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Abstract: Planar shapes recognition is an important problem in computer vision and pattern recognition. We deal with
planar shape contour views that differ by a general projective transformation. One method for solving such
problem is to use projective invariants. In this work, we propose a projective and parameterization invariant
generation framework based on the harmonic analysis theory. In fact, invariance to reparameterization is
obtained by a projective arc length curve reparameterization process. Then, a complete and stable set of
projective harmonic invariants is constructed from the Fourier coefficients computed on the reparameterized
contours. We experiment this set of descriptors on analytic contours in order to recognize projectively similar
ones.

1 INTRODUCTION Two main classes of planar projective invariants
have been studied: algebraic and differential invari-
ants. The algebraic invariants were applied to alge-
braic objects such as points, lines and conics. The
well known algebraic invariant is cross-ratio (Mundy

and Zisserman, 1992). Algebraic invariants are often
global and deal with the whole shape. However, it's
generally hard to fit polynomials to complex shapes.

The recognition of planar shapes that are subjected
to certain viewing transformations has increasing in-
terest in many computer vision applications such as
robotic vision, data-base retrieval, registration and
three-dimensional (3D) reconstruction. Three dimen-

sional objects could be also considered as planarpterential invariants are applied to smooth curves.

when the_ cr:]e_lm?]ra ii_far ey ffolf_“ _tl;e OgljeCt ang dis- They are based on local properties of shapes such as
tances within the object are negligible. Planar shapes yq iy atives however they require generally high order
are generally _assumed 1o have a JreCepi>e Smoothye v atives (Weiss, 1992; Van Gool et al., 1992). Fur-
bouﬂdafy that is repreggifed by gidipensional (.ZD) thermore, as the invariants are local, the local cor-
continuous contour. When a contour undergoes rigid o sn5ndence between points of the images obtained
motlon_ and is then projected onto alrimage plane US"from different viewpoints should be known. Thus,
N9 a_plnhole camera, the perspegiively prOJecteq CON" jitferential invariants cannot be applied directly and
tour image can be represented by a planar projectivepqe g other methods in order to solve their problems.

transformation. The semi-differential invariants has been introduced
The use of projective-invariant approach to deal tg reduce the order of derivatives by adding reference
with planar shape recognition problem in different points (Brill etal., 1992; Van Gool et al., 1992). In ad-
views seems to be the most efficient method mainly dition, integral features approach integrates the local
when camera parameters or point-to-point correspon-jnvariants over the original arbitrary curve parameter
dences are unknown. In fact, a projective invariant and provides global or integral invariants such as mo-
is a property of geometric configurations in one view ments. Recently, a class of integral invariants with re-
which remain unchanged under the projective trans- spect to the Euclidean group are proposed in (Manay
formations (Mundy and Zisserman, 1992). Inthe pla- et al., 2006). This set of invariants allows the analysis
nar case, projective transformations also called plane-gf shapes at multiple scales.
to-plane homographies have the structure of a group.  Furthermore, Fourier analysis theory has provided

This group includes the well known Euclidean and cyrves global invariants in the Euclidean case (Fourier
Affine groups.
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Descriptors) (Crimmins, 1982; Kunttu et al., 2004) the first and the second camera projection matrices
and affine case (Arbter et al., 1990). In (Kuthirummal (respectively), wher® andt are the relative rotation
et al., 2004), the authors have proposed an algebraicand translation between the cameras &dnd K’

affine recognition constraint. are the respective internal calibration matrices. Thus,
Although, differential invariants remain constant p=K[l|0]P andp’ = K'[R|t]P.
in the case of projectivities, they still generally de- Let n be the unit normal vector to the plafkeand

pend on the curve parameterization. The parameter-let d > 0 denote the distance &f from the optical
ization is chosen arbitrary and would not be neces- center of the first camera. The linear transformation
sary the same for different views. Thus, we need to from pto p’ can be expressed as:
deal with both parameterization and geometric trans- 1
formation invariance. Some works have consider such 5/ =K'(R+ _tnT)K—lﬁz Hp
problem and have proposed projective invariant de- d
scriptors which are independent with respect parame-
terization (Weiss, 1992; Van Gool et al., 1992).

In this paper, we propose a projective and param- 3 G-INVARIANT
eterization invariant generation framework based on REPARAMETERIZATION
the harmonic analysis theory and differential geome-
try. In fact, we perform a projective curve reparam- It was proven in differential geometry that a simple
eterization with a projective arc length. Thus two curve is homeomorphic to the unit circ@ or the
equiprojective reparameterized contours from two real line R. Here, we consider only the first case
different views are equivalent up to a starting point. which corresponds to closed contours. Thus, planar
Then, a complete and stable set of projective har- shapes are represented by their smooth boundaries as

monic invariants is introduced by computing tEé- a closed 2D continuous parametric curve. In homoge-
Fourier coefficients on projective arc length reparam- nous coordinates, a parameterizatjgr) of a planar
eterized contours. curvey is an 1-periodic function of a continuous pa-

The next section characterises the transformationrametett defined by:
in the case of a projection by a pinhole camera. Then, 3
At ot e F y: [0,1] — R
the equiprojective reparameterization process is intro ¢
duced. In section 4, we construct the complete and t o v(t) = [x(t),y(t), 1]
stable set of projective invariants. Next, the NURBS 5,4 noted by(t).

curve fitting is introduced. Section 6 presents some Throughout this section, we indicate wigh St —

1)

experimental results. R? a closed planar contour and G a group acting on
R2.
It's well known that a same parametric curve may
2 GEOMETRIC have different parameterizations. The invariants com-
puted from two different parameterizations of the
TRANSFORMATION AND same geometric curve are generally different. This
PERSPECTIVE PROJECTION is due to parameterization dependence on transforma-

tions. One solution to this problem consists in per-
To characterize the geometric transformation betweenforming a G-invariant reparameterization of the curve
two corresponding shape contours, we review the where G is the geometric transformations group.

concept of planar projective homography. Planar pro- pefinition 3.1. A reparameterization of a curve
jective homography (also called projectivity) is a lin- noted(y(D)), is defined as follows:

ear mapping in the planar projective spde® # :

P2 — P2 defined up to an arbitrary factarby a 3x 3

matrix H. y(®) = y(t() = xx(t),yat)' te[0,1. (2)
poir-:—tr;eorrleft\liegrlgegﬁgﬁg irc]:o;ressg osnpdelgg, \gg\r/]vsb eOf wheret is an increasing function defined ¢@ 1].
modeled by a planar homography induced by the Definition 3.2. A G-invariant reparameterization is
plane. Consider two viewp and p’ of a 3D space the process of reparameterizing the curve by a G-
pointP € M, in two camera frame$ and f’ respec-  invariant arc length.

tively. We will denote their corresponding homoge- Let y1(t1) andyz(t2) two parameterizations of a
neous coordinates by = (x,y,1), p = (X,¥,1) and  geometric curve and its image by a geometric trans-

P=(X,Y,1). LetM =K]I|0] andM’ = K'[R]t] be formationg. After G-invariant reparameterization,
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both curve parameterizations verify the following
equation :

v2(f) =gn(f+t0)), o Zetge G,  (3)
wheretg is departure points difference between the
contours.

Here we study the case of planar projective trans-
formations. Many projective arc lengths have been
introduced in literature. The classical projective arc
length is defined by the following equation (Cartan,
1937).

1 t
o)~ [ VHUldutel01l @)
where
1 2 1 1 1
H(t) = —3pa+ 2—7p3— Sq+3pP+3p",

_dety"(t) y'(t)) __ det(y”(t) y"(t))
o det(y"(t) y'(t)) " T det(y”(t) y'(t))
andL is the curve projective length given by:

1
L :/ YH(W)du.
0

4 PROJECTIVE HARMONIC
INVARIANTS

Let two planar curvey; andy, projectively simi-
lar. After PGL(2)-invariant reparameterization, these
curves given by their homogenous coordinates verify
the following equation:

v2(f) =Hyi(f+10), to€ Z, (5)
whereH is the planar projective transformation ma-
trix andtp is the departure point difference between
the two curves. We recall that a parametric represen-
tation of a planar curve is an 1-periodic function of a
continuous parametér Thus, Fourier coefficients of
the two curve reparameterizations exist and they are
related by:

Calyz] = E#™OHCy[yy], Vn € IN,
wherec,|yi] are Fourier coefficients of.
Thus, PGL(2)-invariant descriptors of a curve
could be constructed as follows :

(6)

1 1 1 1
lip = g ko ks s i = [Bic o ks s

I%z = |A&27k07k1|’ I%s = |A%37k07k1|7
for all k € IN\ { ko, ki, ko, k3},

1 ako—ks aka—k  pk—k
e = B b B ko Bk s 7
where AP, = detfadyl,alyl,emly))?  and

det(xq,x2,X3) denotes the determinant of a ma-
trix which consists of three column vectogs x; and
X3 € R3.

4.1 Invariance

In this section we demonstrate the homography in-
variance of the proposed set of invariants. We
consider a parametric curseand its imagey by

an homography transformatioH. Let M(y) =
[c[C]. 01 V], cmVl] and M (yt) = [ck[Ci], W], CmlW]
respectively the matrices composed byktfel" and

mi" fourier coefficient rows of andy.

LetAL| (v) = det(M(y))P where det(.) is the de-
terminant operator. Thus,
%) (W) =PI det(H) PAR, () (8)

The descriptor set of the transformed cupwés then
given by :

II%(VO: e2in[(ka—kg) (k+ko+ka)+(ka—k) (ko+ky +kp)+--
(k—ka2) (ko + ki +k3)]
_ |de1(H)l(kg—k3+k3—k+k—k2)||%(y)
and

(kg —ks)(k+ko+ k1) + (k3 —K) (ko + Ky + k2)+
(k—k2) (ko + k1 +k3)
ko —kz+ ks —k+k—ko

sol¢(v) = IX(y)-

=0
=0

4.2 Completeness

This set of invariants is not complete. In order to en-
sure the completeness property, we propose to com-
plete it with the two following sets constructed rela-
tively to two other fixed indices dfg, denoted by,
andks :

2 1
iy = D%, ko ks »

IIEZ = |A&2,k4,k1|7 ||33 - |A&3,k4,kl|7
for all k € IN\ {Ka, k1, k2, ks},

Ak K—kp
12 — ko—ks TKka.Ki,ko  Tkg,ka,K3 (9)
K ™ Tkka kg ek pkke
1B ke k| 1Bk ke e
3 1
li = Qi iy ks
3 1 2 1
li, = i ke s i = 1D ke ke |
for all k € IN\ {ks, ky, ko, ks,
ka—k K—ky
13— ko—k3 Aksﬁki,kz Aksﬁki,ks (10)
k ™ Zkks kg ks K T Akke
By ko | 1B i ks
where AP . = det(cly,cly,cmly))?  and

det(xq,x2,X3) denotes the determinant of a ma-
trix which consists of three column vectots x; and
X3 € R3.
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The proof of the completeness property is as fol-
lows: We denote by:

6} = Arg(Dp ko) 03 = Arg(Dis ko)
682 = Arg(Diy i ky) 85 = Arg(Dig iy k)
63 = Arg(Di, ks ky) 83 = Arg(Dig ko k)

We obtain the following system of determinants :

(11)

L k—kg L ko—k  (k—kp)83+(k3—K)6}
_ K3—ks ok —
Dijoty = Il )R [Ig )8 Re &l
pip k3 ) kz kK (k—kp)83+(k3—K)62
Dupoty = Il B T [IG) e e Tl
a3 k— k3 3 k2 K (k—kp)B3+(k3—k)63
S v ca—
Duksky = Il s I )'s e o

(12)
Thus, we can reconstruct the Fourier coefficients
c[C] once the value of the three determinants are
known. So, to determing|C]|, we have the equations
system:
The unique solution is given by :

-ief [ det(E, ¢, [C], i [C])

e ko
c[C] = I det(E, ¢, [C], ¢, [C]) (13)
ko det(E, ¢ [C], ¢, [C))
where
D ko kg
E=| Dxkyky (14)
Dy ks kg
ande‘k"o = Arg(Ak07k57kl).
4.3 Stability

The power valuegk — kz) or (ks — k) could be nega-
tive so the invariant function becomes an hyperbolic
function which is not continuous. In order to solve
this problem, we propose to divide by the correspond-
ing complex modules. So, we obtain the following
stable invariant set :

1 1
= 0% koksl Tk = 1Bk kpka

|k2 = 0% ko ke T = 1B koky |
for all k € IN\ {ko, k1, ko, ka},
ks—k K—ks
|1 tzkokkgl ko, k1 ko kko EJ@ : (15)
|A|<0 Ky, k2| | ko, kl,k3|
where AR, = det(c[C],a[C],cm[C])P  and

det(xl,xz,xg) denotes the determinant of a ma-
trix which consists of three column vectoes x, and
X3 € R3.

Such development is not a rigorous proof of sta-
bility criterion. In future work, we will give a way to
establish the stability property.
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5 CONTOUR FITTING WITH
NURBS

In image analysis, data is always discrete. So approx-
imation or interpolation methods are needed to get a
continuous representation of the studied object. In the
case of objects described by their external contours,
these methods are called curve algorithms. A curve
algorithm is invariant to a transformations group G if
and only if :

g.F(D)=

This means that applying a curve algorithm to the
image by a transformatiog of a data set is equiv-
alent to the image of the curve algorithm applied to
the discrete data by the same transformagohe
NURBS (Non-Uniform Rational BSplingsare curve
algorithms invariant to projective transformations.

In this work, we have used the optimal inter-
polation scheme proposed by (Gaffney and Powell,
1976) since it provides the center function in the band
formed by all interpolants to the given data that, in
addition, have theik!" derivative between-M andM
(for largeM).

F(gD) YgeG,¥vDeD".  (16)

6 EXPERIMENTAL RESULTS

In this section, we present some experiments that il-
lustrate the different steps needed to compute the pro-
posed set of projective invariants. First, we consider
two planar contours obtained up on a projective trans-
formation. Figures 1(a) and 1(c) show the projective
arc length parameterization of both contours. It's im-
portant to notice that the obtained parameters of both
contours are upon a translation. The projective arc
lengths computed in the reparameterization step are
shown in figures 1(b) and 1(d). The performance of
the proposed descriptors set is evaluated using a set
of 204 analytic contours created by performing pla-
nar homographies on a set of six parametric contours
2(a). The planar homographies are obtained by vary-
ing intrinsic and extrinsic camera parameters.

Figures 2(b) and 2(c) show shape matching re-
sults. The distance used to compute similarity be-
tween two contours is the Euclidean one. We notice
that the contoucc— 1 is matched to 21 correct con-
tours. For the case of the contara— 4, 11 contours
are correctly matched. The matching errors are due
to approximations and the required high order deriva-
tives.
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() (d)

Figure 1: Planar contours reparameterization results.
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Figure 2: (a) set of planar contours; (b) and (c) shape magat@sults of contour cc-1 and cc-4.
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