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Abstract: An approach to estimate environmental conditions (ECs), temperature, relative humidity and air flow in a 
few desired sensor nodes in a wireless sensor network, slept for reducing battery-consumption or inactive 
due to either empty batteries or out-of-range is presented. A nonlinear, multivariable model containing the 
interconnections is extracted and using data of surrounding active sensor nodes is broken to the linear 
models. Unknown parameters of the model are verified by a multivariable identification method. The 
proposed approach is independent of the type of ventilation system. It can be used in different applications 
such as designing model base ECs controllers as well as an estimator in fault diagnosis methods.  

1 INTRODUCTION 

Identification, modeling and control of Temperature 
(T), relative Humidity (H) and air Flow (F) as the 
environmental conditions (ECs) in the air 
conditioned closed spaces have gained a lot of 
attractions during the last few years. Therefore, 
simple and precise mathematical models can play a 
key role in these areas. Improving such linear 
models or proposing new nonlinear models is very 
vital on this issue. As the first step, we try to achieve 
a simple mathematical model for the ECs using a 
wireless sensor network established inside the 
container loaded with freights. We utilize this model 
to introduce a new technique to estimate the EC in 
the place of some desired sensor nodes (DSNs). 
They may be either in sleep mode or out of service. 
As stated by the articles, there are three types of 
models: based on (Sohlberg, 2003), White-box 
models are made of theoretical considerations where 
the grey-box models are extracted from the first 
principles and parameters of the models are obtained 
by measurement and black-box models are identified 
only using measurement of the system input and 
output. The methods achieved to the white, grey and 
black-box models of T for air-handling units have 
been addressed in (Ghiaus, 2007) , (Shaikh, 2007), 
(Brecht, 2005), (Desta, 2004), (Frausto 2004). Some 
other works consider the effects of air flow pattern 
on the T in special cases (Moureh, 2004), (Rouaud, 

2002) and (Smale, 2006) is a brief review of numerical 
models of airflow in refrigerated food applications. 
(Desta, 2004) outlines a method to achieve an 
accurate model of T in a closed space using both k-ε 
model and a data-base mechanistic (DBM) modeling 
technique. It doesn’t consider the effect of the heat 
transfer from the neighboring zones.  

All previous models are obtained between input 
(inlet) and a point of corresponding space. As 
attested by these methods, the ECs inside the 
container will change only due to variation in inlet. 
Some of the models obtained in the existing papers 
either linear or nonlinear don’t consider all of 
important parameters of the ECs. Furthermore, 
particular conditions and the limit range of the 
parameter variations are necessary and despite the 
high precision, complexity makes them impractical 
in some applications.  

If return to model making in the mentioned 
space, nonlinear multivariable nature and 
interconnections between the variables of the ECs in 
addition to the presence of the freight as an 
unpredictable, immeasurable disturbance, effects of 
dynamic of flow, surfaces and walls inside the 
container increase complexity of the model which 
we are looking for. Another important factor is 
disturbance which can be appeared in the different 
ways and may be cause a big estimation error: (i) 
Opening the door of the container; (ii) changing 
either direction or rate of the air flow by some 
obstacles; (iii) thermal or moisturize influences of 
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some freight. All attempts in the first step of the 
present research are towards introducing a grey-box 
nonlinear model between inlet and one DSN. We 
will use previous data of a deactivated sensor in 
addition to the present and previous data of some 
surrounding sensor nodes to estimate unknown 
parameters of the related simplified models. 
According to fig. 1 and also our main proposal in the 
energy management of the wireless sensor network, 
there will be a few special key sensor nodes (KSNs) 
those will send some specific information to main 
processor and or to the other sensor nodes. The 
KSNs should be in active mode during the normal 
operating mode. The KSNs have three major 
functions: (i) they measure environmental conditions 
alternatively; (ii) they evaluate measured values and 
do some estimation of the ECs in the DSNs and 
update previous models after measuring and 
receiving some new data; (iii) they will deactivate 
DSNs when the operational conditions are normal 
and there are no big changes in the ECs. Usually a 
while after loading the container, the ECs inside the 
container have less variations. This duration is the 
best time to utilize the method to take more DSNs to 
sleep mode and to estimate the ECS instead of the 
direct measurement. The KSNs can be located 
everywhere inside the container, even near the door 
or near to the inlet. If they are located in some key 
points, mismatch error due to no considering 
unpredictable phenomenon will be avoidable 
because depending on the floating input approach, 
uncertainties and disturbances are considered 
indirectly as the input change. It is also independent 
of the type of the ventilation system. Useful 
reference for sensor networks is (J. Elson, 2004).  

 
Figure 1: Proposed sensor network. 

2 PROBLEM FORMULATION  

Fig. 2 shows a general scheme of the system, inside 
the container between the inlet and a spatial position. 
It is a complicate, time and place dependent, multi- 
variable system. It consists of three inputs, three 
outputs, disturbance and noise. Due to the coupling 
in the ECs, doing independent experiments in the 
actual container is difficult. It  completely depends 

on the initial conditions so that a change in the T or 
relative humidity of the inlet may change both T and 
H in all positions of the space. Variation in the rate 
of input air flow changes the measurement results 
and disturbance may change all the results so that 
based on the existing conditions, measured values 
might be different even in the same place.  
 

 
Figure 2: Schematic of Container as a MIMO model. 

Floating input approach identifies multivariable 
models between the KSNs and the DSNs, not 
between the inlet and a DSN. Every non modeled 
disturbances which excite some KSNs, is modeled 
as an implicit input change, not a pure disturbance. 
Now, the new input nodes (KSNs) in the defined 
multi-input and single-output (MISO) system change 
output nodes (DSNs). Fig. 3 shows K1, K2, K3 and 
K4 as the KSNs and S1 as the DSN. 

 

 
Figure 3: Models between the KSNs and a DSN. 

The first step for modeling is using linear transfer 
function matrix. Without considering noise we have: 

 

(1) 

(TSN, HSN and FSN) and (Tin, Hin and Fin) are 
respectively measured value of (T, H and F) in SN 
and inlet. Whereas T and H have opposite effects on 
each other, we assign negative sign for the 
interconnection. It is assumed that F has no direct 
effect on the steady state values of T and H, but it 
influences on the speed of their variations. However, 
the effect of F are included in all GT, GH, GHT and 
GTH (which are transfer functions between different 
parameters of the ECs) with some exponential 
functions that we will mention later. To investigate 
validity of the model we employ a reverse lemma 
and some assumptions in different border conditions.  

 
Assumption 1, steady state values of T and H: 
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It can’t be correct because, negative H can’t be 

occurred. We consider some permissible margins so 
that T and H locate in the mentioned margin: 

 (7) 

 

 

(8) 
 
 

(9) 

 
(10) 

  

(11) 

 
(12) 

 
(13) 

 

(14) 

 
(15) 

 
(16) 

 
(17) 

 
(18) 

Having Hmin and Hmax, other input limitations 
will be verified. Then there are the specific bands for 
inputs so that outputs of linear model will be located 
in the admissible areas. Accordant with the lemma, 
linear model (1) can’t be a proper model. The 
nonlinear model will be made based on the basic 
knowledge of the nonlinear nature of the 
interconnections. Considering some linear transfer 
functions for direct effects and obtained nonlinear 
functions for the interactions, we have: 

  

(19) 

g(.) and f(.) are nonlinear interconnections 
between T and H which are influenced by F. As 
stated by (Ghiaus, 2007) and (Zerihun Desta, 2004), 
model of T can be a first-order transfer function. We 
also use the effect of the parameters with the same 
dimensions in the following:  

 
(20) 

 (21) 

 and  illustrate speed of the responses and 
MT and MH steady state values of T and H. They 
74have reverse relation with F. Then, the further 
flow rate, the less  and . The SNs can detecte 
variations in the ECs showed by ∆T, ∆H and ∆F.  

If the position of the SNs is close, we can assume 
that all models in mentioned MISO system, showed 
in fig. 3 are independent. It can be considered as 
several single-input and single-output (SISO) 
systems. Now, they should be combined using a 
multivariable identification method. Accordant with 
the thermodynamic relations, with 10.1 ºC 
increasing T, H will be reduced to the half and we 
have: 

 
(22) 

 
(23) 

 (24) 
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(25) 

 
(26) 

 

(27) 

Z-1 is unit delay in field of Z transform. It is 
probable that the amounts of Toss and Hoss are 
changed because of the variation in air flow pattern. 
However, we consider it on the transfer functions GT 
and GH when running the on-line estimation. From 
previous results, we will derive a time dependent, 
nonlinear, multivariable matrix equation and a 
function of the several KSNs. Uk is a function to 
obtain the effects of the KSNs on a DSN. 

 

(28) 

3 SIMULATIONS 

Results of the SISO system with initial conditions in 
the table 1 has been shown in fig.4. It is noted that a 
part of the parameters such as time constant of T in 
simulations have been inspired of actual behavior of 
a real experiment and the rest are based on primary 
assumptions of the authors.  

Table 1: Initial conditions for inlet and S1. 

 T0 H0 F0 
inlet 10 30 15 

DSN(S1) 9 28.5 13.5 
 
According to fig. 4 Set points of T at 2000, H at 

(12000 and 35000) and F at (4000 and 7000) 
seconds change. An obstacle as a disturbance 
changes the rate of the air flow and influences on the 
speed of the responses. However, it will not change 
the steady state value of the ECs. The initial 
conditions of T and H in output are different with 
those in input (inlet) and after changing T in input, 
output changes slowly to a new equilibrium point 
because the amount of flow is low in the beginning. 
At 4000 and 7000 seconds air flow increases 
respectively to Fmax/2 and Fmax and immediately the 

responses of T and H become faster. When H in inlet 
does not change, H in output changes only due to 
changing T in output. There is a similar story for T 
in output independent of T in input which varies 
with the variation of H in output. Dashed curves 
show the ECs in a desired place inside the container. 
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Figure 4: ECs in SN when the ECs in input change. 

4 AN INDIRECT SOLUTION 

We employ the advantages of the sensor network 
and introduce floating input approach. We assum 
that m numbers of the KSNs are measuring the 
conditions when input is inlet and we have: 

 
(29) 

 
(30) 

 
(31) 

 
(32) 

 (33) 

We can suppose that the nonlinear 
interconnections from the inlet are both in the KSNs 
and the DSNs. Then, we can remove these parts 
when we consider the KSNs as the input: 

 (34) 

G´T, G´H are the linear transfer functions 
between a KSN and a DSN and its unknown 
parameters should be verified using a system 
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identification technique. Now, we will have some 
SISO matrix equations which should to be solved. M 
and P are functions for combining linear effects. We 
use them in the identification method, indirectly. UTi 
and UHi are new inputs, in the m numbers of the 
KSNs. G´Ti and G´Hi are linear transfer functions of 
T and H, written between the KSNs and the DSN.  

 

(35) 

5 RESULTS 

As an example, showed in fig. 5, there are two KSNs 
and one DSN attached to the walls, there are some 
obstacles so that the change-rate of the ECs near to 
the SNs is different with those in inlet. There are 
also different amounts of initial conditions for 
different SNs because of their positions or 
corresponding measurement errors (table 2). The 
simulation results has been shown in fig. 6. 
 

 
Figure 5: A container with inlet, KSNs and DSN. 

Table 2: Initial conditions. 

 T0 H0 F0 
inlet 10 30 15 
K1 9 28.5 13.5 
K2 8.5 27 3 
S1 8 25.5 10 
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Figure 6: Outputs when T, H and F in input change. 

As shown in fig. 6, curves of K1, K2 and S1 are 
according with the data extracted from models 
introduced in equations (23) and (26) and curves 
related to the inlet are the set points. The relations of 
T, H and interconnections are updated based on the 
amount of F at the related instant of the simulation.  

6 OFF-LINE IDENTIFICATION 

Refer to equation (35), there are separate MISO 
systems for T as well as H. All unknown parameters 
should be determined using an off-line identification 
technique. Then, we assume that KSNs are active 
and there is a failure on the DSN or it is in sleep 
mode and having new inputs we will have the new 
estimations of the ECs in the DSNs using existing 
transfer functions. The temperature estimation 
results have been shown in fig. 7 and fig. 8 with the 
SISO and MISO models, respectively. To show 
capability of the method, the results have been 
plotted together with the previous results of the EC 
in S1 from introduced nonlinear model. the 
measured T of K1 in the vicinity of S1, without any 
variation in T of inlet and K2. We obtain its effects 
on S1 when estimated by K1 and K2 compare with a 
regular estimation method using model obtained 
from inlet-DSN. The Solid wide curves illustrates 
nonlinear model output and dashed curves represent 
obtained results separately using linear models and 
then with MISO estimation using output error (OE) 
method in system identification toolbox of Matlab: 

 
(36) 

 
(37) 
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Figure 7: Actual and estimated T and H, model with the 
order three using K1 and K2, separately.  
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To achieve a desired speed and regard to the 
nonlinear nature of the responses that we have still 
in the SNs, we utilize a linear transfer function with 
the order more than two. Whereas the higher order 
models will cause some difficulties in the 
application, we don’t use the order more than three. 
Separate estimations using SISO models have less 
accuracy than those using MISO models.  
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Figure 8: T and H, actual, estimation using high order 
multivariable model from K1, K2.  

More important results are obtained when there 
is a disturbance in vicinity of the SNs influences 
some of the KSNs. fig. 9 shows the variation of T at 
25000 seconds which affects both K1 and S1. Model 
obtained from inlet-S1 can’t show this influence on 
S1 because there are no influences on the inlet. 
However, floating input method can estimate it 
because at least one KSN senses it. 
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Figure 9: a. measured T in inlet, K1 and K2 and b. 
estimation using inlet and K1with existing a disturbanc. 

7 CONCLUDING REMARKS 

This paper propuses a new hybrid model for  
environmental conditions inside a container and  
shows that it has  much more accuracy  for wide 

range of parameter variations compared to other 
conventional linear models  between inlet and a 
desired place. The  new technique  provides a 
simplified multivariable model based on  the 
surrounding sensor nodes used for  estimating the 
ECs in the desired nodes. The simulation results and 
mathematical proofs for different situations endorse 
the  capability of the proposed technique. At the end, 
it should be noted that the comparison among  
different multivariable estimation methods and their 
implementations as well as  finding  the minimum 
number and the  best place of the KSNs  are real 
challenges main concerns on this issue. 
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