RECURSIVE AND BACKWARD REASONING IN THE
VERIFICATION ON HYBRID SYSTEMS

Stefan Ratschan
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

Zhikun She
LMIB and School of Science, Beihang University, Beijing, China

Keywords: Hybrid Systems, Verification, Constraint Propagation.

Abstract: In this paper we introduce two improvements to the method of verification of hybrid systems by constraint
propagation based abstraction refinement that we introduced earlier. The first improvement improves the
recursive propagation of reachability information over the regions constituting the abstraction, and the second
improvement reasons backward from the set of unsafe states, instead of reasoning forward from the set of
initial states. Detailed computational experiments document the usefulness of these improvements.

1 INTRODUCTION state, but also elements for which we can prove that
they do not lead to an unsafe state.
There are various other methods for the verifica-

Safety v_er|f|cat|on of h_ybnd sysj[ems s the proplem tion of hybrid systems that use a decomposition of the
of verifying thqt for agiven hybrid system no trajec- state space into boxes (Preuf3ig et al., 1999; Kloet-
tory that startS|r_1 an |n|F|aI state ever reaches an unsafeZer and Belta, 2006). Another paper (Frehse et al.,
state. Abstractlon re_ﬂ_nement approache_s th'_s prob- 2006) employs backward reasoning in a more coarse-
lem by iteratively refining an overapproximation of

: . : grained manner than in this paper, computing over-
Fhe hybrid system (thabstraction) that is constru_cteq approximations of increasingly precise forward and
in such a way that the safety of the abstraction im- backward reach sets
plies the safety of the concrete system. In our method The content of th.e paper is as follows: In Sec-
of consiraint propaggiion baged abstractiqn rgfing- tion 2 we review our hybrid systems formalism, and
ment(Ratschgn and She, 2007) the abstraction is bUIItin Section 3 we review our verification method and
by decomposmg the e hyper—rec_tangle%iscuss properties of the underlying constraint solv-
(boxe$ and using a constraint solver to test, which of

th b iaht tai nitial/ fo stat ding technique; in Sections 4 and 5 we introduce the
ese Doxes mig contain gerIfjigiansale siale, andg.q improvement to our verification method, and in
which box might be reachable from another box.

)) _ Section 6 our second improvement and the combina-
In this paper, we introduce two improvements to tjon of the two improvements; in Section 7 we present

the method: recursive reasoning and backward rea-some computational experiments, and in Section 8 we
soning. Recursive reasoning improves the way the conclude the paper.

method removes elements from boxes for which it can
prove that they are not reachable from an initial state.
The original method argues that a point in a box is
not reachable from another box, if it is not reachable 2 VERIFICATION OF HYBRID

from a point on the common boundary. In this pa- SYSTEMS

per we strengthen this condition using a convenient

over-approximation of the requirement that this com- Hybrid systems are systems with continuous and dis-
mon point on the boundary again has to be reachable.crete state variables. In this paper, we briefly recall
Backward reasoning uses the observation that we canour formalism for modeling hybrid systems (Ratschan
remove not only elements from boxes for which we and She, 2007).

can prove that they are not reachable from an initial We use a se§ to denote the modes of a hybrid

65

Ratschan S. and She Z. (2008).

RECURSIVE AND BACKWARD REASONING IN THE VERIFICATION ON HYBRID SYSTEMS.

In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - SPSMC, pages 65-71
DOI: 10.5220/0001475500650071

Copyright © SciTePress

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

system, wher&is finite and nonemptyly, ..., Ik C R

are compact intervals over which the continuous vari-
ables of a hybrid system rang€ denotes the state
space of a hybrid system, i.@,= Sx I x - -+ x Ii.

Definition 1. A hybrid system H is a tuple
(Flow, JumpInit, Unsafg, where FlowC ® x R,
JumpC @ x @, | C ®, and UnsafeC @.

Informally speaking, the predicateit specifies
the initial states of a hybrid system akthsafethe
states that should not be reachable from an initial
state. The relatioRlow specifies how the system may

develop continuously by relating each state to the pos-

sible corresponding derivatives, addmp specifies
howH may change states discontinuously by relating

each state to its possible successor states. Formally,

the behavior ofH is defined as follows:

Definition 2. A flow of length |> 0in a mode = S
is a function r: [0,I] — @ such that the projection of
r to its continuous part is differentiable and for all
t € [0,1], the mode of (t) is s. Atrajectoryof H is a
sequence of flowsy...,rp of lengths g, ... I such
that for alli € {0,..., p},

1. ifi > 0then(ri—1(li-1),ri(0)) € Jump, and

2. ifli > Othen(ri(t),f;(t)) € Flow, forallt € [0, 1],
wheref; is the derivative of the projection of to
its continuous component.

Definition 3. A (concrete)counterexamplef a hy-
brid system H is a trajectoryy... ., rp of H such that
ro(0) € Init and rp(l) € Unsafe, where | is the length
of rp. H is safeif it does not have a counterexample.

We use the following constraint language to de-
scribe hybrid systems and corresponding safety veri-
fication problems. The variabkeranges ovefs and
the tuple of variablexX = (xg,...,X) ranges over
l1 x - x Iy, respectively. In addition, to denote the
derivatives ofxy, ..., X we use the tuple of variables
X = (X1,...,%) that ranges oveR¥, and to denote the
targets of jumps, we use the primed variaslend
the tuple of variableg' = (x/,...,x) that range over
Sandly x --- x |, respectively. Constraints are arbi-
trary Boolean combinations of equalities and inequal-
ities over terms that may contain function symbols,
such ast, x, exp, sin, and cos.

We assume in the remainder of the text that a hy-
brid system is described by our constraint language.
That means, the flows of a hybrid system are given
by a constrainFlow(s, X, X), the jumps are given by a
constraintlumgs, X, s, %), the initial states are given
by a constrainhit(s,X), and a constraintnsafés, X)
describes the unsafe states. To simplify notation, we
do not distinguish between a constraint and the set it
represents.

66

Example 1 Consider the following simple hybrid
system with the modes;m, and the continuous
variables X,x2 which both range over the interval
[0,2],i.e,® = {my,m} x [0,2] x [0,2].

The set of initial states are given by the
Init(s, (X1,%2)) = (S= M AX1 =0Ax2 = 0). The
constraint Unsafés, (X1, x2)) = (x1 > L.5AXp = 1.5)
describes the set of unsafe states. The hybrid sys-
tem can switch modes fromyrto mp if xo = 1, i.e.,
Jumgs, (X]_,XZ),SI, (X&,X’Z)) = (s=mAXe=1) —

(S =mpAX; =X1AX,=X2) . The continuous be-
havior is described by constants. In addition, for a
flow in mode m, the constraind < x; < 1 must hold.
The corresponding flow constraint is

Flow(s, (X1,X2), (X1,X2)) =
(SZ m — ().(j_: IAX=1A0<x < l)) /N
(s=m— (X1 =1A%=-1)).

Note that the constraind < x; < 1 in flow forces a

jump from mode mto ny if x; becomed.

Obviously, this hybrid system is sali.

3 FORWARD SEARCH BASED
ABSTRACTION REFINEMENT

In this section, we review our previous ap-
proach (Ratschan and She, 2007) for verifying safety
of hybrid systems using constraint propagation based
abstraction refinement.

We abstract to systems of the following form:

Definition 4. A discrete systenover a finite set S is
a tuple(Trans Init,Unsafg where TransC Sx S and
Init C S, UnsafeC S. We call the set S tistate space
of the system.

In contrast to Definition 1, here the state space is a
parameter. This will allow us to add new states to the
state space during abstraction refinement.

Definition 5. A trajectory of a discrete system
(TransInit,Unsafg over a setS is a function r.
{0,...,p} — Ssuchthatforall € {1,...,p}, (r(t—
1),r(t)) € Trans. The system&afeif and only if there

is no trajectory from an element of Init, to an element
of Unsafe.

When we use abstraction to analyze hybrid sys-
tems, the abstraction should over-approximate the
concrete system in a conservative way: if the abstrac-
tion is safe, then the original system should also be
safe. If the current abstraction is not yet safe, we re-
fine the abstraction, that is, we include more informa-
tion about the concrete system into it. This results in
Algorithm 1.

RECURSIVE AND BACKWARD REASONING IN THE VERIFICATION ON HYBRID SYSTEMS

Algorithm 1: Abstraction Refinement. (8,B") € 3 and a pointZz € B/, if (s,2) is reachable
Require: a hybrid systeni described by constraints and z is not an element of the box of any other abstract
Ensure: “safe”, if the algorithm terminates state in3, then
let A be a discrete abstraction of the hybrid system iflg(s,2)v \/ Jflgp(ss.2)
represented byl (sB)es
while A'is not safedo
refine the abstractioA v V Bflgg(52)

(s,B)eB,s=5,B+#B’

where Ifl/(s,2), g g(s,8,2), and Bfpg(s,2) de-
note the following three constraints, respectively:
In order to implement this algorithm, we need to e 3% € B'[Init(s,X) A Reacly (5,%,2)],

fix the state space of the abstract system. Hereweuse 4 33y ¢ B3Iy e B JumdsXs,X) A
pairs(s,B), wheresis one of the modesés;,...,s,} Reachy(s,X,2)]
andB is a hyper-rectanglépx), representing subsets / "
of the concrete state spade Together with an ab- EfeicBlgrgs’B [x[vzf)?ces FOfBX€F = ing g (R A
stract state, we store the information whether it is ini- ASSeah
tial or unsafe and the information from which other Here, irf g (X) = ..., 3%[F (8, %, (%, ..., %)) A
states it is reachable. We call such information the x; > 0], if F is the j-th lower face of B and if
marksof the state. For the initial abstraction we use F is the j-th upper face of ‘B incoming g (X) =
the state spacq(s:,{X|(si,X) € P} |1<i<n} Iy T[F(S.X (k... %)) AX <0
where all states are marked as initial, and unsafe, and : Y

We denote the main constraint of Theorem 1 by

all transitions between states are possible. .)
-) X . reach, g/(S,Z). If we can prove that a certain point
For refining the abstraction, we split a box into does not fulfill this constraint, we know that it is not
two pieces, replace one abstract state by two, and in- '
reachable. For now, we assume that we have an al-

clude more information from the concrete system into gorithm (apruning algorithn) that takes such a con-
the abstract one by removing unreachable elememsstraint, and an abstract stdt B') and returns a sub-

from the boxes, removing superfluous markgigom thg box of B’ that still contains all the solutions of the

new abstract states, and removing unreachable states AR T .
from the abstraction. constraint inB’. Since the constrainteach; g/(s,7)

To remove unreachable elements from the boxesde'jerldS pn all current abstract states, a changs of

. . ' might allow further pruning of other abstract states.
representing the abstraction, we use a constraint thatSogwe can repeat pFr)uningguntiI a fixpoint is reached.

formalizes when an elemegigil’ the cgfitretelstatg Given a set of abstract states we denote the result-
space might be reachable, and then remove elements s

that do not fulfill this constraint. In order to do this, Ing fixpoint byPrunm(as)_. .
for a boxB = [xg,X1] X --- X [X, %, we let its j-th Now we remove the initial mark from an abstract

~ .) i

lower face beb %] - g x x--x pooxdana SEEE T B RO e he

its j-th upper face béx;,X1] x - X [Xj,Xj] x -+ X AP, ;

IS - ~1) g e empty box for this constraint), and we remove the un-

[>_<ksz]- Two boxes areion-ovelappingf their in- safe mark of an abstract state stedeB’) if we can

teriors ares[OITTY W 4 4 disprove the constrainiX € B Unsafg¢s X). More-
Now observe that a point in a bdXis reachable over, we remove a transition frots, B) to (€, B') if

only if it is reachable either from the initial set via y ; ’ !

a f|¥)W in B, from a jump via a flow inB, or froma 1o o disprove botBflg g (S, 2) andJflg &/(s,$',2)
iahbori ’ b = ﬂp B We will ' . from Theorem 1. As already mentioned, after recom-

neighooring box via a Iew 1. vve will now tormu- puting the marks, we remove all abstract states from

Igte OgilEtramts correspondlng_to each of these Condl'the abstraction that are not reachable. It is easy to

t|o;1fs. IIITe?Iwe ::an rerpf)hve points {romtboxes that do compute these, since the set of abstract states is finite.

NOLILITAGE least gne of these constraints. There are several methods for implementing the

The approach can be used with any constraint thatneeded - ; ;
. . . pruning algorithms (Benhamou and Granvil-
describes thaf can be reachable fromvia a flow in liers, 2006). For the domain of the real numbers,

B and modes, for example, the one introduced in our . - : :
) S ’ given a constraint and a floating-point bo®B, they
previous publications (Ratschan and She, 2006). Wecompute another floating-point béXc, B) such that

?heno:)e theﬂ:Jsed CO”.SgFﬁ‘t'_”t I?eacfg(sﬁx,g?_.t Tr?lus, P(c,B) C B (contractance), and such ti(c, B) con-
€ above three possibiliies for reachability allow US yain 5] solutions of in B. Existential quantifiers and

to formulate the following theorem: disjunctions can be handled by slight extensions (for
Theorem1. For a set of abstract states , a pair disjunctions we take thieox uniony).

end while

67

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

Such pruning algorithmB usually have thenono-
tonicity propertythat for a constraint, and boxe®
andB’ with B' C B, P(c,B’) C P(c,B). Moreover, in
practice, ifB’ C B thenP(c,B) is often much smaller
thanP(c,B). We will exploit this in the improvement
of our method described in the next section. In ad-
dition, it pays off to distribute disjunctions over con-

this information is lost because we first prudend
only then take the intersecti@n B’ (i.e., we compute
P(reach; g(s,X),B) NB'), and we have:

Lemma 2.

P(reach, g(s,X),BNB’) C P(reach; g(s,X),B) N B’

junctions: Proof. Due to monotonicity of constraint
Lemma 1. For constraints g, ...,cn,d and abox B, ~ Propagation, P(reach; g(s,X),B N B) is a
subset of P(reach; g(s,X),B). Moreover,

P(reach; g(s,X),B N B') C P(reach, g(s,x),B'),
and henceP(reach; g(s,X),BNB) C B. So
P(reach; g(s,X),BN B') is also a subset of the
intersection oP(reach; g(s’,X),B) andB’. B

Proof. For each i € {1,...,n},
daB) g P((vie{l,...ﬁ}ci) A d7B)

P(ci A
Thus,

.....

In practice, the set on the left-hand side might
be significantly smaller than the set on the right-
hand side (i.e., than the set currently used in
the method in Section 3). So it makes sense
to compute P(reach; g(s,X),B N B') instead of
P(reach, g(s,X),B) NB'. This means that in addition
In this section we introduce the first improvement to pruning each box in the abstraction, we could also
to the verification method described in Section 3. prune the intersection between each pair of boxes.
Throughout the rest of the paper we assume an ab-However, this would need a quadratical number of

the lemma holdsll

4 RECURSIVE PRUNING

straction consisting of a set of abstract statesThe
improvement introduced in this section aims at prun-
ing more unreachable states fraby improving the
recursive propagation of reachability information for
flows from one box to the next.

We consider the pruning of an abstract state
(s,B') € 3. The constraintBflg g (s,Z) defined
within Theorem 1 models the fact that a certain point
Z in the boxB' is reached from a neighboring b&x
of B’ via a flow inB'. This flow reacheg through a
common poink € BN B’ (see Figure 1).

B

L A

Figure 1: Recursive Pruning.

B

The basic idea upon which we build in this section
is to strengthen this constraint by requiring that also
be reachable in the neighboring bBx Naively, this
could be done by adding the constraieach; g(s', X)
to the constraintBflgg(s,2). However, since
Bflgg/(S,2) is itself a part ofreach, g(s,X), this
would result in an infinitely large constraint due to
recursion. One could make the constraint finite, by
bounding the recursion, but this still would result in
a very large constraint. We avoid this, by observ-
ing that the neighboring boB is already the result
of pruning wrt. reach, g(s,X). However, a part of

68

prunings and stored boxes in memory.

To avoid this, we use an over-approximation
of P(reach; g(s,X),BNB') that is still a subset of
P(reach; g(s,X),B)NB. We use the information
that the boxes of our abstraction are non-overlapping
(i.e., even if two boxes intersect, they only share the
boundary but no points of the interior). This implies
that the intersectio N B’ will always be a subset
of the boundary oB—independent of the form of
the boxB’. So one could try to use the boundary
B of B instead of the boB N B’ when computing
P(reach; g(s,X),BNB’). However, sinc&lB is not a
box and hence it cannot be an argument to the prun-
ing function, we apply the pruning function to its con-
stituent faces separately. Thatis, we use the constraint
that expresses a disjunction over all faces:

V

F face ofB

[X € F Areach; g(s,%)]

and call this constrainteachbound g(s,X). Al-
though this over-approximaté¥reach; g(s,X),BN
B'), Lemma 2 still holds in analogy:

Lemma 3. P(\/F,face of B[Xe F /\reaChBﬁB(SCX)] 7B)
B’ C P(reach; g(s,X),B)NB".

N

Proof. The disjunction is pruned by taking the
box union over the result of pruning each disjunct.
Since each face d is a subset 0B, due to mono-
tonicity of constraint propagation, for each faEe
P(reach, g(s.X),F) C P(reach; g(s,X),B). Hence

RECURSIVE AND BACKWARD REASONING IN THE VERIFICATION ON HYBRID SYSTEMS

also the box union over the result of pruning each dis- whereouQB(X) is equal tdn;B(X) with the inequal-

junct is a subset oP(reach, g(s,X),B), which im- ity sign switched. Now, sinceeach, g(s,%) is a dis-

plies the lemmall junction, Lemma 1 suggests to improve it by pulling
out the new conjunction alachboungd g(s',X), ar-

Since the constraint on the left-hand side only de- riving at

pends on one box, we can compute the corresponding

pruning P(reachboungd g(s,X),B) only for one ab- \/ [gg F Aoutg g(X) A |f|B(S/’X)} V

stract state, and store the resulting box with that ab- ¢ face o8 '

stract state. Since this box encloses the set of states

where a flow might leave the abstract state, we call it V [V ReFnroufg®)

the outflow-boxof the abstract state. So, instead of ~ (sB)€# FfaceoB

BNB' in the constrainBflg g we can now take the A Jflg g(s,8,%)]| v
outflow-box ofB, and due to Lemma 3 we will arrive \/ [\/ e F Aou 5(X)
B

at a result that is at least as tight as before.

This is illustrated on an example in Figure 2,
where the dotted box is tlmitflow-boxesulting from
a situation where the upper and left face of Iixave A BfIB,VB(s’, X)]] .
been pruned to the empty set, and the outflow-box is

the result of taking the union of the result of pruning Ve call the resulting constrairgachouf, s(s, %),
the two other faces. and use this constraintinstead to compute the outflow-

box of each abstract state.
B The following examples illustrates the improve-
ment provided byreachoutover reachbound Con-
*\/z sider the differential equatiofx;,x2) = (1,1) with
a box B = [0,1] x [0,1] and an initial pointXy =
(0,0). If we prune a facgl, 1] x [0,1] or [0,1] x [1,1]
Figure 2: Pruning Faces. wrt. reachboundwe will get the point(1,1); and
if we prune a facg0,0] x [0,1] or [0,1] x [0,0] wrt.
Note that splitting a boX8 representing a cer- reachboungdwe will get the point(0,0). That is, if
tain abstract state changes its faces. Especially, thereve apply the pruning algorithm teeachboundand
might be trajectories that leave the resulting boxes B, we will get the full box[0,1] x [0,1]. Only when
through the new face along whid has been split. ~ adding the outgoing condition, arriving at the con-
Hence the outflow-box of this abstract state becomesstraint reachout we can ignore trajectories moving
invalid. So we simply set the outflow-box to the into the box, arriving at the poirit, 1] x [1,1].
whole boxB and re-compute it, the next tim# is
pruned.

(sB)en F.face oB
s=¢,B #B

%

6 BACKWARD REASONING AND

COMBINATION
5 RECURSIVE PRUNING WITH

OUTGOING CONDITION As described in Section 3, in our method we remove
elements from the state space for which we can prove

In the previous section we used the fact that within the that they are notreachable from an initial state. How-
constrainBfl we can exploit the information that the €Ver, the task of safety verification is to prove the ab-
common poink € BN B! itself has to be reachable. In sence of a trajectory that starts in an initial staiel

this section we strengthen this information by obsery- 'aches an unsafe statéience we can also remove
ing that in order for a trajectory to be able to leave the €/€ments from the state space for which we can prove
box B to enter the bos, the vector field ak has to that they do not lead to an unsafe state—without de-
point out ofB. stroying the property that safety of the abstraction im-
es safety of the concrete system.

This can be modelled by addi dditional con- P! _ stem.
1S can be moge ed by adding ary additiona’ con For this, observe that a point might lead to an un-

dition in the constrainteachboung g(s,X), arrivin ' . . .
95(s:%) d safe state only if there is a flow from this point to the

at . . - .
unsafe set directly, or a flow from this point to a jump,
\/ % € F Areach, g(s,%) Aouf B(x)} 7 or a flow from this point to a boundary point. Hence
Fface ofB ’ ' we can formulate an analogous version of Theorem 1:

69

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

Theorem 2 For a set of abstract states, a pair
(8,B") € 3 and a pointZ € B/, if the unsafe set is

reachable from(s',Z) andZ is not an element of the : Forward .
box of any other abstract state #, then Example time | splits
1-flow unknown
Urewg (s.2)v \/ Jrewsg(ss,2) 2-tanks 1.12 31
(sB)es car 0.47 0
circuit 53.80 | 186
v (S,B)E,B,\i ‘s iB,BreVBVB’(SI’z)’ Clock_ 109 | 32
convoi-1 1.06 0
where Urey(s,2), Jrewp(ss,?), and convoi 2157.26| 374
Brews g/(S,2) denote the following three constraints, eco 12524 | 223
respectively: focus 359 57
e dX € B[Reach(s,Z X) A Unsafés,X)], mixing 296.67 | 174
e IXc B3X c B'[Reach(s 7, X) AJumys,X,s,X)] mutant 7286.40| 742
e X € BNB[Reach(s,2,X) A [V faces F of BX € real-eigen 059 2
F— inEB’ X)]]] S-.f(.)CUS 0.54 2
e) trivial-hard 0.76 26
In a similar way as forward reasoning, backward van-der-pole (VDP)| 25.42 64

reasoning also allows us to update the initial/unsafe
marks and transitions of the abstraction.
Note that by using forward and backward reason-

Table 1: Experimental Results: I.

Table 2: Experimental Results: II.

ing in Algorithm 1 we might succeed in removing Backward For-Backward
all elements from the concrete state space. This re- . - . .
sults in an empty abstraction which is trivially safe. i);ﬁ)r\?vple tlrSserosvsrl:ts grg; splllts
Hence, Algorithm 1 can report a successful verifica- 51anks 010 6 0'43 7
tion in this case. However, the combination of recur- : -
sive pruning with backward pruning introduces addi- = unknown 1.05 0
tional difficulties: the outflow box is computed using | _GIrceUlt unknown 62.99 | 188
forward reasoning, and when a box is changed due to | /0K _ 35.79] 327 | 2.00 43
backward reasoning, its outflow box is not valid any | €onvoi-1 unknown 1.65 0
more. We solve this problem by always, first apply- | €Onvo! unknown | 1847.67| 300
ing forward pruning and then backward pruning. If | €CO unknown 18.32 | 52
backward pruning changes the box, we apply forward | focus 062 | 34 0.89 15
pruning again which recomputes a valid outflow box. | mixing 147 7 1.74 0
mutant unknown 8493.97| 618
real-eigen unknown 0.61 0
s-focus unknown 0.44 1
7 EXPERIMENTAL RESULJS trivial-hard | 0.03 0 0.05 0
We extended our hybrid systems verification package vbP 0.47 1 0.77 1

HSoLVER (Ratschan and She, 2004) with the two im-

provements introduced in this paper. Then we used
our problem databa$ef hybrid systems to evaluate
our improvements. The experimental results are sum-
marized in Table 1, Table 2 and Table 3 for different
versions.

Comparing the forward version and backward ver-
sion, there is no clear winner, although the forward
version is successful in more cases. The reason seems
to lie in the fact that for more examples the set of ini-

. . ial is smaller than th f unsaf .
We used an IBM notebook with an Intel Pentium tial states Is smaller than the set of unsafe states

1.70GHz CPU with 1024 Mbytes of main memory Moreover, the experimental results show that: (1)
running Linux. The running times are in seconds and FOr most of the examples, the combined forward and
the computations were cancelled when computation 2ackward version use less splitting steps than both
did not terminate before three hours or the number of the forward version and backward version. How-

the abstract states exceeded 1000. We used the defauffVe"> for some examples, the CPU time is worse since
splitting strategy of HBLVER. In the combined version, the constraints are more

complex. Note that for some examples (e.g., circuit

Ihttp: // hsol ver. sour cef or ge. net / benchmar ks and clock), the combined version needs slightly more

70

RECURSIVE AND BACKWARD REASONING IN THE VERIFICATION ON HYBRID SYSTEMS

Table 3: Experimental Results: I1I. ments. We will base future improvements of the
method on a detailed study of the behavior of the used

Example tir?ﬂicuwsgﬁits FiﬁﬁéBaCkg;lj}:g algorithms on further benchmark problems.

1-flow unknown 0.32 1

2-tanks 0.26 3 0.28 1

car 129 T o0 107 T 0 ACKNOWLEDGEMENTS

circuit 53.12 | 171 | 68.28 | 192 _

clock 197 16 0.74 14 The work of the first author has been supported by
Convoi-l 570 0 171 0 GACR grant 201/08/J020 and by the institutional re-
COnvoI 5177.75] 374 | 1830.56] 300 search plan Av02100300504. The second author was
eco 55319 | 290 77 55 partly supported by the National Key Basic Research
focus 5 7'9 a8 0'42 5 Program of China under Grant No. 2005CB321902
Xin 10'4 96 T 109 1'75 0 and the Program for Excellent Talents of Beijing un-
e 1o 85047 191 der Grant No. 20071D1600600410.

real-eigen 0.59 2 0.61 0

s-focus 0.53 2 0.44 1

trivial-hard | 0.07 | 4 | 005 | O REFERENCES

VDP 25.81 64 0.77 1

Benhamou, F. and Granvilliers, L. (2006). Continuous and
interval constraints. In Rossi, F., van Beek, P., and
Walsh, T., editorsHandbook of Constraint Program-

splitting steps. The reason is that although the com- : :
ming, pages 571-603. Elsevier Amsterdam.

bined version is more successful in pruning, the split-
ting heuristics will sometimes choose different boxes Frehse, G., Krogh, B. H. and Rutenbar, R. A.
which then results—in rare cases—in more necessary ~ (2006). Verifying analog oscillator circuits using
splits. (2) For all examples except one, the recursive forward/backward abstraction refinement. DATE

- L 2006: Design, Automation and Test in Europe
version needs less splitting steps than the forward ver- 2 N P _
sion. However, for the eco example, the recursive Kloetzeri M'f?”d Belta, C. (|20|(_)|6). ReﬁChab"'%a}Pa'ys.'sAOf
version needs more splitting steps. This is due to the ?dl;tg;’g ,;rlsec%’%gr\?;mge stzp;a\ SLﬁgé?prinbﬁ?rll B
same reason as above—more successful pruning leads '

. - - PreuRig, J., Stursberg, O., and Kowalewski, S. (1999).
to different box choices. Again, for some example the Reachability analysis of a class of switched contin-

CPU time is worse since the constraints in the recur- uous systems by integrating rectangular approxima-
sive version are more complex. (3) Again with one tion and rectangular analysis. In Vaandrager, F. and
exception (circuit), the combined recursive and back- van Schuppen, J., editordSCC’99 number 1569 in
ward version always needs less splitting steps than LNCS. Springer.
both the recursive version and combined forward and Ratschan, S. and She, Z. (2004). BLSER.
backward version, often even much less. For most ex- http://hsolver.sourceforge.net. Software package.
amples also the run-time improved, sometimes OVer Ratschan, S. and She, Z. (2006). Constraints for continuous
an order of magnitute. Only for two additional, rather reachability in the verification of hybrid systems. In
easy examples (car, convoi-1), the CPU time slightly Proc. AISC'2006number 4120 in LNCS. Springer.
increases since the constraints in the combined recur-ratschan, S. and She, Z. (2007). Safety verification of
sive and backward version are more complex. hybrid systems by constraint propagation based ab-
Summarizing, the contributions of this paper re- straction refinemenACM Transactions on Embedded
sult in a definite and robust efficiency improvement Computing System8(1).

of the algorithms.

8 CONCLUSIONS

In this paper we have introduced two improvements
to a method of safety verification of hybrid sys-

tems by constraint propagation based abstraction re-
finement. The provided computational experiments
clearly show the advantage of proposed improve-

71

