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Leila De Floriani, Paola Magillo
Department of Computer Science and Information Science, University of Genova, Via Dodecaneso, 35 -16146 Genova, Italy

Keywords: 3D Visualization, geometric modeling, multivariate scalar fields, offsetting.

Abstract: We present a new technique for the simultaneous visualization of an arbitrary number of scalar fields defined
on a surface. The technique is calledGeneralized Atmosphere Upper Bound Level (GAUBL), since it is an
evolution of our previous AUBL technique, that allowed for the visualization of a single scalar field. The
generalized AUBL can highlight the dependencies and interactions between many scalar fields, and can handle
a multi-valued scalar field as a special case. We have implemented the GAUBL into a visualization tool that
handles triangle-based surface models, and we show here some experimental results.

1 INTRODUCTION

In many applications of computer graphics (e.g., med-
ical imagery, visual data mining) the visualization of a
scalar field representing some data relative to a three-
dimensional shape is a basic tool to explore and un-
derstand the behavior of the field. Several scalar fields
may be interesting to be studied simultaneously, to
highlight their dependencies and their mutual influ-
ence. For example, in medical imagery, oxygen rate
and sugar rate can be visualized together to study the
brain surface activity. Unfortunately, human percep-
tion is limited to three dimensions and the visualiza-
tion of those scalar fields needs additional indepen-
dent directions to be achieved. To avoid this obstacle,
we need to find a natural way to embed these multi-
dimensional data in the Euclidean spaceR3 so that
the result still has some meaningful interpretation, es-
pecially for comparison purposes. Here, we propose
a visualization technique that allows this embedding
and thus gives us the opportunity to explore and study
multi-valued scalar fields defined on the same sur-
face. The basic idea is to convert the scalar fields into
a sequence of vector fields on the surface and then
display a surface for each vector field according to
some constraints. We call the new visualization tech-
niqueGeneralized AUBL (GAUBL), since it general-
izes to multi-dimensional scalar fields theAUBL (At-

mosphere Upper Bound Level)technique introduced
in (Mesmoudi et al., 2007). This latter allows the
3D visualization of just one scalar field defined over a
surface embedded in the three-dimensional Euclidean
space. The generalized AUBL technique is easily
adapted to handle discrete scalar fields defined over
triangulated surfaces. We present here an interactive
visualization tool that implements the GAUBL tech-
nique for triangle meshes. We use such tool to il-
lustrate the results of the GAUBL visualization tech-
nique. The remainder of the paper is organized as
follows. In Section 2, we review related work. In
Sections 3, we briefly review theAUBL visualization
technique. In Section4, we introduce theGAUBLvi-
sualization technique that generalizesAUBL to visu-
alizing several scalar fields. In Section 5, we present
the visualization tool implementing the GAUBL tech-
nique for discrete scalar fields defined on triangulated
surfaces, and some results. In the last Section, we
draw some concluding remarks.

2 RELATED WORK

To represent multi-dimensional data in the three di-
mensional space, we need to reduce their dimension-
ality without loosing important information. Geo-
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metric projection techniques allow meaningful visu-
alization of multi-dimensional data. Some of them
are statistically based techniques (Huber, 1985). Par-
allel coordinates techniques (Inselberg, 1985) repre-
sent attributes as parallel lines in the two-dimensional
space. Hierarchical techniques use a partitioning of
the space into subspaces. In stacking techniques, the
space is partitioned into 2D subspaces that are stacked
in a recursive way (Blanc et al., 1990). Theworlds-
within-worlds technique partitions the 3D space into
nested subspaces: three attributes are selected and vi-
sualized through a 3D surface, then, for any point on
the surface selected by the user, three other attributes
are visualized in the same manner (Feiner and Besh-
ers, 1990). When some attributes are functions of two
or three dependent parameters (like in terrain model-
ing, image processing, medical imagery), the graph-
ical representation of these attributes has more sense
if it can be represented in the ambient space by a sur-
face. TheAUBL technique developed in (Mesmoudi
et al., 2007) allows the 3D visualization of a scalar
field defined over a surface embedded in the 3D Eu-
clidean space. This technique when applied to a con-
stant function is known as offsetting (Rossignac and
Requicha, 1985; Frisken et al., 2000; Cohen et al.,
1996). In (Taylor, 2002; Kirby et al., 1999; Craw-
fis and Allison, 1991), techniques to represent multi-
ple scalar fields (at most four fields) on the same sur-
face have been proposed. These techniques combine
colors, contour lines, spot noise texture generation,
reaction-diffusion texture generation, surface albedo,
data-driven spots and oriented slivers.

3 THE AUBLVISUALIZATION
TECHNIQUE

Two-dimensional manifolds (without boundary) are
(smooth) surfaces that are locally diffeomorphic to
discs inR2. At each pointp of a surfaceS, the tangent
planeTpS is defined and a unit normal vector−→np to S
at pointp can be drawn. This latter correspondence is
called theGauss map. Vector−→np with an orthonormal
basis ofTpSgenerates a mobile orthonormal frame of
the Euclidean three-dimensional spaceR3 whose ori-
gin is located at pointp (see Figure 1(a)). The key
idea of the AUBL visualization technique comes from
the graphical representation of 2D scalar fields. The
graphical representation of a scalar fieldg on a two-
dimensional domainD∼= D×0 is a surface embedded
in R3 such that the height of each point on the surface
corresponds to the value ofg at this point and if the
frame is orthonormal then the distance of the point to
the Oxy-plane is equal to the absolute value ofg at
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Figure 1: (a) A surface with its tangent plane and normal
vectorial space at a point. (b) Graphical representation ofa
functiong over a domainD ⊂ R2.

this point (see Figure 1(b)). By generalizing this idea,
we can give a graphical representation of 3D scalar
fields.

Definition 1 Let−→np be the unit normal vector of S at
point p. The graphical representation of the scalar
field f over S is the surfaceS ⊂ R3 defined by the
vector fieldf̃ (p) := p+ f (p)−→np, i.e.,

S = {p+ f (p)−→np : p∈ S} (1)

Note that vector
−−−→
pf̃ (p) is normal to S at p and

‖
−−−→
pf̃ (p) ‖=| f (p) |.

The graphical representation of functionf defines an
atmosphere layerover surfaceS. The thickness of
the layer is given by the function values. In (Mes-
moudi et al., 2007), we have defined graphical opera-
tions which can be used to better analyze the shape of
the surface and thus the properties of the field.Scal-
ing multiplies the field vector value through a factor;
inflation and deflationtranslate f̃ (p) in direction of
the normal vector

−→
Np by a constant positive and nega-

tive value, respectively. Details can be found in (Mes-
moudi et al., 2007).

Definition 2 Under such assumptions, we call the
graphical representationS of f , the atmosphere up-
per bound layer(AUBL) of the pair(S, f ).

In Figure 2, we illustrate the above situation for the
unit spherex2 + y2 + z2 = 1 with an atmosphere cor-
responding to the functionf (x,y,z) = x2−y2−1.

4 THE GENERALIZED AUBL
TECHNIQUE

The main idea in generalizing theAUBLvisualization
technique comes from the fact that the AUBL tech-

nique gives avector field
(
−−−→
pf̃ (p)

)

p∈S over surfaceS.
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(a) (b)

Figure 2: (a) A cross section of the unit sphere with an at-
mosphere defined by functionf (x,y,z) = x2 − y2 − 1. (b)
Visualization ofS corresponding tõf .

We use this idea to generate a vector field overS for
any number of functions defined onS. We will show
that successive vector fields can be defined depending
on the number of functions. Assume that two scalar
fields f andg are defined simultaneously onS. AUBL
visualization technique is used to visualize functionf
as surfaceS . To visualize functiong with f , a col-
oring mapc is defined on the imageIm(g). Then a
vector function ˜g can be defined as follows: for each
point p∈ Swe associate the pair( f̃ (p),c(g(p))). Fi-
nally, functions( f ,g) are visualized as a colored sur-
face, that we denoteC S to distinguish it fromS . Fig-
ure 3(a) gives an example of two functionsf andg
defined on the unit sphereS2. Let now f , g andh be
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Figure 3: (a) Visualization of two functionsf (x,y,z) =
x2+y2 andg(x,y,z) = z2 defined over the unit sphere. Func-
tion f is represented as a surface containing the unit sphere
in its interior, andg is represented by a coloring map where
white and magenta correspond to low and high field values,
respectively. (b) Graphical representation of three scalar
fields over a surfaceS in R3.

three scalar fields defined on surfaceS. For each point
p ∈ S, we define a vector

−→
Vp = ( f (p),g(p),h(p)).

This gives a vector field
(−→
Vp

)

p∈S over S (see Figure

3(b)). We define surfaceS := {p+
−→
Vp : p ∈ S} as

the graphical representation of scalar fieldsf , g and
h overS. The direction and the intensity of each vec-
tor is influenced by the values of the three functions
f , g and h. Thus, interactions among these func-
tions can be seen (see Figure 4). For four scalar

Figure 4: Visualization of three functionsf (x,y,z) = x2 +
y2, g(x,y,z) = z2 andh(x,y,z) = y−z defined over the unit
sphere, from two different points of view. Functionsf , g, h
are presented as the surface of a vector field( f ,g,h).

fields f , g, h and k, we embed surfaceS in R4 by
S≈ S′ := {(x,y,z,0) : (x,y,z) ∈ S}. For each point

p∈Swe define a vector
−→
V ′

p =( f (p),g(p),h(p),k(p)).

Vectors
(−→
V ′

p

)

p∈S form a vector field overS′. Visual-
ization of scalar fieldsf , g, h andk can be achieved in

R4 by constructing a new surfaceS ′ := {(p,0)+
−→
V ′

p :
p ∈ S} = {(xp + f (p),yp + g(p),zp + h(p),k(p))}.
Equivalently,S ′ can be seen as a surfaceS” := {(xp+

f (p),yp + g(p),zp + h(p)) : p ∈ S} in R3 endowed
with a scalar fieldk. Functionk can be seen as a color-
ing function of surfaceS”. Another way to represent
functionk is to use theAUBLvisualization technique
that permits to define a surfaceS ” ⊂ R3 associated
with the pair(S” ,k). We define thus(S” ,S ”) to be the
graphical representation of scalar fieldsf , g, h andk.

Now, the generalization to five scalar fields can
be done as for the case of two scalar fields. We
represent the fourth scalar field by theAUBL tech-
nique as a surfaceS ” and the fifth scalar field by
a coloring function over surfaceS ”. The colored
surfaceC S ” with S” give a graphical representation
of the all five scalar fields (see Figure 5). For six

(a) (b)

Figure 5: Visualization of five functionsf (x,y,z) = x2 +y2,
g(x,y,z) = z2, h(x,y,z) = 2y− z+ 3,k(p) = z and l(p) = x
defined over the unit sphereS2. (a) SurfacesS2, S” and S ”.
(b) The coloring functionl is represented inC S ”.

scalar fields f , g, h, k, l and m, we shift surface
S to R6 to get a surfaceS≈ S′ := {(x,y,z,0,0,0) :
(x,y,z) ∈ S}. Then for each pointp ∈ S we de-

fine a vector
−→
V ′

p = ( f (p),g(p),h(p),k(p), l(p),m(p)).

Vectors
(−→
V ′

p

)

p∈S form a vector field that traverses
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over S′. Visualization of scalar fieldsf , g, h, k, l
andm can be achieved inR6 by constructing surface

S ′ := {(p,0,0,0)+
−→
V ′

p : p ∈ S} = {(xp + f (p),yp +

g(p),zp + h(p),k(p), l(p),m(p))}. Equivalently,S ′

can be seen as a surfaceS” := {(xp + f (p),yp +

g(p),zp +h(p)) : p∈ S} embedded inR3 with a vec-

tor field defined by vectors
−−→
V” p = (k(p), l(p),m(p)).

Then as for three scalar fields we can construct a sur-
faceS ” defined by vectors

−−→
V” p. The visualization of

all scalar fieldsf , g, h, k, l and m is hence given
by two surfaces(S” ,S ”) as in Figure 6. Following

(a) (b)

Figure 6: Visualization of six functionsf (x,y,z) = x2 +y2,
g(x,y,z) = z2, h(x,y,z) = 2y− z+ 3,k(p) = z, andm(p) =
−y2. Functionsf , g andh form a first vector fieldS ′ over
S2. Then functionk, l andm form a second vector field over
S ′. (a) SurfacesS ′ andS ”. (b) SurfacesS2, S ′ andS ”.

the previous reasoning, we can extend (modulo 3) the
above visualization techniques ton scalar fields de-
fined over surfaceS. TheAUBL technique, the color-
ing technique and the vector flow technique form a ba-
sis of the visualization techniques that can be used to-
gether, or separately, following the rank ofn (mod3).
This extension gives a hierarchical representation of
scalar fields as described in theworlds-with-worlds
data mining representation technique (see Section 2
above).

5 EXPERIMENTAL RESULTS

Our GAUBL tool allows for the visualization of up to
four different scalar fields defined on a triangulated
surface. It is implemented in C with the OpenGL
graphical library and has a very simple user interface
developed with Glut. The surface is given as a tri-
angle mesh in indexed format (each vertex as three
coordinates, each triangle as three vertex indexes). A
scalar field can be provided in two forms: an explicit
list of field values at the mesh vertices (e.g., sampled
values of temperature, pressure etc.), or a mathemat-
ical formula to compute such values. Visualization
adapts to the current number of loaded scalar fields,
by selecting the appropriateGAUBL technique. Ad-
ditional inputs are represented by coloring functions

Figure 7: The sphere and four fields, with two different mul-
tiplication factors.

to map field values to color values specified in the
red-green-blue (RGB) format. The user can interac-
tively set parameters, as the translation factor for in-
flation / deflation, the multiplicative factor for scaling,
the coloring function, surface and background colors,
transparency effects, and, of course, he can rotate, pan
and zoom the entire scene. Figure 7 shows the unite
sphere along with the colored mesh representing four
scalar fields: f (p) = x,g(p) = y− z,h(p) = x2 + y2

andk(p) = x, the last one rendered with a coloring
function going from red to blue through green. Figure
8 shows a mesh representing a girl and a field equal
to f (p) = z. In Figure 9 the same mesh is associ-
ated with a scalar field that simulates fattening of the
central part of the body, through a gaussian formula.
The figure shows the original surface and two fattened
versions, with different multiplication factors. Figure
10 shows a terrain with two scalar fields, where the
first one (giving the surface) is constant and the sec-
ond one (rendered as color scale) isg(p) = z. Infla-
tion and deflation correspond here to a version of the
same terrain after deposit of material (e.g. calcium
carbonate on the bottom of a lake in a cavern) or after
erosion, respectively.

Figure 8: Girl surface with one fieldf (p) = z.

VISUALIZING MULTIPLE SCALAR FIELDS ON A SURFACE

141



Figure 9: Girl surface with different multiplication factors.

Figure 10: A terrain and its inflated and deflated versions.

6 CONCLUDING REMARKS

We have presented theGAUBL visualization tech-
nique that allows displaying any number of scalar
fields defined on a surface, in the form of another
(possibly colored) surface embedded in 3D space. In
our ongoing work, we will improve our visualization
tool with new functionalities, such as showing alge-
braic information at a clicked point on the surface
(vector length, direction, position with respect to the
normal vector of the original surface,...). Moreover,
we plan to combine this visualization technique with
a mesh-based multi-resolution representation to allow
selective and adaptive offsetting of a surface.
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