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Abstract: We present a novel approach to the problem of representation and recognition of human actions, that uses an
optimal control based model to connect the high-level goals of a human subject to the low-level movement tra-
jectories captured by a computer vision system. These models quantify the high-level goals as a performance
criterion or cost function which the human sensorimotor system optimizes by picking the control strategy that
achieves the best possible performance. We show that the human body can be modeled as a hybrid linear
system that can operate in one of several possible modes, where each mode corresponds to a particular high-
level goal or cost function. The problem of action recognition, then is to infer the current mode of the system
from observations of the movement trajectory. We demonstrate our approach on 3D visual data of human arm
motion.

1 INTRODUCTION

The first fundamental problem in the analysis of hu-
man motion is that of representation. Several mod-
els of human motion have been proposed in literature.
In (Bregler and Malik, 1997), linear dynamical sys-
tems are used to model simple motions and high-level
complex motions are modeled using Hidden Markov
Models, where each state corresponds to a particu-
lar dynamical system. Layered structures of Hidden
Markov Models (Oliver et al., 2004)) and hierarchi-
cal Bayesian Networks ((Park and Aggarwal, 2004))
have been used to model multiple-levels of abstrac-
tion. The other broad approach has been to extract
3D spatio-temporal features or templates of move-
ments using Principal Component Analysis (PCA)
(Safonova et al., 2004), non-linear dimensionality re-
duction techniques (Fod et al., 2002) and other meth-
ods (Weinland et al., 2006).

In this paper, we propose a new approach to the
problem of representation based on an optimal control
model for human motion. The challenge lies in find-
ing a mathematical model that can connect the high-
level goals and intentions of a human subject to the
low-level movement details captured by a computer
vision system. Optimal control models of the hu-
man sensorimotor system do this in a natural manner.
These models quantify the high-level goals as a per-
formance criterion or cost function which the human

sensorimotor system optimizes by picking the control
strategy that achieves the best possible performance.
Thus optimal control models of human motion place
the high-level goals and the control strategy center
stage, while the movement details arise naturally as
a consequence of these goals. The different cost func-
tions (corresponding to different simple goal-directed
tasks), or equivalently the corresponding optimal con-
trol modules, are the basic building blocks in our rep-
resentation. We view the human motor system as a
hybrid system that switches between different control
modules, in response to changing high-level goals.
The problem of action recognition is to infer the hid-
den goal of the motion from observations of the move-
ment trajectory. More complex actions can be mod-
eled as a composition of these basic goals. For ex-
ample, the action of lifting an object might be accom-
plished by the composition of two goal-directed mo-
tions - reaching for the object and then lifting it.

Optimal control models have been used in robotics
and computer animation ((Nori and Frezza, 2005),
(Li and Todorov, 2004)) for synthesis of motion,
and in the field of computational neuroscience as a
model for the human motor system. Optimal control
models of the human sensorimotor system ((Todorov,
2004), (Harris and Wolpert, 1998), (Scott, 2004))
have been successful in explaining several empirical
observations about human motion. Thus our model
is both theoretically justified and physically meaning-
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ful. However, to the best of our knowledge, such a
model has not been used to analyze human motion or
recognize the higher-level goals of human motion.

Our approach is similar to (Bregler and Malik,
1997), in that we build our model using dynamical
building blocks orprimitives, rather than purely kine-
matic ones (e.g. (Fod et al., 2002)). But while the
dynamical primitives in (Bregler and Malik, 1997) do
not model the forces or control input involved in pro-
ducing the motion, the control strategy plays a cen-
tral role in our representation. In (Del Vecchio et al.,
2003) Del Vecchio et al. used a switching linear dy-
namical system with simple control to study the 2D
motion of a computer mouse being used to draw fig-
ures. However, our control model is richer and we test
our hypotheses on 3D motions of the human arm.

The paper is organized as follows. In section 2 we
describe our model of the human motor system, with
particular emphasis on the control model. In section
3, we define the estimation problem and refer to the
methods we use. In section 4, we describe the experi-
mental setup and present results of the mode recogni-
tion on human arm data. We conclude by indicating
directions of future work and possible applications of
our work.

2 MODELS

In our model, the human motor system can be viewed
as a hybrid system that switches between different
control modules or modes as defined by the differ-
ent cost functions (goals). We assume here that the
cost functions corresponding to the different goals are
known to us. Given noisy kinematic observations of
a motion (e.g. the 3D hand trajectory for an arm mo-
tion), we wish to estimate the underlying mode se-
quence, or in other words, the sequence of basic un-
derlying goals that motivated the motion. To define
the problem more precisely we need to define models
for the following :

1. Mode Evolution : Since each mode corresponds
to a different goal, this model describes the prob-
ability of switching from one goal to another.

2. State Evolution : A biomechanical model is
needed to define how the control and the current
configuration/state of the body (joint angles and
velocities) determine the body configuration at the
next time instant.

3. Control : This model defines how the current state
and mode are used to arrive at a control input for
the biomechanical model.

4. Observation : The observation model defines the
relation between the joint angles and the observa-
tions.

We define these mathematical models and then
present the methods used for simultaneous state and
mode estimation from observations.

2.1 State Evolution Model

Let q(t) andτ(t) be n× 1 vectors (forn degrees of
freedom) that denote the joint angles and torques at
time t, respectively. The human body can be approxi-
mately modeled as a structure of rigid links connected
by joints. The equations of motion for such a model of
the human body are of the form (Murray et al., 1994)

M(q)q̈ +C(q, q̇)q̇+ N(q) = τ (1)

where the matricesM(.),C(.) andN(.) represent the
configuration dependent inertia, coriolis and gravita-
tional terms. SinceM(q) is always positive definite,
this system can be feedback-linearized (Murray et al.,
1994) by designing the control torque to be of the
form

τ = M(q)u+C(q, q̇)q̇+ N(q) (2)

whereu is a control sequence. Theequivalent lin-
earized system, from (1) and (2), is ¨q = u. By equiv-
alent what we mean is that optimal control methods
can be used to determine the form of the controlu re-
quired for the ¨q = u system to achieve the goal. This
controlu can then be transformed using (2) to obtain
the torques that need to be applied to the nonlinear
system in (1). This allows us to focus on the feed-
back linearized system as far as the mode estimation
is concerned. Also note that the linearized system is
independent of body parameters such as mass distri-
bution and length, which vary from subject to subject.

For a sampling period of∆, the time-discretized
linear system of interest for the optimal control prob-
lem is

xk+1 = Axk + Buk + vk (3)

wherexk, the state at timek∆, is a 2n× 1 vector of
the joint angles and velocities at that time instant,vk
is the process noise,uk is the control and

A =

[
In ∆In
0n ∆In

]

(4)

B =

[
∆2

2 In
∆In

]

2.2 Optimal Control

In this section we describe how the optimal control
law is determined for a general parametrized class of
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cost functions, when they are optimized for the lin-
earized state evolution model described in the previ-
ous section. The cost function we consider is of the
form

T

∑
k=1

(Cxk − rk)
TQk(Cxk − rk)

︸ ︷︷ ︸

accuracy

+
T−1

∑
k=1

uT
k Ruk

︸ ︷︷ ︸

energy

+ ρT
︸︷︷︸

time

(5)

for a motion of durationT sampling instants. The pa-
rametersC,{r1, ...rT},Qk ≥ 0 can be used to specify
the goals or constraints, while the parameterR > 0 can
be used to specify the penalty on energy consump-
tion. The(Cxk − rk)

T Qk(Cxk − rk) term constrains a
linear function of the state to be close to a reference
value rk. This term could be, for example, used to
impose the goal of reaching a certain configuration or
maintaining a certain pose by constraining the veloc-
ities to be close to zero. In the most extreme case,
we can specify an exact trajectory to be followed for
the entire duration. The last term imposes a penalty
on the duration of the motion. Thus, in minimizing
the cost function we attempt to achieve the goal with
minimum error, in the minimum time, while consum-
ing the least energy. The exact tradeoff between these
conflicting demands is determined by the cost func-
tion parametersQk, R andρ.

If the cost function only contained the first two
terms (accuracy and energy), the resulting optimal
control problem is called a Linear Quadratic (LQ)
problem. In the LQ problem the duration of the mo-
tion is fixed. The interesting thing about the solution
to this problem (see (Lewis and Syrmos, 1995) for de-
tails) is that not only is the form of the control known,
but the optimal cost-to-go, i.e. the minimum total cost
incurred from any timek until the fixed final timeT ,
can be computed as a function of the current statexk
and the system parameters. Thus, given the current
state we can compute the minimum cost-to-go for dif-
ferent values of the final timeT . Denoting the first
two terms of (5) asJLQ(), and the optimal cost-to-go
function asV (), the minimum value of the cost func-
tion in (5) can be written as

J∗ = min
x2:T ,u1:T−1,T

JLQ(x2:T ,u1:T−1)+ ρT (6)

= min
T

ρT + min
x2:T ,u1:T−1

JLQ(x2:T ,u1:T−1)

= min
T

ρT +V(x1,T ) .

The optimal time T ∗ can be obtained asT ∗ =
argminT ρT +V (x1,T ). The problem of minimizing
(5) then reduces to the LQ problem of minimizing the
first two terms for a fixed final timeT = T ∗.

Standard results from optimal control theory
(Lewis and Syrmos, 1995), can then be used to de-

termine the form of the controluk.

uk = −Kfb
k xk + Kff

k zk+1 (7)

where the feedback and feedforward gain matrices,
Kfb

k andKff
k respectively, and the auxiliary sequence

zk+1 are determined by a backward recursion that
is independent of the state sequence and only de-
pends on the system and cost function parameters
(See (Lewis and Syrmos, 1995) for details).

To summarize, the parameters of state evolution
model (3) and the cost function (5) completely deter-
mine the form of the optimal controluk as a function
of the current statexk. Thus, given the current mode
and state, the control input to be applied to optimize
the cost function corresponding to that mode (goal)
can be determined.

2.3 Mode Evolution and Observation
Models

The modes can be modeled as states of a markov
chain. Letmk, an integer value drawn from the set
{1, ..,N}, represent the current mode i.e. which of
theN possible control modes is effective in determin-
ing the state transition from the (k − 1)-th sampling
instant to thek-th instant. The prior distribution of
modes is given byπi = P(m0 = i), i = 1, . . . ,N and
the transition probabilities are given by

Hi j = P(mk = j|mk−1 = i) i, j = 1, . . . ,N . (8)

The values ofπi andHi j are assumed to be known.
The observations{y1, ...,yT} available to us are of

the form
yk = g(xk)+ nk , (9)

where the functiong(.) and the distribution of the ob-
servation noisenk are assumed to be known.

3 STATE AND MODE
ESTIMATION

The recognition problem can be stated as follows :
given observations{y1:T} , {y1, ...,yT} estimate the
state (joint angles and velocities) trajectory{x1:T},
the control sequence{u1:T−1} and the task or mode
trajectory{m2:T}. The problem requires simultane-
ous estimation of the continuous state and the mode
of the system. The control sequence is not an in-
dependent sequence - it is determined by the state
and the mode. Thus defined, the problem of action
recognition is one of mode estimation in a hybrid sys-
tem. Similar problems have been addressed in the
tracking of a maneouvering targets (McGinnity and
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Figure 1: Graphical Model of State Evolution, Mode Evo-
lution, Control and Observations. The control is an inter-
mediate hidden variable that is completely specified by the
mode and the current state. Thus it is sufficient to estimate
the continuous statexk and the modemk (hidden variables)
from the observationsyk.

Irwin, 2000) and fault detection (de Freitas, 2002) in
systems. The Interacting Multiple Model (IMM) al-
gorithm (Blom and Bar-Shalom, 1988) and its vari-
ants (McGinnity and Irwin, 2000) have been the pre-
ferred method of solving this problem. We use a boot-
strap method similar to that in (McGinnity and Irwin,
2000), with an auxiliary particle filter (Pitt and Shep-
hard, 2001).

4 EXPERIMENTS AND RESULTS

We tested our ideas on 3D motion data sampled at 7
frames/sec, collected from a setup of 12 camera clus-
ters. We used the algorithm proposed by Lien et al.
in (Lien et al., 2007) for segmentation and tracking
of the joints of the body. Our test motions consisted
of motions of the arm for 2 subjects. The subjects
were instructed in two tasks that involved lifting a 5
lb weight. The tasks are shown in figure 4. Each
task consists of two goals, lifting and lowering, but
the manner in which these are to be accomplished is
different in the two tasks. Thus there are four distinct
goals or modes in the data set as shown in figure 4.
Five repetitions of each task were recorded for each
subject were used for testing.

For estimating the mode and state, we only use the
3D position trajectory of the hand with respect to the
shoulder as observations. The model of the arm and
joint angles are shown in figure 2, and the reference
coordinate system is shown in figure 3. The joint an-
gle values are specified with respect to the reference

Figure 2: Model of the arm.
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Figure 3: Coordinate System.

pose in figure 2, which corresponds toθ1 = θ2 = θ3 =
0deg. The state of the system consists of the joint an-
gles and velocities i.e.x = [θ1θ2θ3θ̇1θ̇2θ̇3]

T. The ob-
servation function, that relates the joint angles to the
observations of the hand position, is given by

g(x)=





L1sin(θ2)+L2 sin(θ2 +θ3)
−L1cos(θ1)cos(θ2)−L2 cos(θ1)cos(θ2 +θ3)
−L1sin(θ1)cos(θ2)−L2 sin(θ1)sin(θ2 +θ3)





(10)
whereL1 andL2 denote the length of the upper and
lower arm, which are obtained from the segmentation
and tracking algorithm (Lien et al., 2007).

The cost functions for the four modes are con-
structed as follows. For modes 1 and 2, target poses
(rT ) are specified in terms of constraints onθ3 (θ3 =
150 deg for mode 1 and 90 deg for mode 2) , the rota-
tion of the elbow joint. For modes 3 and 4, the target
poses are in terms ofθ1 (θ1 = 0 deg for mode 3 and
90 deg for mode 4), the rotation of the shoulder joint
about the x axis. In all cases the final velocities are
constrained to be zero.

While the constraints arise naturally from our ex-
periment design and task specification, determining
the relative weighting of accuracy, energy and time
(Q,R,ρ) is not that simple. In this experiment we de-
termine these parameters by comparing simulations
with a training data set. We fixedQT = 103I4, and
R = 10−3I3 for all modes. We found the value ofρ to
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be quite different for the two subjects - 100 for sub-
ject 1 and 25 for subject 2. This indicates that while
different subjects might have a common understand-
ing of the task definition, they might have different
preferences when it comes to the relative weighting
of accuracy, energy and time. These varying inter-
nal preferences might explain the stylistic variations
observed among subjects performing the same task.
This matter requires further study. In our experiment
we use differentρ values for the different subjects
during mode estimation.

Since the data set is fairly small, we set all the
modes to be equally likely apriori. The average time
spent in any modeτ, as observed in the training data
set, was used to set the transition probabilities asHii =
1−(1/τ), i = 1, . . .N andHi j = (1−Hii)/(N−1)∀i 6=
j. The value ofτ was fixed at 20 (sampling instants)
for the results below, but the estimation performance
was found to be not very sensitive to the value ofτ.

The average accuracy of the mode estimation was
86 percent. The errors are almost entirely confined
to the segmentation boundaries as can be seen in fig-
ures 5 and 6. At other times, the mode is usually
correctly estimated with a high degree of confidence.
Figures 7 and 8 compare the estimated joint angles
with the ground truth obtained from the tracking al-
gorithm (Lien et al., 2007).

5 CONCLUSIONS

In this paper, we have proposed a new approach to
the problem of representation and recognition of hu-
man motion. Our experimental results clearly indi-
cate the validity of our proposal. However, there are
several issues that need to be addressed to solve the
action recognition problem comprehensively, within
this framework. Our experiments indicate that while
different subjects might share a common goal for the
motion, they might tend to tradeoff the competing
concerns of accuracy, energy and time differently. We
are currently working on extending the estimation al-
gorithm to estimate the relative weights online, along
with the state and the mode.
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Figure 4: Modes in the Data. Row 1 : Task 1, Mode 1.
Row 2 : Task 1, Mode 2. Row 3 : Task 2, Mode 3. Row
4 : Task 2, Mode 4. In Task 1, the subjects lift and lower
the weights as indicated in rows 1 and 2, by only rotating
the elbow joint. In Task 2, the subjects lift and lower the
weights as indicated in rows 3 and 4, by only rotating the
shoulder joint about the x-axis.
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Figure 5: Mode Estimation : subject 2, task 1. In this task,
the mode switches between 1 and 2, as indicated by the blue
line. The other lines indicate the probability of each mode
at each instant.
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Figure 6: Mode Estimation : subject 1, task 2. In this task,
the mode switches between 3 and 4, as indicated by the blue
line. The other lines indicate the probability of each mode
at each instant.
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Figure 7: State Estimation : subject 2, task 1. Legend :
black line is the ground truth from the tracking algorithm,
red line is the estimate of the state.
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Figure 8: State Estimation : subject 1, task 2. Legend :
black line is the ground truth from the tracking algorithm,
red line is the estimate of the state.
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