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Abstract: In this paper we present a new approach for interactive view-dependent rendering of large polygonal datasets,
which relies on advanced features of modern graphics hardware. Our preprocessing algorithm starts by gener-
ating a simplified representation of the input mesh. It then builds a multiresolution hierarchy for the simplified
model. For each face in the hierarchy, it generates and assigns a displacement map that resembles the original
surface represented by that face. At runtime, the multiresolution hierarchy is used to select a coarse view-
dependent level-of-detail representation, which is sent to the graphics hardware. The GPU then refines the
coarse representation by replacing each face with a planar patch, which is elevated according to the assigned
displacement map. Initial results show that our implementation achieves quality images at high rates.

1 INTRODUCTION

Polygonal meshes dominate the representations of 3D
graphics models due to their compactness and sim-
plicity. Recent advances in design, modeling, and ac-
quisition technologies have simplified the generation
of 3D models, which have led to the generation of
large 3D models. These models consist of millions
of polygons and often exceed the rendering capabili-
ties of advanced graphics hardware. Therefore, there
is a need to reduce the complexity of these models
to match the hardware’s rendering capability, while
maintaining their visual appearance. Numerous algo-
rithms have been developed to reduce the complex-
ity of graphics models. These include level-of-detail
rendering with multiresolution hierarchies, occlusion
culling, and image-based rendering.

View-dependent rendering approaches change the
mesh structure at each frame to adapt to the appro-
priate level of detail. Traditional view-dependent ren-
dering algorithms rely on the CPU to extract a level-
of-detail representation. However, within the dura-
tion of a single frame, the CPU often fails to extract
the frame’s geometry. In addition, communication be-
tween the CPU and the graphics hardware often forms
a severe transportation bottleneck. These limitations
usually result in unacceptably low frame rates.

Cluster-based multiresolution algorithms over-
come the CPU limitation by subdividing the dataset
into disjoint regions called clusters or patches, which

are simplified independently. These algorithms man-
age to reduce the time required to extract an adaptive
level of detail. However, the partition into patches of-
ten does not take into account fine object space error
and the generated clusters usually fail to reduce mem-
ory requirements.

In this paper, we present a novel cluster-based
multiresolution approach and an efficient view-
dependent rendering algorithm. In an off-line stage,
our algorithm simplifies the input model to reach a
coarse representation. It then constructs a multireso-
lution hierarchy for the simplified model. Each face
in the hierarchy includes a compact representation of
an original model’s patch.

The currently available graphics hardware pro-
vides advanced functionalities, such as a pro-
grammable pipeline and vertex texturing. These fea-
tures necessitate the development of new algorithms
and techniques to leverage the introduced capabilities.

Our algorithm utilizes advanced graphics hard-
ware to efficiently represent patches as displacement
maps, which are generated by sampling the surface
of the original model. At runtime, the CPU extracts a
coarse view-dependent level-of-detail representation
from the multiresolution hierarchy and sends it to the
graphics hardware. Within the graphics hardware, the
GPU refines each face by replacing it with a cached
planar mesh, and elevating the inserted vertices using
the assigned displacement map.
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Figure 1: The wireframe and shaded representation of a coarse front of the Armadillo model and the refined representation.

Our approach uses an error-guided subdivision to
partition the input model into disjoint patches, whose
geometry is compactly encoded using displacement
maps. Processing a coarse representation by the CPU
and applying mesh refinement using the GPU dynam-
ically balance the rendering load among the CPU and
the GPU, and dramatically reduce the communication
load between them. Our approach manages to seam-
lessly stitch adjacent patches without adding extra de-
pendencies or sliver polygons.

In the rest of this paper, we discuss closely related
work. Then we present our framework followed by
implementation details and results. Finally, we sum-
marize our work, present conclusions, and suggest po-
tential directions for future work.

2 RELATED WORK

In this section, we briefly discuss closely related re-
search.

View-dependent rendering schemes usually rely
on multiresolution hierarchies that encode various
levels of detail of the original model. Earlier ap-
proaches (Hoppe, 1997; Luebke and Erikson, 1997;
De Floriani et al., 1998; Pajarola, 2001) assume that
the multiresolution hierarchy fits entirely into local
memory and the extraction of adaptive levels of de-
tail is performed with the CPU.

Several approaches accelerated view-dependent
rendering by reducing dependencies limitation which
is used to validate the split and merge operations (Kim
and Lee, 2001), or integrating occlusion culling
within the view-dependent rendering frameworks (El-
Sana et al., 2001; Yoon et al., 2003). To handle large
datasets that do not fit in local memory, several ex-
ternal memory view-dependent rendering algorithms
were developed (El-Sana and Chiang, 2000; DeCoro
and Pajarola, 2002).

As the rendering capability of graphics hardware

improves and the size of datasets increase, the extrac-
tion of appropriate levels of details within the duration
of a single frame becomes impractical for the CPU.
To overcome this limitation, cluster-based approaches
have been introduced (Erikson and Manocha, 2001;
Cignoni et al., 2004; Yoon et al., 2004).

The advances in graphics hardware have led to the
development of algorithms that inherently utilize the
introduced hardware capabilities. Several approaches
used the fragment processor to perform mesh sub-
divisions (Losasso et al., 2003; Bolz and Schröder,
2005). The vertex processor was used to interpolate
different resolution meshes in a view-dependent man-
ner (Southern and Gain, 2003), deform displacement
maps (Schein et al., 2005), and map relief textures
onto polygonal models (Policarpo et al., 2005). Dis-
placement maps and the fragment processor were also
used to accelerate image-based rendering (Baboud
and Décoret, 2006; Kautz and Seidel, 2001).

Most GPU-based level-of-detail algorithms were
designed for height fields and terrain datasets (Livny
et al., 2007; Cignoni et al., 2003; Wagner, 2004;
Dachsbacher and Stamminger, 2004; Hwa et al.,
2005; Asirvatham and Hoppe, 2005; Schneider and
Westermann, 2006). Little work has been done to deal
with general 3D models. The programmable GPU
and displacement maps were used to approximate
general meshes (Doggett and Hirche, 2000; Guskov
et al., 2000) and for adaptive real-time rendering (Ji
et al., 2005; Donnelly, 2005; Hirche et al., 2004).

3 OUR APPROACH

In this section we present our framework for
interactive rendering of large polygonal datasets,
which leverages modern GPU capabilities, such as
programmability, vertex texturing, and geometry
caching. In a preprocessing stage, our algorithm sim-
plifies the input mesh, and then generates a multireso-
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lution hierarchy for the simplified representation. For
each facef of the multiresolution, the algorithm con-
structs and assigns a displacement map that resembles
the original surface’s patch, corresponding tof . At
runtime, the hierarchy is used to select an appropri-
ate view-dependent level-of-detail representation (of
the simplified mesh), which we call thefront mesh.
In each frame, the front mesh is sent to the graph-
ics hardware for rendering. Within the graphics hard-
ware, the GPU refines the front faces by replacing
each face with a cached triangular planar mesh, which
we call thegeneric tile. Finally, the vertices of the tri-
angular mesh are elevated according to the assigned
displacement map (See Figure 3).

3.1 Terminology

Let us define the normalni at an internal pointqi in
the trianglet as the interpolation of the three normals
at its vertices according to the distance of the normals
from qi . We shall refer to the normalni as theinter-
polated normal.

Let M be a triangular mesh, andS be a simpli-
fied version ofM. The vertexui ∈ S defines its cor-
responding pointxi on M by shooting a ray from the
vertexui , toward the meshM, along the normalni at
ui . An edgeui,u j is projected onto the shortest poly-
line onM connecting corresponding pointsxi andx j .
The triangleti ∈Swith vertices{ui,u j ,uk} determines
a patchpi on M, which is defined by the three inter-
section pointsxi , x j , andxk. If the patchesp0, · · · , pl
do not overlap, and every point inM is covered by ex-
actly one patch (except the boundary polylines), we
say thatS correspondsto M, and the triangleti ∈ S
correspondsto the patchpi ∈ M defined byti .

A patchpi is denoted as anelevationof its corre-
sponding triangleti if and only if a ray shot from any
pointqi ∈ ti along the normal atqi intersects the patch
pi at exactly one point (see Figure 2). A polygonal
meshM is anelevationof another polygonal mesĥM
if and only if M̂ correspondsto M and every patch
pi ∈ M is anelevationof its correspondingtriangle
ti ∈ M̂. A simplification algorithmpreserves elevation
if the input mesh is anelevationof every approxima-
tion generated by this algorithm (see Figure 2).

3.2 Model Simplification

Our framework requires the use of a simplification al-
gorithm thatpreserves elevationto generate an initial
approximation. This requirement is essential to define
a correspondence between the triangles of the simpli-
fied mesh and the patches of the original mesh, where

(a) (b)

Figure 2: The preserve elevation property (a) not preserving
elevation, and (b) preserving elevation.

Figure 3: An 8-face front for a sphere model, its generated
subdivision, and its refined representation.

every patch is an elevation of its corresponding trian-
gle (see Figure 3).

In typical view-dependent rendering, the selection
of the view-dependent level-of-detail representation is
performed using the CPU. However, the CPU often is
not capable of traversing and updating large adaptive
meshes within the duration of a single frame. For that
reason, we simplify the input model to reach an initial
representation and a small multiresolution hierarchy.

In order to generate an initial model, our algorithm
uses the half-edge simplification operator and the
quadric error metric (Garland and Heckbert, 1997).
However, by using both of these operators in conjunc-
tion, we risk obtaining a model that may not preserve
elevation. Therefore, during the simplification pro-
cess, we maintain a normal-cone for each vertexv,
which encodes the normals of its adjacent triangles
and those in its subtree. A half-edge collapse is de-
fined as valid if it does not result in a normal-cone
(for any affected vertex) that exceeds a half sphere.
The simplification algorithm executes only valid half-
edge collapses, one by one, which are ordered by their
quadric error value. The algorithm proceeds until it
reaches the target polygon count, or until no valid col-
lapses are left. The resulting mesh is used as the ini-
tial model for the construction of the multiresolution
hierarchy. To generate a multiresolution hierarchy for
the simplified mesh, one can use any of the previously
developed schemes (see Section 2).

Our approach requires preserving elevation prop-
erty among consecutive simplification steps, which
means that the meshMi should be an elevation of the
meshMi−1. In such a scheme, the elevation prop-
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erty may not be preserved with respect to the original
model, as this may prevent reaching necessary coarse
resolutions.

3.3 Generic Tile Structure

The generic tile is a triangle uniformly subdivided
into smaller triangles such that the number of vertices
along each one of its edges is the same. We shall refer
to the number of vertices along an edge of a generic
tile as thedegreeof the tile. A generic tile of degreek
includes(k−1)2 triangles andk(k−1)/2 vertices.

The generic tile is used in two different steps of
our framework, the off-line preprocessing and the
real-time rendering (see Sections 3.4 and 3.6). These
two steps involve a geometric transformation, map-
ping the generic tile to match the scale and orientation
of the processed face.

Figure 4: The mapping of a generic tile onto a front face
and the mapping of a tile vertexw to T (w) on the refined
front face.

We position the generic tile such that the three cor-
ner vertices of the generic tile are(1,0,0),(0,1,0),
and(0,0,1), and the coordinates of the remaining ver-
tices are determined accordingly.

The transformationT of the generic tile into an in-
put trianglet is performed by mapping the vertices
of the generic tile into the trianglet (refer to Fig-
ure 4). The position of each vertex in the mapped tile
is calculated using Equation 1a, wherewx, wy, and
wz are the coordinates of the tile vertexw, andv0,
v1, andv2 are the vertices of the trianglet. Note that
in such a scheme, the initial vertices of the generic
tile are mapped to the three vertices of the triangle
(T([0,1,0]) = v0, T([1,0,0]) = v1, andT([0,0,1]) =
v2). The normals at the mapped vertices are calcu-
lated in a similar manner using Equation 1b.

T (w) = wx∗ v0 +wy∗ v1+wz∗ v2 (1a)

N (w) = wx∗n0+wy∗n1+wz∗n2 (1b)

3.4 Displacement Maps

In the preprocessing stage, a displacement map is as-
signed to each face of the multiresolution hierarchy
to enable the recovery of the corresponding patch in
real-time rendering. The generation of these displace-
ment maps is performed using the generic tile.

For a generic tile of degreek, we define a dis-
placement map that includesk(k−1)/2 values, as the
number of vertices in the generic tile. The generic tile
is then mapped onto the input face and an elevation
value is computed and assigned to each vertexvi of
the mapped tile. The elevation value forvi is deter-
mined by shooting a ray along the interpolated nor-
mal atvi , and computing the distance betweenvi and
the sample pointxi on the patch. The sample pointxi
is determined based on the sampling method (refer to
section 3.5). In addition, we store the sampling error
ε for each face, and consider it later in the real-time
level-of-detail extraction.

Note that vertices along the edgeek = vi ,v j are de-
termined by the two verticesvi andv j (refer to Equa-
tion 1a). As a result, refined vertices along common
edges have exactly the same position and the same
normal, which provide a common polyline for each
two adjacent patches (see Figure 5).

Figure 5: The refinement of the common edge of two adja-
cent faces results in exactly the same polyline.

3.5 Patch Sampling

Generating the displacement map for an input face is
practically the sampling of its corresponding patch.
According to Shannon’s theorem (Shannon, 1948),
for faithful sampling of an input functionf , one needs
to sample with more than twice the frequency of
the highest-frequency component off . In our ap-
proach, the sampling resolution is dictated by the de-
gree of the generic tile. Since our error-guided par-
tition scheme usually results in patches with low lo-
cal curvature, sampling artifacts are barely noticeable.
However, sometimes the constructed subdivision fails
to resemble the original surface and the naive sam-
pling does not provide quality images.

To overcome the above sampling limitation, we
consider the neighborhood of each sample when de-
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termining its value. We have developed two sam-
pling algorithms – geometric simplification guided,
and interpolation-based – to determine the appropri-
ate value of a sample. The two approaches compute
the intersection of the rays with the patch, and de-
termine the neighborhood of a sample as the region
bounded by its eight adjacent rays.

The geometric simplification based approach sim-
plifies the neighborhood of an intersection point and
recomputes the intersection of the ray together with
the resulting surface. The second intersection is taken
as the sample’s value. The simplification is performed
only on the neighborhood while allowing limited sim-
plification on the boundary. To achieve faithful sim-
plification, we use the quadric error metric to order
the full edge collapses and determine the resulting
vertex position.

Our interpolation-based sampling algorithm inter-
polates the triangles within the neighborhoodδ of the
sample pointp. To compute such an interpolation,
one could bilinearly interpolate the centroids of the
triangles (c(t)) within δ weighted byw(t), which de-
pends on the size of the trianglet and its Euclidean
distance fromp (see Equation 2).

The weight of a triangle is proportional to its
size, and inversely proportional to its distance from
p. However, it is not easy to distribute the triangle
weight into the two factors – triangle size, and its dis-
tance fromp. For this reason, we uniformly subdivide
the neighborhood into almost equal cells in our cur-
rent implementation. The value of each cell is defined
as the average of the centroids of the triangles or frac-
tion of triangles that intersect the cell, weighted by
their size. Since the cells are almost the same size, we
only need to consider their distance from the sample
point p when interpolating the neighborhood ofp.

p = ∑
ti∈δ(p)

c(ti)w(ti) (2)

3.6 Real-Time Rendering

In real-time, the CPU relies on the multiresolution hi-
erarchy to extract appropriate fronts, based on view-
parameters and illumination. The front should be de-
tailed enough to represent the visualized model with
respect to the view-parameters, but coarse enough to
be extracted within the duration of one frame.

In each frame, the adaptation process which runs
on the CPU, traverses the front nodes. For each active
noden, it determines whethern needs to be refined,
simplified, or remain in its current level. The updated
front is sent to the graphics hardware for rendering.

Within the graphics hardware, a single instance of
the generic tile is cached in video memory. In each

frame, the received front is refined by mapping the
generic tile into each face. Equation 1a and Equa-
tion 1b are used to determine the position of the re-
fined vertices and their interpolated normals, respec-
tively. For each vertexvi on the refined face, a dis-
placement valuedi is fetched from the assigned dis-
placement map, and used to elevatevi along its nor-
mal. As a result, each face is replaced with(k−1)2

triangles, wherek is the degree of the generic tile (re-
fer to Section 3.3). The total number of rendered tri-
angles is(k−1)2 times the number of triangles in the
front. In order to maintain interactivity, the total num-
ber of rendered triangles should not exceed the ren-
dering capabilities of the graphics hardware.

3.7 External Video Memory

The size of large polygonal datasets often exceeds the
capacity of main memory. Even though we assume
the simplified representation fits in main memory, the
displacement maps for large datasets may not fit in
video memory. Handling large datasets usually in-
cludes two uploading stages – from an external me-
dia into main memory and from main memory into
video memory. Uploading data from external media
into main memory has been widely studied (see Sec-
tion 2), and is beyond the scope of this paper.

The limited size of video memory in current hard-
ware calls for the design of schemes that load data
from main memory into video memory. Our External
Video Memory (EVM) manager uses a single texture
as a buffer, and manages data replacement effectively.

The EVM allocates a video bufferB which is im-
plemented as a texture that fits in video memory. Each
cached displacement map is stored as one row in the
video buffer. For every cached displacement map, the
EVM maintains anid, a priority, and anindex. The
id is the displacement map identifier,priority mea-
sures the probability of reusing it, andindexis a ref-
erence to the video buffer where the data is cached.
The EVM caches displacement maps required for the
next frame. In addition, it caches displacement maps
assigned to several tree levels above and below the
front level-of-detail, based on the available memory
space. The priority of a displacement map is deter-
mined by its distance from the front along the levels
of the hierarchy and its assigned errorε (refer to Sec-
tion 3.4). When it is needed to replace a displacement
map, the entry with the lowest priority is replaced by
the newly loaded displacement map.

DISPLACEMENT PATCHES FOR GPU-ORIENTED VIEW-DEPENDENT RENDERING

185



(a) (b) (c)

Figure 6: Asian Dragon Model: (a) the partition into patches(b) sampling error using interpolated base sampling, and (c) the
final image after GPU refinement.(green and red colors represent minimum and maximum error, respectively).

4 IMPLEMENTATION DETAILS

We have implemented our algorithm in C++ and Cg,
and adopted view-dependence trees (VDT) to main-
tain a multiresolution hierarchy with displacement
maps and support view-dependent rendering. We la-
bel this VDT with displacement maps asDM-VDT.
Quadric error metric (Garland and Heckbert, 1997) is
used to order the execution of the half-edge collapses.

A single generic tile, which is cached in video
memory as a Vertex Buffer Object (VBO), is repre-
sented by two arrays. One array encodes the vertices’
coordinates and the other encodes its triangle strip or-
der, for efficient rendering.

Since all displacement maps have the same size,
they can be easily stored in an array of displacement
maps, where each displacement map occupies a one-
dimensional array of elevation values. Such a scheme
avoids storing triangular maps in a rectangular texture
and, thus, simplifies memory management.

To maintain the original visual appearance, we en-
able the refinement process to recover the original sur-
face using approximately the same number of trian-
gles. It is important to note that the recovered surface
is a sampling of the original one, which may result in
small differences between them.

To achieve quality images, the screen-space error
must be determined for the selected front. Given a
screen-space errorτ and a generic tile of degreek,
one can usekτ as the screen-space error to determine
the front. The refinement of this front would lead to
a final screen-space errorτ. Unfortunately, in such a
scheme the actual screen-space error may exceedτ as
a result of an under-sampling error. To overcome this
limitation, we take into account the sampling errorε
at front extraction. The screen-space error of a face
f depends on its distance from viewpoint, its orienta-
tion, and its sampling errorε.

5 RESULTS

We have tested our implementation using various
datasets with different complexities and have obtained
impressive results. In this section, we report samples
of these tests and their results which were obtained us-
ing a PC with 2.13 GHz Pentium Dual-Core, 2GB of
memory, and an NVIDIA GeForce 8800 GTX graph-
ics card with 768MB video memory.

5.1 Performance

Table 1 reports off-line construction time of view-
dependence trees. The first two columns present
the properties of the tested models. TheVDT and
DM-VDT columns show the preprocessing time and
memory requirements of the classic view-dependence
trees (El-Sana and Varshney, 1999), and the proposed
approach. As can be seen, the total DM-VDT pre-
processing time is less than that of the classic VDT,
as a result of starting with a simplified representation.
In addition, the space complexity of our hierarchy is
less than 1/7 of that of the classic VDT, which results
from compactly representing the lower levels using
displacement maps (more in Section 5.2).

Table 2 summarizes real-time performance for
datasets that fit entirely in video memory. The first
two columns report the generic tile properties. The
last two columns show the performance, measured
in millions of triangles. These results were com-
puted by averaging the rendering of 1000 frames. The
peak performance of our graphics hardware is 280M
∆/secwhen rendering cached VBO of indexed tri-
angle strips. The peak performance drops to 267M
∆/secwhen fetching one elevation per vertex. As can
be seen, the transmission cost of a front is inversely
proportional to tile’s degree. In practice, our algo-
rithm is GPU-bound at tiles of degreek = 33. The
difference between the peak performance of 280M
∆/secand the achieved performance of 267M ∆/sec
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Table 1: Preprocessing time, memory requirement, and real-time performance.

Model VDT DM-VDT Face-Quality Runtime Runtime
Dataset Size Time Space Time Space

(min : sec) (MB) (min : sec) (MB) ME MSE ME MSE ( f ps)
A. dragon 7.2M 63:29 327 49:09 49.7 0.44 0.010 0.67 0.12 130
T. statue 10.0M 81:23 461 68:10 63.6 0.38 0.033 1.52 0.45 89
Lucy 28.1M 217:45 1271 191:58 178.1 1.23 0.024 1.70 1.08 64
David 56.2M 420:09 2568 332:20 365.7 0.80 0.017 1.68 1.21 64

is a result of unavoidable CPU work and an additional
minor CPU-GPU communication load. Therefore,
tiles of higher degrees, such ask = 65, also receives
267M ∆/sec, and are useless because they reduce the
flexibility of the level-of-detail selection. Moreover,
tiles of degreek = 65 and higher, exceed the maximal
texture size supported in modern GPUs. According
to our results, the processing time of a frame is dis-
tributed as follows: 4% for level-of-detail selection,
24% for front transportation, and 72% for GPU-based
refinement.

Table 2: The performance with respect to tile degrees.

Tile Triangles VBO Vertex fetch
degree in a tile (∆/sec) (∆/sec)
9 64 154M 146M
17 256 216M 212M
33 1024 278M 264M

Our algorithm is designed to utilize the NVIDIA
GeForce 8 series. However, vertex texturing is al-
ready supported from the NVIDIA GeForce 6 series.
We have tested our implementation on a NVIDIA
GeForce 7800 GTX graphics card with 256MB video
memory, and compared it with a GeForce 8800 GTX.
We have found that the triangle throughput of the
GeForce 7 series is only 20% the throughput of the
GeForce 8 series. This is a direct result of the differ-
ences in the architecture of the GPUs. Our algorithm
relies heavily on vertex texturing, and therefore, its
performance is directly affected by the number of ver-
tex processors. The GeForce 7800 GTX (as well as
previous graphics cards) separates the vertex proces-
sors from the fragment processors. Because of this,
the GeForce 7800 GTX has only a few vertex proces-
sors, which limits the speed of vertex texturing. In
contrast, the GeForce 8800 GTX has a unified archi-
tecture in which the processors are general. Each pro-
cessor can be used as a vertex processor and therefore
accelerate the speed of vertex texturing. Since our
algorithm utilizes the vertex processors optimally, de-
spite the limitations of the GeForce 7800 GTX archi-
tecture, peak performance of the card is still achieved.

5.2 Image Quality

The quality of the resulting images is measured us-
ing two error metrics –sampling-qualityandscreen-
spaceerrors. Thesampling-qualityerror for a facef
is defined as the average distance between its refined
mesh and its corresponding patch. Thescreen-space
error is the screen projection of the average distance.

Table 1 reports the error and rendering time over
various datasets. The sampling-quality and screen-
error columns show maximal error (ME) and mean
square error (MSE). The last column reports the re-
sulting frame rates (fps) for a screen-space errorτ ≤ 2
pixels. As can be seen, our algorithm achieves high
image quality at interactive rates. As a result of se-
lecting coarse fronts, our approach requires only 8%
extra triangles (after face refinement) in comparison
to classic VDT, to reach the same image quality. The
two last rows in Table 1 report the same performance
(fps) for the Lucy and the David models, as a result
of using the same screen space errorτ in the tests,
thus rendering approximately the same number of tri-
angles for these two models. Using a uniform subdi-
vision for faces sometimes results in an overly large
number of triangles. This occurs when the patch rep-
resented by a face is close to planar. However, in or-
der to prevent such cases, our algorithm uses runtime
error control to adapt the selected level of detail to the
required quality. Therefore, when a face is close to
planar, our algorithm will select a more coarse repre-
sentation of the same area.

Figure 1 shows four images that illustrate the flow
of our approach. The two images in Figure 1(a) and
1(b) show the selected coarse front, and the images
in Figure 1(c) and 1(d) show the same front after be-
ing refined by the GPU. Figure 9 shows a color cod-
ing of the accuracy of the three sampling algorithms –
naive, simplification guided, and interpolation-based
(see Section 3.5) – using the David model. As can be
seen, the interpolation-based approach provides the
best results, and the naive approach provides the least
accurate sampling. Figure 10 illustrates the flow and
performance of our approach using the Lucy model.
The models Figure 9 and Figure 10 were rendered
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at approximately 64 fps with pixel error less than 2.
Figure 7 shows a close-up view of the David model.
In order to emphasize potential screen-space error,
we used a large error,τ = 15. Figure 6 shows the
coarse front (which is the same as mesh partition
into patches), the sampling error, and the final image
(after GPU refinement) of the Asian Dragon model
(7.2M f aces). Figure 8 presents the tradeoff between
the degree of the generic tile and the visual quality (as
pixel error), as was measured on the Lucy model.

(a) (b)

Figure 7: A closeup of the David Model: (a) A shaded view
of the model, (b) The screen-space errors (green and red col-
ors represent minimum and maximum error, respectively).

Figure 8: The screen-space error for Lucy, according to the
number of triangles for different tile degreesk.

5.3 External Video Memory

Table 3 presents the performance of our external
video memory scheme with respect to different tile
degrees. The third column reports the number of dis-
placement maps that fit into a 16MB EVM buffer (a
single texture). The face binding column shows the
number of displacement maps we were able to up-
load into the video memory within a second, while
EVM is disabled. Without EVM, it was not possi-
ble to achieve interactive rates for a front that con-
tained more than 100 faces. The EVM column reports
the number of displacement maps uploaded into the

video memory within a second, when EVM was en-
abled. It is apparent that the EVM manager improves
caching speed by a factor 30. In addition, the EVM
manager enables temporal coherence among consecu-
tive frames – our results show that at least 94% of the
displacement maps required for the next frame, are al-
ready cached in the video buffer. When comparing the
caching efficiency of different tile degrees (referring
to the number of cached elevation values per second),
we conclude that the larger the generic tile, the better
the utilization of the communication channel.

Table 3: The performance of EVM manager.

Tile Faces Entries Face EVM
degree in a tile in a buffer binding
9 64 373K 3.5K 147K
17 256 94K 2.7K 78K
33 1024 29K 2.5K 30K

5.4 Comparison with Other Algorithms

Next, we compare our approach with some of the
previously developed level-of-detail rendering ap-
proaches based on their published results.

The HLOD (Erikson and Manocha, 2001), the
Tetrapuzzles (Cignoni et al., 2004), and the Quick-
VDR (Yoon et al., 2004) algorithms present a level-
of-detail rendering algorithm that uniformly subdi-
vide an input 3D model into disjoint patches, which
are simplified, ordered in triangle strip formats and
stored in a VBO. These algorithms explicitly store the
geometry of the input model in a hierarchy, and uti-
lize only limited geometry transfer formats (several
non-optimized triangle strips for a single patch). In
contrast, our approach represents patches as displace-
ment maps. Using displacement maps for implicit
representation of a model saves approximately 85%
of the application’s memory. Moreover, the generic
tile is cached in an optimized triangle strip, which
implies a single transportation and rendering pass for
each face. We compare our algorithm to those algo-
rithms using models that fit entirely into main mem-
ory. In such a scenario, these algorithms are GPU-
bound and render approximately 280M∆/sec, using
our PC. As a result of using an error guided subdi-
vision scheme, our algorithm is able to utilize CPU-
based patch culling during runtime. Using CPU-
based culling for patches in GPU-bounded algorithms
increases the performance beyond the maximum ren-
dering capability of the GPU. Our algorithm increases
the performance by 35%, and renders approximately
356M∆/sec. In addition, our algorithm requires only
87% of the triangles required by the above mentioned
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approaches, to reach a two-pixel error image quality.
This also means that the rendering performance of our
algorithm is faster by 16%.

Ji et al. (Ji et al., 2005) suggested a GPU-based
view-dependent rendering that selects and renders a
level-of-detail within the GPU. Instead of fully imple-
menting their approach using the GPU, they emulated
a GPU using a CPU-based implementation, as a result
of the complexity of their algorithm. The simplicity
of our approach leads to a straightforward implemen-
tation (using several Cg instructions) that efficiently
utilizes the processing power of the GPU.

(a) (b) (c)

Figure 9: The accuracy of (a) naive (b) geometric simpli-
fication guided, and (c) interpolated-based sampling, using
the David model(green and red colors represent minimum
and maximum error, respectively).

(a) (b) (c)

Figure 10: The Lucy Model: (b) An 8K faces coarse front,
(b) The mesh partition imposed by the coarse front, and (c)
The refined mesh using generic tile of degree 33.

6 CONCLUSIONS AND FUTURE
WORK

We have presented a framework for a GPU-based
view-dependent rendering of general 3D polygonal
datasets. The simplified representation is an error-
guided subdivision of the input model into disjoint
patches. The geometry of these patches is encoded
into displacement maps. Processing smaller multires-
olution hierarchies within the CPU removes the bot-
tleneck, and makes the CPU available for other gen-
eral purpose computations. In addition, the transmis-
sion of a coarse level-of-detail along with displace-
ment maps reduces the communication load between
the CPU and the GPU. This is a result of utilizing
video memory for caching and transmitting only un-
cached primitives. In summary, our approach man-
ages to seamlessly stitch adjacent patches without
adding extra dependencies or sliver polygons.

We observe several possibilities for future en-
hancements to our algorithm and for further research.
One might wish to eliminate the case of overly large
triangulations of planar patches. It would be interest-
ing to implement a GPU-based adaptive subdivision,
instead of a uniform patch subdivision. Furthermore,
for another boost in performance, the integration of
existing occlusion culling techniques into our algo-
rithm may be considered.
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