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Abstract: Geodesic invariant feature have been originally proposed to build a new local feature descriptor invariant not
only to affine transformations, but also to general deformations. The aim of this paper is to investigate the
possible improvements given by the use of color information in this kind of descriptor. We introduced color
information both in geodesic feature construction and description. At feature construction level, we extended
the fast marching algorithm to use color information; at description level, we tested several color spaces on
real data and we devised the opponent color space as an useful integration to intensity information. The
experiments used to validate our theory are based on publicly available data and show the improvement, in
precision and recall, with respect to the original intensity based geodesic features. We also compared this
kind of features, on affine and non affine transformation, with SIFT, steerable filters, moments invariants, spin
images and GIH.

1 INTRODUCTION

In this paper we face the issue of feature description
at the base of automatic correspondence matching be-
tween images from different views of the same scene
or images of the same objects in different poses. In
particular we are interested in exploiting color infor-
mation to enrich feature descriptors invariant with re-
spect to generic transformation/deformations.

In (Ling and Jacobs, 2005), Ling and Jacobs in-
troduced such kind of descriptor, together with the
geodesic framework, for deformation invariant fea-
tures extraction and matching. To cope with generic
image deformations, this kind of descriptor is based
on a histogram built out of pixel intensities from re-
gions at the same geodesic distance with respect to
a given interest point. Geodesic invariant descrip-
tors have been experimentally proved to be covariant
with respect to generic deformations, but have little
descriptive capabilities with respect to other classi-
cal feature descriptors such as SIFT. This weakness
is mainly due to the smoothing effect induced by the
histogram and the sensitivity to image gradient in
geodesic distance calculation.

The aim of our work is to investigate how color in-
formation can be used to improve geodesic image
descriptors by reducing this sensitivity to the image
gradient and extending histogram description. In the
original paper Ling and Jacobs (Ling and Jacobs,
2005) use the fast marching algorithm (Sethian, 1999)
to expand geodesic borders based on intensity values;
in this paper we propose to use the RGB components
to consider edges in color components instead of in-
tensity. Color information is also used to complement
intensity histogram with an appropriate color descrip-
tion based on opponent color space (van de Weijer and
Schmid, 2006).
In the next section we briefly review related works
in feature description and evaluation, Section 3 intro-
duces the geodesic invariant framework and the nov-
elties introduced by our work. Section 4 presents the
experimental setup and results to assess the improve-
ment given by the use of color information, while a
brief discussion about future work is presented in the
final section.
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2 RELATED WORKS

A considerable amount of work has been done on ro-
bust local feature descriptors, studying invariance to
orientation, scale, affine transformation, and, recently,
also to generic deformation.

In the work of Mikolajczyck and Schmid (Miko-
lajczyk and Schmid, 2005; Mikolajczyk et al., 2005)
a performance evaluation of several of these local
descriptors is performed both with respect to view-
points and lighting conditions. As final result, this
work reports that the SIFT descriptor, proposed by
Lowe (Lowe, 2004), has the best performance with
images of flat scenes and affine transformations.
These conclusions have been supported also in the
paper by Moreels and Perona (Moreels and Perona,
2005), which generalizes these results to 3D scenes
using images of 3D objects viewed under different
scales, viewpoints, and lighting conditions.

All the local invariant descriptors, investigated so
far, are based on the hypothesis of perspective de-
formation being properly approximated, locally, by
affine transformation; recently, Ling and Jacobs (Ling
and Jacobs, 2005) demonstrated that it is possible also
to construct descriptors invariant to generic deforma-
tion of image subject (e.g., a moving flag). In their
proposal, they suggest to treat the intensity image as
a surface embedded in 3D space, with the third coor-
dinate being proportional to the intensity values, and
then build the descriptor by deformation invariance
geodesic distance in this 3D space.

Stimulated by their work, in this paper we want
demonstrate that it is possible to improve the perfor-
mance of the Geodesic Intensity Histogram (GIH) de-
scriptor by introducing color information. Although
color seems to be a fundamental clue for object recog-
nition in everyday life only few color invariant de-
scriptors have been proposed in the literature. The
work of Van De Weijer and Schmid (van de Weijer
and Schmid, 2006) is an important example from this
point of view. Their results lead to the encouraging
conclusions that a pure color-based approach outper-
forms a shape-based approach only for colorful ob-
jects, while, for the general case, it is possible any
way to outperforms a pure shape-based approach us-
ing a combination of shape and color.

In our work we verify the results achieved by Van
De Weijer and Schmid also for non affine transforma-
tions with the idea that shape-based descriptors can
fail when dealing with generic deformations and com-
bining it with color can improve recognition rates..

3 COLORING GEODESIC
INVARIANT FEATURES

In the geodesic framework, an image can be inter-
preted as a 2D surface in a 3D space, with the third
coordinate being proportional to the pixels intensity
value, with an aspect weight α→ 1, and the first two
coordinates proportional to (x,y) (image pixel coordi-
nates) with weight 1−α.

We define a geodesic level curve as the set of
points at the same geodesic distance from a given in-
terest point; it is possible to capture the joint distribu-
tion of intensity and geodesic distances and summa-
rize it into the so called GIH histogram-based descrip-
tor by sampling pixels with constant geodesic step ∆..

An efficient scheme for the geodesic level curves
computation on discrete pixel grids, was provided
by Sethian with the name of fast marching algo-
rithm (Sethian, 1999). A marching speed F(x,y) is
associated to each pixel x,y and the geodesic distance
T (x,y) can be estimated solving locally the equation
|∇T |F = 1, where

F(x,y) =
1

f (x,y)
=

1√
(1−α)2 +α2I2

x +α2I2
y

. (1)

Although the shape of the resulting region is irregular,
it is covariant with deformation and it has shown in-
teresting results for generic continuous deformations.
Sometimes worst behaviors may occur in correlation
with the presence of isotropic and anisotropic scale
transformations, causing a resampling of pattern con-
tours, but for uniform intensity region, the expansion
is independent from image gradient, mainly depend-
ing on 1−α value.

3.1 Fast Marching Algorithm in RGB
Space

The first improvement proposed in this paper aims at
modifying region expansion in the fast marching al-
gorithm considering color information1. We take into
account each RGB channel separately, computing 3
different inverse marching speeds one for each chan-
nel:

fr(x,y)2 = (1−α)2 +α2R2
x +α2R2

y , (2)

fg(x,y)2 = (1−α)2 +α2G2
x +α2G2

y , (3)

fb(x,y)2 = (1−α)2 +α2B2
x +α2B2

y . (4)

1We present in this paper only the RGB implementation
for the new fast marching algorithm; we tested also other
color spaces with no meaningful improvements thus we de-
cided to use the most efficient one.
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Assuming there is no particularly strong photometric
transformation (e.g. Lambertian surface), these func-
tions are deformation covariant, as with the geodesic
distance on the intensity surface, and, under the
same hypothesis, the ordering of fr(x,y), fg(x,y) and
fb(x,y) is preserved as well. The geodesic region, in
our proposal, is thus computed starting from a new in-
verse marching speed based on these three color chan-
nels:

fmin(x,y) = min( fr(x,y), fg(x,y), fb(x,y)), (5)

and the resulting new geodesic distance T is invari-
ant, being the sum of the same invariant stretches.
This choice, being somehow counterintuitive, has two
rationalities behind it and has been confirmed by ex-
perimental results:

• The growth of geodesic region is bounded by all
channels and slows down only for high values of
fmin(x,y). The moving front speed decreases only
if contour are thus found on all channels, cor-
responding to a strong change in luminance or
crominance, less sensitive to noise with respect to
geometric transformations

• Weak contours found on a single channel have mi-
nor influence on the geodesic region and let the
front go on. In this way, given a geodesic level
corresponding to a quantization interval on the
geodesic distance, this will show the salient in-
tensity and color varieties separated by weak con-
tours.

Table 1 shows an example of geodesic distance T
expansion on a monodimensional grid of pixel i ∈
{1..n}. Pixel updating order is deterministic, in fact
the moving front can proceed in only one direction.
The updating formula becomes:

T (i+1) = T (i)+ fmin(i+1) (6)

We can identify weak contour on pixels i = 2 and
i = 3 and a strong contour on pixel i = 6. Comput-
ing geodesic distance in this fashion, it puts in the
same interval of T more color varieties, represented
by weak contours. For instance, let be the sampling
gap ∆ = 0.1 and the histogram quantization interval
of T to δT = 0.8. The geodesic level segment (ring
in the bidimensional space) starts at the first pixel and
stops between pixel i = 5 and i = 6. Sampling points
coming from this segment shows a lot of color varia-
tions, the same variations causing the weak contours
on pixels i = 2 and i = 3.

The results obtained by using Equation (5) is
twofolds, on one hand we have that strong contours
are less likely to be smoothed, if affected by geo-
metric deformations, and, on the other one, a more

Table 1: Evolution of geodesic distance T on a monodimen-
sional grid of pixel i ∈ {1..n}., computed using fr, fg, fb.

i 1 2 3 4 5 6 7
fr 0.1 0.5 0.1 0.1 0.2 0.9 0.1
fg 0.1 0.1 0.1 0.1 0.1 0.8 0.1
fb 0.1 0.1 0.4 0.1 0.2 0.8 0.2
T 0.1 0.2 0.3 0.4 0.5 1.3 1.4

deformation-covariant placement of sampling regions
is obtained.

3.2 Building the Geodesic Color
Descriptor

Low distinctiveness is a disadvantage of the original
geodesic descriptor. The GIH descriptor summarizes
the geodesic region content as an histogram Hp(k,m)
built on two variables: geodesic distance g and nor-
malized intensity I (g is quantized in M intervals, I in
K intervals). For each geodesic interval m, a normal-
ization has to be performed such as ∑K

k=1 Hp(k,m) = 1
to compare inner and outer geodesic “rings” with the
same weight.

Given a ring of geodesic level curves, correspond-
ing to a quantization interval on the geodesic distance,
GIH stores no spatial informations about sample loca-
tion along the ring thus the resulting numeric vector is
less informative than other descriptors such as SIFT
(on affine covariant trasformation). We propose to
partially overcome this distinctiveness problem, with-
out losing rotation invariance, by adding color infor-
mation into the descriptor.

To build a richer descriptor, we consider 3 or more
dimensions, together with their respective quantiza-
tion intervals: the geodesic distance g (quantized in
M bins), the normalized intensity I (quantized in K
bins), and one or more photometric invariants Invn
(quantized in Qn bins).

The implemented descriptor keeps the geodesic
information associated to color invariants, extending
the original M×K GIH descriptor with N additional
M×Qn histograms one per invariant Invi. The final
dimension of the descriptor is thus M(K +∑N

n=1 Qi).
The matching distance between two Geodesic

Histogram & Histograms descriptor (GHH hereafter)
p and q is computed starting from the χ2 distances
between each couple of histograms:

dI = χ2(HI
p,H

I
q) (7)

dInv1 = k1 ·χ2(HInv1
p ,HInv1

q ) (8)

dInv2 = k2 ·χ2(HInv2
p ,HInv2

q ) (9)
. . . (10)
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where k1 and k2 are weighting parameters, and than
the descriptors distance as a whole is obtained as

d(Hp,Hq) = max(dI ,dInv1 ,dInv2 , . . .). (11)

This implies that a match between two point is al-
lowed only if all pairs of histograms are fairly sim-
ilar, up to a given threshold, both in luminance and
chrominance.

3.3 Color Invariants Selection

GHH descriptor can be seen as a general construc-
tion method for geodesic descriptors including inten-
sity and color information; effective invariant selec-
tion, then, should be performed taking into account
specific assumptions about image formation and the
specific application.

We can distinguish between zero-order invariants
and first-order invariants, i.e., derivative based invari-
ants. For the use with geodesic regions, characterized
by generic deformations, the main challenge is to pre-
serve geometric robustness, then we can have focused
the work on zero-order invariants computable from
common color spaces. Another practical requirement
is stability, since known photometric invariant have
inherent instabilities.

The measured color information for a camera sen-
sor can be modeled as:

C(~x) = mb(~x)bC(~x)eC +mi(~x)eC, (12)

where the first part describes the light which is re-
flected after interaction with surface albedo b and
the second-one is related to the light immediately re-
flected at the surface, causing specularities. The aim
of color space selection is to provide invariance with
respect to mb and mi, which depend on scene and illu-
mination geometry. In this paper we considered three
invariant for color representation:

RGB normalized RGB are invariant to the shading
modeled by mb term in absence of specular effects
(i.e. mi = 0);

O1,O2 opponent colors, that, for white illuminant,
are invariant with respect to specularities;

H,S the hue information is invariant to both mb and
mi, but this is known to be unstable with low sat-
uration also; weighting each sample by its satura-
tion is only a partial solution.

We have tested these invariants on the real
dataset provided in the paper of Mikolajczyck and
Schmid (Mikolajczyk and Schmid, 2005) with GHH
descriptor, after normalization obtained subtracting
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Figure 1: Histograms distance distributions for I, r and g.
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Figure 2: Histograms distance distributions for I, O1 and
O2.
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Figure 3: Histograms distance distributions for I and Hue
(scaled by 0.2 for better illustration).

the mean and dividing by standard deviation. For an-
gular invariant hue, illuminant normalization is pre-
viously performed on RGB channels, dividing each
channel value by its spatial average. Values within
the (−3σ,+3σ) interval have been segmented in 13
bins and Figures 1, 2 and 3 compare the intensity his-
tograms HI respectively with normalized r and g his-
tograms Hr Hg, opponent color histograms HO1 HO2

and hue histograms Hhue.
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(a) Graffiti image (graffiti 3)
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(b) Flag image

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

de
te

ct
io

n 
ra

te
 (

88
)

N

RGB GIH
RGB GHH

SIFT
Ling GIH

SPIN
MOM.INV.

STEER.FILT.

(c) T-Shirt image
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(d) Candle image

Figure 4: Performace evaluation on real datasets.

These plots underline the relationship between his-
tograms distance χ2 and matching correctness in
terms of conditional probabilities. Let be (a,b) a cou-
ple of features; we estimate the probabilities that the
histograms distance d(a,b) falls into a small interval
k−δ,k, given that (a,b) is a correspondence

P(k−δ < d(a,b)≤ k|T (a) = b) (13)

and given that (a,b) is not a correspondence

P(k−δ < d(a,b)≤ k|T (a) 6= b) (14)

being T the transformation between the images. In or-
der to make a distinctiveness comparison for intensity
and color histograms, the weighting parameters ki are
set to 1.

From the plots it can be noticed that corresponding
and non-corresponding features distances for inten-
sity show a higher discrimination power with respect
to color information. Nevertheless, opponent colors
show a more symmetric and regular behavior (com-
pared to normalized RGB), allowing the assumption
kO1 = kO2 = kO. Mostly due to saturation weight, the
hue histograms have low distinctiveness (overlapped
distributions). For this reasons, we decided to use op-
ponent color in the following of the paper as color
invariants; moreover this analysis suggests a value for
the color histograms weighting parameter, that should
be adjusted according to the real working conditions.
In the case of this dataset kO = 0.3 can be used; this
value roughly overlaps correct matches distributions

of dI , dO1 and dO2, allowing histograms comparison
with respect to the same threshold dth, and thus im-
proving matching precision.

4 EXPERIMENTAL RESULTS

In this section we present the experimental evalua-
tion done to test the capabilities of the new descriptors
proposed in this paper, using as interest point detec-
tor the Harris-Affine2 proposed by Mikolajczyck and
Schmid (Mikolajczyk and Schmid, 2004). In partic-
ular we compare the performances of our approaches
with the descriptors: GIH, GIH with RGB expansion,
SIFT (Lowe, 2004), spin images (Lazebnik et al.,
2003), moments invariants (Gool et al., 1996), and
steerable filters (Freeman and Adelson, 1991).

The characteristics we are interested in evaluating
are robustness, i.e., the capability to describe in the
same manner two correspondent regions, and preci-
sion, i.e., the distinctiveness of the descriptors. We
use the criterion proposed by Ling and Jacobs to eval-
uate the GIH performances. For each pair of images
we select the 200 interest points with the higher cor-
nerness and, for each of them, we manually estimate
the ground truth matching. Each interest point in
the first image is compared with all interest points in

2Code available at
http://www.robots.ox.ac.uk/vgg/research/affine/
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(a) T-shirt images

(b) Candle images

Figure 5: Examples of matches on real images.

the second image according to the distance described
in Section 3.2 and we considered the detection rate
among the top N matches used to study the perfor-
mance

r =
#correct matches

#points f irst image
. (15)

Experiments have been done on the dataset provided
by Ling and Jacobs, on the dataset by Mikolajczyck
and Schmid, and on other real images with non affine
deformation. Due to space limits we present here only
two plots with performances on public available data
and we details the results on the data we collected that
are more significative for non affine trasformation.

The plots in Figure 4 show that GHH description
capability improves the GIH intensity-based descrip-
tion in all the cases and that also the GIH with RGB
expansion achieve better performances with respect
to classical GIH even if the descriptor is still based
only on intensity information. GHH descriptors out-
perform most of other descriptors when non-affine de-
formation is present and are able to describe local fea-
tures also when these are not on a planar surface.

In Figure 5 we report the new (with respect of
public available datasets) images used in this paper
and the matches found by the use of GHH. To bet-

ter understand the rationale behind GHH we plotted
geodesic levels and descriptor histograms for a few
interest points on the T-shirt images in Figure 6.

When dealing with affine transformation (See plot
in Figure 4(a)) SIFT are still better. We investigated
this and devised two possible reasons: the SIFT de-
scriptor is more rich than a histogram based one, and
the affine property is not exploited in the geodesic dis-
tance calculation. We have coped with the latter issue,
but this is out of the scope of this paper, while the for-
mer issue is still an ongoing work.

In Figure 4(a) it is also possible to notice that
sometimes the SPIN descriptors are better than SIFT,
GIH and GHH, this is not a surprising result be-
ing the latters based on the “SPIN image” idea: a
two-dimensional histogram encoding of the bright-
ness distribution in an affine-normalized patch.

5 DISCUSSION AND FUTURE
WORKS

In this paper we introduced a method to extend
geodesic invariant feature with color information.
Experimental results confirm the promising perfor-
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Figure 6: Examples of GHH descriptors on the T-shirt image.

mances of geodesic descriptors and the improvement
given by the use of color information.

Althought we succeded in adding color informa-
tion to the geodesic framework some open issues
still remain: the improvement obtained by GHH
on deformed images is paid with a reduced perfor-
mance with respect to SIFT descriptors on real pla-
nar patches. To better understand the reasons for this,
we made a deep analysis of geodesic expansion. It
turns out that adding the affine information carried by
the Harris-affine detector to the expansion mechanism
improves the GHH performance on planar patches,
but this results are not reported here since somehow
reduce the generality of GHH and GHI descriptors.
Another reason for SIFT better performance is due to
the smoothing effect induced by the histogram rep-
resentation; we are currently working on SIFT like
representation of geodesic levels able to capture local
gradient information.

A final note should be made about interest point
detectors. In this paper we used the Harris-affine de-
tector, but intuitively it is not optimal for geodesic
distance computation since it selects corner points lo-
cated on singular positions of the image geodesic rep-
resentation. We have done preliminary work with
MSER detectors (Matas et al., 2002), but this needs
further investigation since they are located on the bari-
center of uniform regions and with non affine defor-
mation this might not be in a repeatable positions.
This is a problem since in performance evaluation we

do not consider area matching, but points, and this can
fail even if we perform the correct match.
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