
BINARY MORPHOLOGY AND RELATED OPERATIONS ON
RUN-LENGTH REPRESENTATIONS

Thomas M. Breuel
DFKI and University of Kaiserslautern, Kaiserslautern, Germany

Keywords: Mathematical morphology, binary image processing, document image analysis, layout analysis.

Abstract: Binary morphology on large images is compute intensive, in particular for large structuring elements. Run-
length encoding is a compact and space-saving technique for representing images. This paper describes how
to implement binary morphology directly on run-length encoded binary images for rectangular structuring
elements. In addition, it describes efficient algorithm for transposing and rotating run-length encoded im-
ages. The paper evaluates and compares run length morphologial processing on page images from the UW3
database with an efficient and mature bit blit-based implementation and shows that the run length approach
is several times faster than bit blit-based implementations for large images and masks. The experiments also
show that complexity decreases for larger mask sizes. The paper also demonstrates running times on a simple
morphology-based layout analysis algorithm on the UW3 database and shows that replacing bit blit morphol-
ogy with run length based morphology speeds up performance approximately two-fold.

1 INTRODUCTION

Binary morphology is an important and widely used
method in document image analysis, useful for tasks
like image cleaning and noise removal, (Ye et al.,
2001) layout analysis, (Wong et al., 1982) skew cor-
rection, (Najman, 2004) and text line finding. (Das
and Chanda, 2001) The primary structuring elements
used in such applications are rectangular. Real-world
document analysis systems currently primarily rely
on bitblit-based implementations (Bloomberg, 2002).
Practical implementations take advantage of sepa-
rability and logarithmic decomposition of rectangu-
lar structuring elements (Bloomberg, 2002; Najman,
2004).

A number of other implementations and algorith-
mic techniques are noteworthy. Binary mathemat-
ical morphology with convex structuring elements
can oomputed using a brushfire-style algorithm (Vin-
cent, 1992). Another class of algorithms is based on
loop and chain methods (Vincent, 1992). The van
Herk/Gil-Werman algorithms (van Herk, 1992; Gil
and Werman, 1993; Gil and Kimmel, 2002) have con-
stant per-pixel size overhead for grayscale morphol-
ogy, and binary morphology can be viewed as a spe-
cial case. Another class of algorithms is taking advan-
tage of anchors, (Droogenbroeck and Buckley, 2005).
Some authors have looked again at grayscale mor-

phology, using more complex intermediate represen-
tations (Droogenbroeck, 2002).

Although some of these algorithms are competi-
tive for gray scale morphology, they have not been
demonstrated to be competitive with high quality bit
blit-based implementations for binary morphology
(Bloomberg, 2002). It remains to be seen how such
algorithms compare to the algorithms in this paper,
both in performance and storage; we will not be ad-
dressing that question here.

Bit blit-based implementations at their lowest
level take advantage of operations that are highly ef-
ficient on current hardware because they are used as
part of many different algorithms and display opera-
tions: their running time grows quadratically in the
resolution of the input image; they do not take advan-
tage of coherence in the input image–an almost blank
image takes the same amount of time to process as
a highly detailed image; and operations that need to
take into account the coordinates of individual pix-
els (e.g., connected component labeling) often need
to decompress (at least on the fly) or use costly pixel
access functions.

This paper describes an implementation of mor-
phological operators directly on run-length encoded
binary images. Run length coding has been proposed
previously for morphological operations(Liang et al.,
1989; van den Boomgaard and van Balen, 1992), but

159
Breuel T. (2008).
BINARY MORPHOLOGY AND RELATED OPERATIONS ON RUN-LENGTH REPRESENTATIONS.
In Proceedings of the Third International Conference on Computer Vision Theory and Applications, pages 159-166
DOI: 10.5220/0001081501590166
Copyright c© SciTePress



not found much use in document image analysis. Our
approach was developed independently of that liter-
ature, and we focus on the application of run-length
methods to large, complex binary images as found
in document image analysis. We give benchmarks
and comparisons with the Leptonica library, an open
source library for morphological image processing.
It has comparatively good performance, uses well-
documented algorithms, and is used in several large-
scale document analysis systems.

2 RUN LENGTH IMAGE CODING

Run-length image representations have a long history
in image processing and analysis. They have been
used, for example, for efficient storage of binary and
color images and for skeletonization of large images.

Consider a 1D boolean array a containing pixel
values 0 and 1 at each location ai. The run
length representation r is an array of intervals r1 =
[s1,e1], . . . ,rn = [sn,en] such that ai = 1 iff i ∈ r j for
some j and ei < si+1.

The 2D run-length representation we are using in
this paper is a straight-forward, extension to 2D that
treats the two coordinates asymmetricaly; in partic-
ular, the binary image1 ai j is represented as a se-
quence of one-dimensional run-length representations
ri j, such that for any fixed i0, the 1D array a j = ai0, j
is represented by the 1D runlength representation r j =
ri0 j.

3 MORPHOLOGICAL
OPERATIONS

Because of the asymmetry in the two dimensions of
the 2D run-length representation we are using, mor-
phological operations behave differently in the x and y
direction in run-length representations. An analogous
asymmetry is found in bit-blit operations, in which
the bits making up image lines are packed into words,
and a list of lines represents the entire image. There
are multiple possible approaches for dealing with this
issue. First, we can implement separate operations for
horizontal and vertical operations. Second, we can
implement only the within-line operations and then
transform the between-line operations into within-line
operations through transposition. For separable oper-
ations, the second approach is often the easier one.

1This paper and our library uses
PostScript/mathematical conventions, with a0,0 repre-
senting the bottom left pixel of the image.

Therefore, an erosion with a rectangular structuring
element of size u× v can be written as:2

def erode2d(image,u,v):
erode1d(image,u)
transpose(image)
erode1d(image,v)
transpose(image)

3.1 Within-Line Operations

There are four basic morphological operations we
consider: erosion, dilation, opening, and closing.
One-dimensional opening and closing are the easiest
to understand. Essentially, a one-dimensional open-
ing with size u simply deletes all runs of pixels that
are less than size u large, and leaves all others un-
touched:

def close1d(image,u):
for i in 1,length(image.lines):
line = image.lines[i]
filtered = []
for j in 1,length(line.runs):
if runs[j].width() >= u:
filtered.append(runs[j])

image.lines[i] = filtered

A one-dimensional closing with size u deletes all gaps
that are smaller than size u, joining the neighboring
intervals together. It can either be implemented di-
rectly, or it can be implemented in terms of comple-
mentation and erosion3

def complement(image):
for i in 1,length(image.lines):
line = image.lines[i]
filtered = []
last = 0
for j in 1,length(line.runs):

run = line.runs[j]
newrun = make_run(last,run.start)
filtered.append(newrun)
last = run.end

filtered.append(make_run(last,maxint))
image.lines[i] = filtered

def open1d(image,u):
complement(image)
close1d(image)
complement(image)

2Our convention is output arguments before input ar-
guments, and the various procedures modify the image in
place.

3To simplify boundary conditions, we are using the no-
tation exp1 or exp2 to mean means use the value of exp1
if it is defined, otherwise use exp2.

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

160



Note that openings and closing are not separable, so
we cannot use these implementations directly for im-
plementing true 2D openings and closings; for that,
we have to combine erosions and dilations. How-
ever, even as they are, these simple operations are al-
ready useful and illustrate the basic idea behind run-
length morphology: run-length morphology is selec-
tive deletion and/or modification of pixel runs.

The most important operation in run-length mor-
phology is one-dimensional erosion. Like one-
dimensional opening, we walk through the list of
runs, but instead of only deleting runs smaller than
u, we also shrink runs larger than u by u/2 on
each side (strictly speaking, for erosions on integer
grids, we shrink by floor(u/2) on the left side and
u−floor(u/2) on the right side during erosions), and
use the opposite convention for dilations). In pseudo-
code, we can write this as follows:

def erode1d(image,u):
for i in 1,length(image.lines):
line = image.lines[i]
filtered = []
for j in 1,length(line.runs):
if runs[j].width() >= u:
start = runs[j].start+u/2
end = runs[j].end-u/2
filtered.append(make_run(start,end))

image.lines[i] = filtered

As with opening/closing, dilation can be imple-
mented directly or via complementation:

def dilate1d(image,u):
complement(image)
erode1d(image)
complement(image)

In terms of computational efficiency, all these op-
erations are linear in the total number of runs in the
image.

Assuming an efficient transposition operation, we
can now express the 2D operations as follows:

def erode2d(image,u,v):
erode1d(image,u)
transpose(image)
erode1d(image,v)
transpose(image)

and analogously for 2D dilation. The opening and
closing operations can now be expresed as usual; for
example:

def open2d(image,u,v):
erode2d(image,u,v)
dilate2d(image,u,v)

What remains to be seen is how we can implement the
transposition efficiently.

3.2 Efficient Transpose

Transposition means that we need to construct runs
of pixels in the direction perpendicular to the cur-
rent run-length encoding. A simple way of transpos-
ing is to essentially decompress each run individually
and then accumulate the decompressed bits in a sec-
ond run length encoded binary image (Anderson and
Michell, 1988; Misra et al., 1999). For this, we main-
tain an array of currently open runs in each line of
the output image and iterate through the runs of the
current line in the input image. For the range of pix-
els between the runs of the current line in the input
image, we finish off the corresponding open runs in
the output image. For the range of pixels overlapping
the runs of the current line in the input image, we
start new runs for lines where runs are not currently
open and continue existing open runs for lines where
runs are currently open. In terms of pseudo code, that
looks as follows:

def transpose_simple(image):
output = make_rle_image()
open_runs = make_array(new_image_size)
for i = 1,length(image.lines):
line = image.lines[i]
last = 1
for j=1,length(line):
run = line[j]
for k=0,run.start:
newrun = make_run(open_runs[k],i)
output.lines[k].append(newrun)
open_runs[k] = nil

for k=run.start,run.end:
if open_runs[k] == nil:

open_runs[k] = i
... finish off the remaining runs here ...

This simple algorithm is usable, but it does not take
advantage of the coherence between lines in the input
image. To take advantage of that, we need a more
complicated algorithm; the algorithm is somewhat
similar to the rectangular sweeping algorithm used for
finding maximal empty rectangles (Baird et al., 1990).

The basic idea behind the transposition algorithm
is to replace the array of open runs in the above al-
gorithm with a list of runs, each of which represents
an open run in the perpendicular direction. This is
illustrated in Figure 1. The actual inner loop is simi-
lar to the algorithm shown above for the per-pixel up-
dating, but because of the 13 possible relationships
between two closed intervals, the inner loop contains
a larger case statement; this will not be reproduced
here. This new run length transposition algorithm
speeds up the overall operation of the binary morphol-

BINARY MORPHOLOGY AND RELATED OPERATIONS ON RUN-LENGTH REPRESENTATIONS

161



Figure 1: The figure illustrates a merge step during the
transposition step. The algorithm maintains a list of open
intervals and information about how many steps that inter-
val has been open for. It then considers the next run-length
encoded line in the input. Ranges in the input that do not
overlap any intervals in the new line are finished and give
rise to runs in the output. Ranges in the input that overlap
runs in the next line give rise to intervals in the open line
that have their step number incremented by one. Ranges
in next line that do not correspond to any range in the list
of open intervals give rise to new intervals with their step
values initialized to one.

ogy code several-fold relative to the simple decode-
recode implementation.

4 OTHER OPERATIONS

As we noticed above, if run length morphology were
the only operations that could be carried out on run
length representations, run length morphology would
not be very useful. However, many common bi-
nary image operations can be implemented directly
in terms of run-length representations, allowing many
binary document image processing steps to be carried
out without ever unpacking the image.

Conversion. To/from run-length encoded represen-
tation to either unpacked or packed bit-images is
straight-forward. We note that input/output can be
implemented particularly efficiently in terms of run-
length image representations, since many binary im-
age formats internally already perform some form of
run-length compression, and their runs can be directly
translated in runs in the in-memory representation.

Connected Components. And statistics over them,
can also be computed quickly:

• We associate a label value label[i][j] with
each run lines[i][j].

• For each run in the entire image, we create a set in
a union-find data structure.

• We then iterate through all the lines in the image
and, for each run in the current line merge its label

Figure 2: Average running times (vertical axis) for open-
ing with square masks of different size (horizontal axis) of
245 randomly selected pages from the UW3 document im-
age database; the database consists of journal article pages
scanned at 300 dpi and binarized. The thick line is the aver-
age running time of the combined run length and bit blit im-
plementation (including any conversion costs), the dashed
line is the running times for the run length algorithm only,
and the two thin lines represent the running times of the
Leptonica bit blit-based implementations (the lighter one
being pixErodeMorphDwa etc.).

with the labels of any runs in the line above. This
can be done in linear time in the number of runs
in each line.

• Finally, we renumber the entries in label[i][j]
according to the canonical set representative from
the union-find data structure.

This is similar to a connected component algorithm
on the line ajacency graph (but the order in which
nodes are explored can be different). It is also sim-
ilar to efficient connected component algorithms op-
erating on bitmap images, but runs are used instead of
iterating over the pixels or words.

Scaling, Skewing, and Rotation. Are other impor-
tant operations in document image analysis, used dur-
ing display and skew correction.

Scaling can be implemented by scaling the coor-
dinates of each run and scaling up or down the ar-
ray holding the lines by deleting or duplicating line
arrays. Scaling can also be implemented as part of
the conversion into an unpacked representation (as re-
quired by, for example, window systems).

Skew operations can be implemented within each
line by shifting the start and end values associated

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

162



with each run. Bitmap rotation by arbitrary angles
can then be implemented by the usual decomposition
of rotations into a sequence of horizontal and verti-
cal skew operations, using successive application of
transposition, line skewing, and transposition in or-
der to achieve skews perpendicular to the lines in the
run-length representation. We note that this method
differs substantially from previously published rota-
tion algorithms for run length encoded images (Zhu
et al., 1995; Au and Zhu, 2002).

Other Operations. Can be carried out quickly as
well on run-length representations:
• Run-length statistics are frequently used in docu-

ment analysis to estimate character stroke widths,
word spacings, and line spacings; they can be
computed in linear time for both black and white
runs by iterating through the runs of an image. In
the vertical direction, they can be computed by
first transposing the image.

• The line adjacency graph can be computed by
treating the runs as nodes in the graph and cre-
ating edges between any runs in adjacent lines if
the intervals represented by the runs overlap.

• Standard skeletonization methods for the line ad-
jaceny graph can be applied after computation of
the LAG as described above.

• Run-length based extraction of lines and circles
using the RAST algorithm (Keysers and Breuel,
2006) can be applied directly.

5 EXPERIMENTS

We have implemented, among others, conversions be-
tween run-length, packed bit, and unpacked bit rep-
resentations of binary images, transposition, all the
morphological operations with rectangular structur-
ing elements described above, bitmap rotation by ar-
bitrary angles, computation of run-length statistics,
connected component labeling, and bounding box
extraction. For evaluating the general behavior of
these algorithms and determining whether they are
feasible in practice, we are comparing the perfor-
mance of the run-length based algorithms with the
bitmap-based binary morphology implementation in
Leptonica, an open source morphological image pro-
cessing library in use in production code and con-
taining well-documented algorithms and implemen-
tations (Bloomberg, 2002; Bloomberg, 2007).

Leptonica contains multiple implementations of
binary morphology; the fastest general-purpose im-
plementation is pixErodeCompBrick (and analogous

Figure 3: A 7000×7000 image of a cadastral map used for
performance measurements.

names for other operations), a method that uses sepa-
rability and binary decomposition; it was used unless
otherwise stated. Leptonica also contains partially
evaluated and optimized binary morphology opera-
tors for a number of specific small mask sizes avail-
able under the names like pixErodeBrickDwa; these
were used in some experiments. We have verified that
the implementations give bit-identical results using a
large number of synthetic images and document im-
ages. Both libraries were compiled with their default
(optimized) settings.

Experiment 1. To gain some general insights into
the behavior of the run length methods for real-world
document images, the running times of morphologi-
cal operations on 245 images from the UW3 (Guyon
et al., 1997) database, 300 dpi binary images of scans
of degraded journal publication pages, were mea-
sured. The results are shown in Figure 2. We see that,
except for masks of size five or below, the run length
implementation outperforms the bit blit implementa-
tion.

By choosing at runtime between the bit blit im-
plementation and the run length implementation, we
can obtain a method that shares the characteristics of
both kinds of images. As already noted above, the
cross-over point can be determined automatically ei-
ther based on mask size and dpi, or based on output
complexity. This is shown as the bold curve in the
figures; the curve does not coincide the bit blit based
running times because the run length figures include
the conversion times from run length representations
to packed bit representations and back to run length
representations; in many applications, these conver-

BINARY MORPHOLOGY AND RELATED OPERATIONS ON RUN-LENGTH REPRESENTATIONS

163



Figure 4: Times for opening the 7000× 7000 image of a
cadastral map in Figure 3 with the different sized square
masked. The thick solid line shows the performance of
the combined runlength and bitmap algorithms (including
any conversions); the dashed line shows the performance
of the run length algorithm alone, and the two thin lines
show the performance of the two Leptonica algorithms
pixErodeCompBrick and pixErodeBrickDwa.

sion costs can be eliminated. By switching back to
bit blit-based implementations for small mask sizes,
we can combine the two methods into a method that
gives performance closer to bit blit implementations
at small sizes while still retaining the advantages of
run length methods at large sizes.

Experiment 2. In a second experiment, we com-
pared performance of the run length method to Lep-
tonica’s bit-blit based morphology on a different doc-
ument type with a binarized 7000×7000 pixel cadas-
tral map (Figure 4).

Experiment 3. In the third experiment, we want il-
lustrate overall performance of run length morphol-
ogy methods as part of a simple morphological layout
analysis system. The method estimates the inter-word
and inter-line spacing of document images based on
black and white run lengths, then performs erosion
operations to smear together connected components
that are likely to be part of the same blocks based on
those estimates, and finally computes the bounding
boxes of the resulting large connected components;
this approach is similar to the one in (Wong et al.,
1982) As the input, 245 randomly selected pages from
the UW3 database were used. These are 300dpi let-
ter sized page images scanned from published jour-

Figure 5: Boxplots of the running times of the morpho-
logical layout analysis system using either the run length
methods or Leptonica’s bit blit methods. The system esti-
mates character and line spacing from run lengths and then
performs a rectangular dilation that merges lines and char-
acters into blocks. Finally, it computes bounding boxes of
connected components. Performance is shown over 245
randomly selected pages from the UW3 database.

nals. Relative performance of the run-length based
method and Leptonica’s bit blit based method, includ-
ing bounding box extraction, are shown in Figure 5.
The results show that run length morphological algo-
rithms perform about twice as fast at 300dpi than the
bit blit based algorithms in Leptonica (at 600dpi or
1200dpi, the advantage of run length methods would
be greater still).

Experiment 4. In a fourth experiment, let us look
at the potential for using run length methods for im-
proving the performance of existing libraries. That is,
we assume that the input image is in a bitmap rep-
resentation, then converted into a runlength format,
then processed using run length algorithms, and fi-
nally converted back. Although the bitmap/run length
conversions are not very optimized in our current sys-
tem, the results already demonstrate that above mask
sizes of approximately 50 pixels, it is faster to convert
a bitmap to a run length representation to carry out
operations, even taking into account the conversion
costs.

The performance in these experiments is shown
in Figure 6 Improvements in the performance of the
bitmap/run length conversion routines will move this
cross-over point furhter to the left. It should be em-

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

164



Figure 6: Using run length morphology to transparently
speed up performance of a bitmap morphology library. The
solid line is the performance of the bitmap library, the
dashed line is the performance of the run length library in-
cluding the overhead of bitmap-to-runlength-to-bitmap con-
versions. By incorporating run length morphology, existing
bitmap morphology libraries can achieve the pointwise min-
imum of both curves in terms of performance (green line).
Performance improvements in the conversion routines will
move the cross-over point to the left. Shown are running
times for erosions with different masks sizes on 245 docu-
ments randomly selected from the UW3 database.

phasized again, however, that there is no clear ad-
vantages to keeping images in bitmap representations
other than compatibility with existing libraries. For
example, binary images are usually stored in a run
length-like compressed format to begin with. Fur-
thermore, run length representations let us associate
information with each run with little extra storage, ef-
fectively allowing the output of, say, connected com-
ponent labeling itself be represented and processed in
a compressed run length format. We can also carry
out skeletonization and shape matching directly on
run length compressed images (Keysers and Breuel,
2006).

6 DISCUSSION

The paper has described methods for performing mor-
phological and related methods on run length rep-
resentations, including morphological operations and
a new algorithm for computing the transpose. The
results presented in this paper show that run length

representations and morphological operations imple-
mented on such representations can be an efficient
alternative to widely used bit-blit based binary mor-
phology implementations for rectangular structuring
elements, in particular in document imaging appli-
cations. We have also illustrated the use of run
length representations within an entire layout anal-
ysis pipeline and shown that they result in overall
speedups. It will remain for future work to see how
the algorithms presented in this paper relate to other
methods proposed in the literature.

We have meanwhile extended the work described
in this paper in a number of ways, including effi-
cient operations involving arbitrary masks, faster op-
erations on small masks. The experiments have also
been extended to the entire UW3 database and other
data sets. These results will be presented elsewhere.
In practice, the run length methods described in this
paper can be used as the sole morphology implemen-
tation, or by combining the methods with bitblit im-
plementations and converting when necessary.

DATA AND SOFTWARE

Source code implementing these and other run-length
algorithms is available as part of the OCRopus project
from ocropus.org. Image data files are available
from the author or at iupr.org.

REFERENCES

Anderson, K. L. and Michell, J. L. (1988). System for creat-
ing transposed image data from a run end or run length
encoded image. U.S. Patent #4783834.

Au, K. M. and Zhu, Z. (2002). Skew processing of raster
scan images. U.S. Patent #6490376.

Baird, H. S., Jones, S. E., and Fortune, S. J. (1990). Image
segmentation by shape-directed covers. In Proceed-
ings of the Tenth International Conference on Pattern
Recognition, Atlantic City, New Jersey, pages 820–
825.

Bloomberg, D. S. (2002). Implementation efficiency of
binary morphology. In International Symposium on
Mathematical Morphology VI.

Bloomberg, D. S. (2007). The Leptonica library.
http://www.leptonica.com/.

Das, A. K. and Chanda, B. (2001). A fast algorithm for
skew detection of document images using morphol-
ogy. International Journal on Document Analysis and
Recognition, pages 109–114.

Droogenbroeck, M. V. (2002). Algorithms for openings of
binary and label images with rectangular structuring
elements. In Mathematical Morphology: Proceedings
of the 6th International Symposium (ISMM).

BINARY MORPHOLOGY AND RELATED OPERATIONS ON RUN-LENGTH REPRESENTATIONS

165



Droogenbroeck, M. V. and Buckley, M. (2005). Morpho-
logical erosions and openings: fast algorithms based
on anchors. Journal of Mathematical Imaging and Vi-
sion, Special Issue on Mathematical Morphology after
40 Years, 22(2–3):121–142.

Gil, J. and Kimmel, R. (2002). Efficient dilation, erosion,
opening, and closing algorithms. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 24(12):1606–
1616.

Gil, J. and Werman, M. (1993). Computing 2D min, me-
dian, and max filters. IEEE Trans. on Pattern Analysis
and Machine Intelligence, pages 504–507.

Guyon, I., Haralick, R. M., Hull, J. J., and Phillips, I. T.
(1997). Data sets for OCR and document image un-
derstanding research. In Bunke, H. and Wang, P.,
editors, Handbook of character recognition and doc-
ument image analysis, pages 779–799. World Scien-
tific, Singapore.

Keysers, D. and Breuel, T. M. (2006). Optimal line
and arc detection on run-length representations. In
Proceedings Graphics Recognition Workshop, LNCS.
Springer.

Liang, J., Piper, J., and Tang, J.-Y. (1989). Erosion and
dilation of binary images by arbitrary structuring ele-
ments using interval coding. Pattern Recognition Let-
ters, 9(3).

Misra, V., Arias, J. F., and Chhabra, A. K. (1999). A mem-
ory efficient method for fast transposing run-length
encoded images. In Proceedings of the Fifth Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR), page 161.

Najman, L. (2004). Using mathematical morphology for
document skew estimation. In Proc. SPIE Document
Recognition and Retrieval XI, volume 5296, pages
182–191.

van den Boomgaard, R. and van Balen, R. (1992). Meth-
ods for fast morphological image transforms using
bitmapped binary images. CVGIP: Graphical Mod-
els and Image Processing, 54(3):252–258.

van Herk, M. (1992). A fast algorithm for local mini-
mum and maximum filters on rectangular and octag-
onal kernels. Pattern Recognition Letters, 13(7):517–
521.

Vincent, L. (1992). Morphological algorithms. In
Mathematical Morphology in Image Processing (E.
Dougherty, editor), pages 255–288. Marcel-Dekker,
New York.

Wong, K. Y., Casey, R. G., and Wahl, F. M. (1982). Doc-
ument analysis system. IBM Journal of Research and
Development, 26(6):647–656.

Ye, X., Cheriet, M., and Suen, C. Y. (2001). A generic
method of cleaning and enhancing data from business
forms. International Journal on Document Analysis
and Recognition, pages 84–96.

Zhu, J., Moed, M. C., and Gorian, I. S. (1995). Method and
system for fast rotation of run-length encoded images.
U.S. Patent #5581635.

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

166


