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Abstract: Logical classification of motion data is the precondition of motion editing and behaviour recognition. The 
typical distance metrics of sequences can not identify logical relation between motions well. Based on the 
traditional DTW distance metrics, this paper proposes strategies bidirectional DTW and segment DTW, 
both of which could improve the robustness of identifying logically related motions, and then proposes a 
DTW-Curve method which is used to compare the logical similarity between the motions. The generation of 
DTW-Curve includes three steps. Firstly, motions should be normalized to remove the global translation 
and align the global orientation. Secondly, motions are resampled to cluster local frames and remove 
redundant frames. Finally, DTW-Curve is generated under the control of different thresholds. DTW-Curve 
may produce many statistical properties, which could be used to unsupervised logical classification of 
motions. We propose two types of statistical properties, and classify motion data by using hierarchical 
clustering procedure. The experiment results demonstrate that the logical classification based on DTW-
Curve has better classification performance and robustness. 

1 INTRODUCTION 

Motion capture is a popular way of obtaining 
realistic motions for games and films. Motion data 
are often stored in a motion library with behaviour 
labels. Now, the clips need to be labelled and 
classified manually. And this way consumes too 
much time and energy.  

The crucial point in classification is the 
definition and judgment of the similarity between 
motions. At present, there are two types of 
similarity: numerical similarity and logical similarity 
(Kovar and Gleicher, 2004, Muller et al., 2005). 
Numerical similarity based on numerical comparison 
is usually used in motion editing, motion graph and 
motion synthesis. But logically similar motions need 
not be numerically similar. For example, the motions 
of kicking forward and kicking side have different 
moving track and are not similar according to 
numerical similarity, but they are similar and belong 
to the same motion cluster semantically. 

The classification based on numerical similarity 
is simple, and mature. Dynamic time warping 
(DTW) is a typical metric of evaluating the 
numerical similarity. The basic idea of DTW is to 
find an optimal alignment of two sequences by 
stretching them with respect to time. Because DTW 
warps the local data, DTW distance (the average of 
optimized path) can identify the logical similarity 
between two sequences to some extent. Meanwhile 
there are two disadvantages of using DTW to judge 
the logical similarity between two motions: 
(1) Overly Restricted Constraints 

DTW restricts searching range of optimized path 
to accelerate DTW and avoid illegal problems, such 
as non-monotony, discontinuousness and   
degeneration (Kovar and Gleicher, 2004). However, 
the conditions are overly restrictive for comparing 
logical similarity. 
(2) Poor Robustness 

The DTW distance between two motions is a 
numerical value. It is not robust to judge logical 
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similarity only by a numerical value because of its 
sensitivity to the noise. 

Logical similarity was proposed by Kovar (2004) 
and was used for motion searching. Muller(2005) 
adopted this idea and proposed a better motion 
searching method. Muller(2006) further proposed 
Motion Template which brought the concept of 
logical similarity into motion classification, but MTs 
need more training and learning.  

The purpose of this paper is to build a simple 
logical similarity metric without training. Based on 
DTW, we propose two new strategies (bidirectional 
DTW and segment DTW) to loosen the constraints, 
and propose a DTW-Curve method which can be 
used to compare the logical similarity of two 
motions without training. DTW-Curve may produce 
many statistical properties, which can be used for 
unsupervised logical classification of motions. We 
propose two kinds of statistical information, and 
classified motion data by using hierarchical 
clustering procedure. In order to evaluate the 
classified results, this paper provides Reward-Punish 
Value to evaluate and analyze the results.  

2 RELATED WORK  

Many scientists have researched in motion data 
segmentation and clustering. Lee(2006) used PCA 
method to represent low dimensional motion data, 
and adopted self-organizing map (SOM) to cluster 
these data, finally found Motion Primitives 
Segmentation in motion data. Barbic(2004) 
presented three models of automatic segmentation: 
PCA, PPCA and Gaussian mixture model. 
Souvenir(2005) chose Manifold Clustering method 
to segment simple behavior motion. Seward (2005) 
used non-linear dimension reduction in tangent 
space to segment motion data. Jenkins (2002, 2003, 
2004) derived the action and behavior primitives 
from motion data by using ST-Isomap. The same 
action could be clustered and generalized, and 
further dimension reduction iterations were applied 
to derive extended-duration behaviors. 

The common conception in the methods above is 
using dimension reduction or clustering to identify 
the similarity of motions. The drawbacks of this 
conception are that the quantity of data points will 
affect the clustering, and that the procedure should 
be re-executed if a new motion is concerted. 

The logical similarity of motions is mainly used 
for motion indexing and identifying. Kovar(2004)  
presented a method to locate and extract motion 
segments which were logically similar by using 

multi-step searching. Muller(2005) proposed a class 
of boolean features, called geometric features, to 
express the geometric relations between poses. The 
geometric features are powerful in describing and 
specifying motions at a high semantic level. Based 
on the geometric features, Muller(2006) introduced 
the concept of motion templates(MTs) to capture the 
essence of an entire class of logically related 
motions. Although MTs are powerful concept for 
classification, they need lots of training and learning 
before being used. 

Dynamic time warping (DTW) is a technique 
frequently used for the optimal alignment of 
sequences with given constraints (Cardle 
2004)(Ratanamahatana 2005). Bruderlin and 
Williams(1995) applied it to animation parameters 
in their paper. Subsequent authors used it to align 
motion clips before interpolation (Kovar and 
Gleicher, 2003). Wang(2004) used time warping to 
search appropriate blending length before blending 
motion.  Keogh (2004) indexed a large human-
motion database by using DTW to align the time 
axis. Forbes(2005) found similarities in motion data 
using DTW which must pass some seed points. 
Hsu(2005) proposed iterative motion warping to 
compute dense correspondences between 
stylistically different motions. And Hsu(2007) 
presented a time-warping technique to simplify the 
process of motion editing.  

Schödl(2000) searched the transition points in 
the video sequences to synthesize new video.  
Kova(2002) and Arikan(2002) adopted a similar 
method with Schödl to search direct transition points 
in motion sequences, and constructed a motion 
graph. Gleicher(2003) created a graph structure with 
a small number of hub nodes where transitions were 
to occur. Inspired by them, we loosen the constraints 
of DTW referring to the concept of transition points 
and propose the segment DTW to improve the 
effectiveness of logical classification. 

3 EFFECTIVENESS OF LOGICAL 
CLASSIFICATION  

Many functions can be used to compare the 
similarity of motions. Some of them are effective in 
comparing the numerical similarity, and some are 
effective in measuring the logical similarity. For the 
sake of clarity, we propose two notions to describe 
the classification ability of these functions. 

(1)Effectiveness of Numerical Classification 
(EoNC): EoNC evaluates the performance of a 
function on numerical classification. Good 
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performance means the function can cluster most of 
motions which are numerically similar. DTW has 
perfect performance on numerical classification, so 
it has a high EoNC. However, logical classification 
algorithms may have low EoNC, such as our method, 
because they cluster the motions which are not 
numerically similar. 

(2) Effectiveness of Logical 
Classification(EoLC): EoLC is used to evaluate the 
performance of a function on logical classification. 
If a function has a high EoLC, it can cluster most of 
motions which are logically similar.  

Some motions are similar with their symmetrical 
motions. For example, the two motions of 
“clockwise waving” and “anticlockwise waving” are 
semantically similar to each other, and they belong 
to the same motion cluster(Fig.1 a). However, they 
may not be similar if evaluated by DTW. 

=?

 
(a) 

 
(b) 

Figure 1: Logically similar motions may be numerically 
dissimilar. (a): Clockwise waving and anticlockwise 
waving. (b): Two cross-similar boxing. 

Some motions are cross-similar between their 
segments. For instance (Fig.1 b), a boxing motion is 
composed of three segments (“left-boxing, right-
boxing” and “left-boxing”). Another boxing motion 
is also composed of three segments (“right-boxing”, 
“left-boxing” and “right-boxing”). Both of the 
boxing motions are regarded as logically similar, 
although they have a large DTW distance value. 

In this paper, we presente two strategies to 
identify the symmetrical similarity and cross-
similarity based on typical DTW. 
(1)Bidirectional Dynamic Time Warping (B-DTW) 

In general, a motion 1 2 3( , , ,..., )nN G G G G=  may 
be viewed as logically similar with its symmetrical 
motion 1 2 1( , , ,..., )n n nN G G G G− −′ = . Mathematically, 
given two motions M and N , the DTW distance 

between M and N  is ( , )dtwd M N , and the DTW 
distance between M  and N ′  is ( , )dtwd M N ′ . Then 
the B-DTW distance between M and N  is defined 
as: 

 

( , )B dtwd M N− =min{ ( , )dtwd M N , ( , )dtwd M N ′ } (1) 
 

 B-DTW could improve the effectiveness of 
logical classification by applying DTW in two 
symmetrical directions. 
(2)Segment Dynamic Time Warping(S-DTW) 

We split the motions into some segments and 
compute the B-DTW distance between them. The   
S-DTW distance is defined as the minimum sum of 
B-DTW distance which could cover all the 
segments. 

Take two motions M and N (Fig.2) for example. 
M  is segmented into 1M , 2M  and 3M , and N is 
also split into four segments: 1N , 2N , 3N  and 4N . 

 
Figure 2: Schematic of S-DTW process. 

If all the B-DTW distance between the segments 
are 1 2( , )B dtwd M N− , 2 1( , )B dtwd M N− , 2 4( , )B dtwd M N− , 

3 3( , )B dtwd M N−  and 3 4( , )B dtwd M N− . 
And 2 4( , )B dtwd M N− > 3 4( , )B dtwd M N− . 
There are two ways to sum up the B-DTW distance 
and cover all the segments:  
(a) ( , )S dtwd M N− = 1 2( , )B dtwd M N− + 2 1( , )B dtwd M N− +

3 3( , )B dtwd M N− + 3 4( , )B dtwd M N−  
(b) ( , )S dtwd M N−′ = 1 2( , )B dtwd M N− + 2 1( , )B dtwd M N− + 

3 3( , )B dtwd M N− + 2 4( , )B dtwd M N−  
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Because 2 4( , )B dtwd M N− > 3 4( , )B dtwd M N− , the S-
DTW distance between M and N  is (a). 

Because this algorithm need search the minimum 
of distance, it will contain lots of iterations. If there 
are n  jumps (connection in Fig.2) between M and 
N , !n  times of iteration should be executed and the 
worst-case running time is ( )nO n . In order to 
improve the algorithm’s efficiency, we may reduce 
the time cost by the condition (“cover all the 
segments”) in the definition of S-DTW. If a segment 
has only one jump (connection) with other segments, 
the total times of iteration will fall to ( 1)!n − . This 
improvement could reduce the running time by 97%. 

4 DTW-CURVE GENERATION  

The key of the S-DTW algorithm is splitting the 
motions into segments. In this paper, we propose a 
novel method of segmentation based on distance 
thresholds. Given a threshold, we can identify all the 
potential similar segments and obtain S-DTW 
distance. As the threshold changes, a set of S-DTW 
distance values can be generated, and we define the 
set of values as DTW-Curve.   

The overview of DTW-Curve generation is 
illustrated in Fig.3, which contains three phases. 
Given two motions M and N , firstly, they both 
should be normalized to remove the global 
translation and align the global orientation. Then 
they are resampled to cluster local frames and 
remove redundant frames. Finally, DTW-Curve is 
generated under the control of thresholds. 

Motion Data
M

Normalizing

Resampling

DTW-Curve

Motion Data
N

S-DTW

threshold

 
Figure 3: The overview of DTW-Curve generation. 

4.1 Normalizing  

A motion is fundamentally unchanged by a rotation 
about the vertical axis and a translation along the 
floor plane. For example, all walking towards 

different directions are logically similar. Therefore, 
the global translation should be removed and the 
orientation should be aligned.  

For example, Fig.4(a) is a motion showed in 2D 
space. After rotating, each frame of the motion 
oriented to the same orientation (Fig.4 b). And after 
translating, the roots of all the frames have the same 
position (Fig.4 c). 

 
Figure 4: The process of normalizing. (a): A motion 
showed in 2D. (b): Align the orientation about the vertical 
axis. (c): Remove the global translation. 

4.2 Resampling 

People are sensitive to high-frequency motion, so 
they identify a motion by its high-frequency part. 
The low-frequency segments, such as standing, 
make less contribution to the classification, and even 
result in a wrong classification. For instance, a 
motion M  is composed of standing and boxing, and 
N  is composed of standing and kicking. The longer 
the standing time lasts, the lower the S-DTW 
distance between M  and N  will be. In order to 
overcome this problem, we clustered low-frequency 
frames and generated a new motion.  

Given a normalized motion 1 2( , ,..., )mM F F F= , 

1 2i i id F F+∇ = − denotes first order difference, 

where 
2

•  is L2 norm. If the sum of id∇  in 
continuous k  frames is less than a user-defined 
threshold ε , and the sum in continuous k +1 frames 
is larger than or equal to ε , the k  frames will be 
clustered into one frame. Mathematically, let 

( )Cluster M  denote the new motion after clustering:  
  

( )Cluster M = 2 31 2 , 1 ,, 1
1 2( , ,... )nm m m mm m

nG G G−−  
      = 1 2( , ,... )C nM m m mε  

(2) 

 

where 1, 1i im m
iG + −  is the thi frame in the new motion 

and is generated after clustering the frames ( im  to  

1im + -1) in the old motion. That is, 
1

1

1
, 1

1

1 i
i i

i

m
m m
i k

k mi i

G F
m m

+

+

−
−

=+

=
− ∑  (3) 

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

284



 

In the clustering process, the parameters 
1 2( , ,... )nm m m  are specified by the constraints (4) 

and (5): 
 

ε<∇
−− ∑

−

=+

+ 2

1

1

1
1 i

i

m

mk
k

ii
d

mm
 (4) 

ε≥∇
− ∑

−

=+

+ 1

1

11 i

i

m

mk
k

ii
d

mm
 (5) 

 

The essence of clustering is resampling the 
motion and compressing the low-frequency 
segments. Although the motion length is shortened, 
the high-level behaviour denoted by the motion is 
not changed.  

For example, a motion (420 frames) is composed 
of standing and walking. The distance matrix is 
computed between every pair of frames in the 
motion (Fig.5 left). After clustering and resampling, 
a new motion (78 frames) is generated. The new 
distance matrix is illustrated in the right of Fig.5. By 
comparing the two figures, we can find the motion 
has been compressed without affecting the high-
level behaviour. 

 
Figure 5: Resampling doesn’t change the high-level 
behaviour of motion. Left: The distance matrix of initial 
motion. Right: The distance matrix of resampled motion. 

The clustering not only compresses the motion 
and reduces the length, but improves the computing 
efficiency. What’s more, the clustering can improve 
EoLC, because it only retains the frames which 
contribute to the logical classification. 

4.3 Creating DTW-Curve  

The two motions 1 2( , ,..., )mM F F F=  and 

1 2( , ,..., )nN G G G=   compose a distance matrix 
( , )D M N , where the element 

2
( , ) i jD i j F G= −  

represents the Euler distance between the thi  frame 
of M  and thj  frame of N .  

Given a threshold parameter [0,1]λ ∈  and the 
corresponding threshold δ (Fig.6 a). 

 

δ =(max( ( , )D M N )-min( ( , )D M N )) λ×  
+min( ( , )D M N ) 

(6) 

Several 8-connecting zones(Fig.6 b) are obtained 
by eliminating the elements bigger than δ  in the 
distance matrix D . The 8-connecting zone is an 
area, in which all points are 8-neighbors and below 
the distance threshold in the self-similarity matrix.  

The values in every 8-connecting zone are less 
than or equal to the threshold δ , which means the 
two motion segments in the connecting zone are 
potentially similar pairs of motion segments. We 
define the least enveloped rectangle of the 
connecting zone as Least Similar Zone, which is 
showed in the shadow rectangle of the fig.6(c).  

 
                     (a)                                           (b) 

 
                      (c)                                          (d) 
Figure 6: The process of creating DTW-Curve. (a): Setting 
a threshold parameter. (b): Obtaining several 8-connection 
zones. (c): Defining shadow rectangle as Least Similar 
Zone. (d): computing the bidirectional DTW distances of 
all Least Similar Zones and obtaining the S-DTW distance 
under the threshold. 

Mathematically, the Least Similar Zone is the 
distance matrix of some segments of M  and N , 
and its average distance is less than the average 
distance of every neighbour distance matrixes with 
the same dimension. So the two segments in the 
Least Similar Zone are potentially similar. 
According to the S-DTW algorithm, we compute the 
bidirectional DTW distances of all Least Similar 
Zones, and obtain the S-DTW distance  

( , , )S dtwd M Nλ−  between M  and N  (Fig.6 d), 
where λ  represents threshold parameter, M  and N  
are the motion sequences which are normalized and 
resampled. 

[0,1]λ ∈  is independent of the motion length and 
distance range. Generally, the parameter λ  
determines the total area of the Least Similar Zones. 
As λ  becomes smaller, the total area will become 
smaller and the metric error will become larger. But 
as the total area becomes larger, the robustness of 
method will become poorer. 
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 Especially, when the threshold λ  is equal to 1, 
there exists only one Least Similar Zone which is the 
distance matrix ( , )D M N . That is, 

(1, , )S dtwd M N− = ( , )B dtwd M N−  and EoNC is the 
largest now.  

When λ  is equal to 0, (0, , )S dtwd M N− =0. It 
means the value is meaningless to the logical 
classification and both of EoNC and EoLC are the 
smallest.  

As λ  increases from 0, EoNC and EoLC 
increase gradually. While λ  is approaching to 1, 
EoNC continues to increase, but EoLC decreases 
because of the numbers of Least Similar Zones 
become reduce. (See Figure 7). 

Parameter 

Ef
fe

ct
iv

en
es

s 

10

EoNC

EoLC

 
Figure 7: The EoNC curve and EoLC curve. 

Each threshold parameter λ  is corresponding to 
a S-DTW distance, so we will obtain a set of 

( , , )S dtwd M Nλ−  as the threshold λ  changes. The 
distance curve formed by the set of ( , , )S dtwd M Nλ−  
is called DTW-Curve.  

When the value of λ  is close to 0, the EoLC is 
too low to be used for classification. So we only 
select a segment of DTW-Curve, in which the 
threshold λ  is [0.3, 1]. 

Because DTW-Curve is formed by a set of S-
STW values, it has a higher EoLC and higher 
robustness than a single S-DTW value does. 
Therefore, DTW-Curve is a more feasible method to 
evaluate the similarity of two motions. 

We take an example to further describe the 
features of DTW-Curve. Given three motions 
jumping1, jumping2 and basketball, we can obtain 
DTW-Curves in the threshold parameter range [0.3, 
1] (Figure 8). 

 
Figure 8: Comparing the similarity of three motions based 
on DTW-Curve. S1 denotes the DTW-Curve between 
jumping1 and basketball. S2 denotes the DTW-Curve 
between jumping1 and jumping2. 

Let 1( )S λ denote DTW-Curve between jumping1 
and basketball, and let 2 ( )S λ  denote DTW-Curve 
between jumping1 and jumping2.  

When λ =1, 1(1)S  is almost equal to 2 (1)S . That 
is, judging by the DTW distance, three motions are 
logically similar. However, judging by the DTW-
Curve, the logical distance between jumping1 and 
basketball is larger than the logical distance between 
jumping1 and jumping2, because the curve 1S  is 
above 2S . The result proves that DTW-Curve is 
more reasonable than typical DTW for identifying 
the logical relationship of motions. 

5 LOGICAL CLASSIFICATION  

DTW-Curve could produce many statistical 
properties, which could be used to unsupervised 
logical classification of motion data. In this paper, 
we propose two kinds of statistical information, and 
classify motion data by using hierarchical clustering 
procedure. 
(1)  Weighted DTW Distance  

We take EoLC as the weight, and sum the 
distance of DTW-Curve. Mathematically, the 
weighted DTW distance is defined as: 

 

( , )W dtwd M N− =  
1

0
( ) ( , , )EoLC S dtwW d M N dλ λ λ−⋅∫  

(7) 

 

 We assume the function of EoLC is: 
 

2 2( 0.7) / 2

0 0.3
( ) 1 0.3 1

2
EoLC x

x
W x

e xσ

σ π
− −

≤⎧
⎪= ⎨ < <⎪⎩

 (8) 

 
where the standard deviationσ  is 0.3. 
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In order to improve the efficiency, we adopt the 
sum of discrete value instead of integral in the 
algorithm. We split the parameterλ  into 8 intervals: 
(0,0.3], (0.3,0.4] , (0.4,0.5], (0.5,0.6], (0.6,0.7], 
(0.7,0.8], (0.8,0.9] and (0.9,1]. And only a parameter 
is selected in each interval randomly. 

The distance between the cluster iD  and jD  is 
defined as: 

( , ) max( ( , ))
i
j

i j W dtwM D
N D

d D D d M N−∈
∈

=  
(9) 

 

When the minimum of ( , )i jd D D  is larger than 
classification threshold μ , the procedure will finish. 
And the algorithm is also called complete-linkage 
algorithm.  
(2) Fuzzy Distance 

In this algorithm, the distance of motions is 
expressed by an interval, called fuzzy distance. The 
fuzzy distance is defined as: 

 
[ ] ( , )d M N⋅ = [ , ]a b =  

[min( ( , , )),max( ( , , ))]S dtw S dtwd M N d M Nλ λ− −  
(10) 

 

where [0.3,1]λ ∈ . 
Then the distance between the clusters iD  and 

jD  is defined as: 
 

( , ) [ , ]i jd D D c d= =  

[ ] [ ][min( ( , ). ),max( ( , ). )]
i i
j j

M D M D
N D N D

d M N a d M N b⋅ ⋅∈ ∈
∈ ∈

 (11) 

 

In the algorithm, there are two parameters: 
classification threshold μ  and fuzzy parameterτ . If 
the value of ( )d c cτ− × +  is less than μ , the two 
clusters can be merged. When fuzzy parameterτ  is 
0, the algorithm can be called single-linkage 
algorithm. And whenτ  is 1, the algorithm can be 
called complete-linkage algorithm. In the 
implementation, we setτ =0.5. 

6 EXPERIMENTS AND RESULTS  

We implemented our algorithms in Matlab and ran 
the experiments on a machine with 1GB of memory 
and 2.8 GHz Pentium D processor.  

We random selected 80 motion sequences from 6 
clusters, and each motion sequence consisted of 
about 800 frames. These sequences included 11 
basketball, 6 soccer, 7 boxing, 17 jumping, 20 
running and 19 walking. 

We calculate the DTW distance matrix, weighted 
DTW distance matrix and fuzzy distance matrix of 
the 80 motion sequences. And we cluster them using 
the algorithm in the section 5. As the classification 
threshold μ changes, we obtain a κμ -  curve (Fig. 
9), where k  is the number of clusters. 

 
Figure 9: The κμ -  curves based on three types of 
distance. 

The Fig.9 illustrates that the logical classification 
based on DTW-Curve has some advantages below: 

(1) Good performance of classification: When 
using traditional DTW distance, the difference 
between the threshold value corresponding to the 
number of clusters 5 and the threshold value 
corresponding to the number 7 is unobvious. That is, 
the threshold strip of the number 6 is narrow and has 
poor performance of classification. When using the 
algorithm proposed in this paper, the threshold strip 
of the number 6 is broader and has better 
performance. 

(2) Good extensibility: We can obtain many 
statistical properties from DTW-Curve, and all of 
them can be used for classification. That is, the 
algorithm proposed in this paper has better 
extensibility than traditional DTW. 

In order to evaluate the classification error, we 
propose an evaluating metric: Reward-Punish Value. 
Its main idea is rewarding the classification 
algorithm which clusters two motions correctly, 
otherwise punishing it. Mathematically, given a 
classification algorithm f . It classifies motion 
sequences to K  clusters, which are  1C , 2C ,…, and 

KC . We define the Reward-Punish Value of f  
under the numbers of clusters K  as: 

 

1

( , ) ( , )
i k
j k

K

RP i j
k M C

M C
i j

V f K F M M
= ∈

∈
≤

= ∑ ∑  
(12) 

Where 
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1 ( ) ( )
( , )

1 ( ) ( )
cluster M cluster N

F M N
cluster M cluster N

=⎧
= ⎨− ≠⎩

 (13) 

 

If the two motions belong to the same cluster, 
F =1�or else F = -1. When the number of clusters 
is 6, we calculate the Reward-Punish Values of three 
types of classification algorithm (see Fig. 10) . 

 
Figure 10: The Reward-Punish Values of three types of 
classification algorithm. 

The Reward-Punish Value of the best 
classification algorithm is 1176. The fig.10 
illustrates that all of the three algorithms could not 
reach the maximum value, but compared to the 
traditional DTW method, the algorithms in this 
paper could obtain larger Reward-Punish Values and 
the results are closer to the best classification.  

7 CONCLUSIONS  

Based on traditional DTW distance, this paper 
proposed two strategies (bidirectional DTW and 
segment DTW) and a method (DTW-Curve) to 
compare the motions logical similarity. Comparing 
to conventional DTW, DTW-Curve had better 
logical classification performance and robustness. 

Then we proposed two types of statistical 
properties (Weighted DTW Distance and Fuzzy 
Distance), and classified motion data by using 
hierarchical clustering procedure. And we compared 
them with DTW distance metric by using Reward-
Punish Value. The experiment showed that DTW-
Curve method could lead to more reasonable logical 
classification results. 
Based on the current work, the further work is 
probably as follows: 
(1) Motion recognition and retrieval. DTW-Curve 
can identify logical similarity more effectively, so 
we can extend the method to unsupervised motion 
recognition and retrieval.  
(2) Algorithm efficiency. One major drawback of 
DTW-Curve is that it can not be generated real-time 
because of lots of iterations. So we should improve 
the algorithm efficiency in the future. 
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