” component by mode detection 
we can achieve a much more compact ( 'N N<<  ) 
approximation of the products of the messages 
represented as mixture of Gaussians. (Suppose that 
the approximate density has 'N  unique modes and   
N  is the total number of the components of d input 
mixtures of M Gaussians). 

Instead of approximating the products of d 
messages in one step, the sequential density 
approximation achieves the compact Gaussian 
mixture representation by d-1 step. That is, first 
multiply two messages represented as the Gaussians 
mixtures of M components and apply above density 
approximation algorithm. The approximated 
compact representation is then multiplied with the 
third nonparametric messages. The density 
approximation is applied again. The above 
procedure is repeated until the dth nonparametric 
message is multiplied and approximated.  The 
complexity of sequential density approximation is 

4(( 1) )O d M− , which is quite acceptable. With 
CAMSHIFT method and the sequential density 
mode propagation, the sampling procedure focus on 
the feasible configuration space leading to efficient 
inference over the articulated hand model. 

4 EXPERIMENTAL RESULTS  

We test our method by tracking hand with no special 
marker from monocular image sequences in an 
indoor environment. Quantitative comparison of 
hand motion angles is performed with “ground 
truth” from 5DT Cyber Glove. Figure 6 depicts the 
differences between our tracking results and the 
ground truth. Since the 5DT Cyber Glove does not 
provide the function of measuring the displacement 
of the hand movement, the tracking results are 
presented in Figure 3, 4, 5 intuitively without the 
corresponding quantitative analysis. 

For notational convenience, we define a belief 
propagation order: from the fingertip to the palm is 
“forward” and the inverse is “backward”. In this 

paper, we perform message update forward and then 
backward because the message update order 
influences the tracking results according to the 
efficient belief propagation. Each hand joint placed 
in global coordinate frame enables the joints 
observation to operate independently while the 
whole hand is assembled by the process of graphical 
model inference. 

 
    38                          48                        56 

 
          60                          72                         96 

Figure 3: The first tracking results are at the time of 38, 
48, 56, 60, 72, 96 frame. 

 
               0                              9                            39 

 
              49                            69                           89 

Figure 4: The second tracking results are at the time of 0, 
9, 39, 49, 69, 89 frame. 

 
                0                             22                           32 

 
               53                           63                         75 

Figure 5: The third tracking results are at the time of 0, 22, 
32, 53, 63, 75 frame. 

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

512



 

The comparisons between tracking results from 
the first image series shown in figure 3 and ground 
truth from 5DT Cyber Glove are shown in Figure 6. 

The NBP in feasible configuration space based 
articulated 3D tracker can achieve 2.5 frames/second 
in average for the shown 320 × 240 image series on 
a Pentium (R) D 3.4G desktop. 

 
Figure 6: The comparison between our tracking results of 
figure 3 and the ground truth. The abscissa represents 
training data (frames), the ordinate represents phalange’s 
angle. (left) distal phalanx of middle finger, (right) distal 
phalanx of little finger. 

5 CONCLUSIONS 

Due to the high dimensionality of human hand 
incurring complexity of hand tracking, graphical 
models are widely used to decompose multivariate, 
joint distributions into a set of local interactions. In 
addition to the traditional physiological constraints 
and temporal information, we also introduce 
occlusion constraints of hand motion. The advantage 
of this framework is that self occlusion could be 
partially solved. Consequently, the hand tracking is 
transformed into an inference of graphical model. 

We utilize embedded sequential mode 
propagation underlying NBP in a restrict hand 
motion space obtained by CAMSHIFT to perform 
hand tracking. It accelerates tracking procedure 
remarkably. The experiment results show the 
capability of the entire framework. 
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