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Abstract: The kinematical accuracy of robot is very important. It is induced by the rigidity of each mechanism of the 
robot. The paper presents a numerical method to evaluate the rigidity of worm-gearing teeth. The software, 
including setting-up and graphic display, could be adopted of any kind of cylindrical worm-gear drive or for 
spur gear drives and bevel gear drives, mechanisms which are in the robot structure. Besides, we can 
determine geometrical parameters of the gear drives which influence the increase of accuracy of robot 
linkages.   

1 INTRODUCTION 

Into the kinematical chain there are worm-gear 
drives, screw-nut mechanisms and pinion-rack 
drives. During the working, these gear drives and 
mechanisms of the robot deform under the load, 
leading to the motion errors. The errors can not be 
entirely eliminated, but their maximum values must 
be limited. The theoretical advantage of the 
conjugate action in involute gears is lost due to the 
deflection of the teeth under load and due to the 
manufacturing and assembling errors. These factors 
produce instantaneous variations in the gear ratio. 

As it is well-known, the rigidity of the meshing 
teeth changes as the contact point moves from the 
initial point of contact to the final point of contact. 
During the meshing the normal force is mobile on 
the tooth flank, it changes continuously the position 
with respect to the fixing zone of the teeth. The load 
is unevenly distributed, depending on the contact 
ratio. Consequently, all these factors causes rotative 
speed variations of the driven shaft, vibrations, 
shocks, noise, power loss, low durability of gears. 
The purpose of the present work is to develop a 
methodology to evaluate the rigidity of the worm-
gearing tooth. By means of this methodology the 
performances of the robot mechanisms may be 
improved. 

2 GEOMETRY OF THE  
WORM-GEARING TOOTH 

In order to analyze the rigidity of the worm-gearing 
tooth we assume that the spatial gearing consists of 
more plane-gearings (pinion-rack drives), that in fact 
are cross sections perpendicular to worm-gear axis 
(Figure 1). The analytic solving of the problem, even 
for a ruled worm-gearing, is very difficult due to the 
complexity of the equations of the plane-gearing 
profiles that are involved in the enveloping. 
Consequently, we use the “minimum distance 
method” applied in the case of the “discrete 
representation” of the enveloping profiles. Thus, the 
enveloping profile of the elementary worm-gear 
(plane-gear) can be determined numerically by 
knowing “discretely” a matrix having as elements 
the coordinates of the worm axial section and by 
using the theorem of the “minimum distance 
method”.  

The minimum distance theorem in “discrete 
way” states (Ghelase, D., Daschievici, L., 2006): 

The envelope to the family of curves, represented 
in “discrete way” as massive of the coordinates of 
the points belonging to the family curves, consists of 
the all points there are on these curves, for which, at 
a certain size of the increment ϕ1, the distance at the 
meshing pole is minimum. 
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Figure1: Worm-gear drive. 

2.1 Worm-Geometry 

In order to determine the coordinates of the worm 
axial section, we focus on the case of a worm-
gearing with modified profile could ensure, as well 
as possible, the generalization of the model from the 
geometrical viewpoint. Hence, let the axial section 
(x=0) of the worm (Figure 2) with constant pitch, 
having a circular arch profile with the centre in O1 
for the right flank and in O2 for the left flank. The 
coordinates of the centre O1, respectively O2, are 
given by the following relations: 

 
YO1=Re-u·cosα-a·sinα 
ZO1=b+u·sinα-a·cosα 

(1) 
YO2=Re-u·cosα-a·sinα 
ZO2=-b-u·sinα-a·cosα 

 
where: a is a constant parameter; 
        b=π⋅m/4-1.25⋅m⋅tg α;  
        p=m/2; 
         u=1.25⋅m/cosα; 

        R a u= +2 2 is the radius of the circular arc 
profile;  
            Re is the tip radius of the worm tooth, all 
measured in mm (see Figure 2). 

2.1.1 Equations of the Worm Flanks 

In accordance with Figure 2, a point of the worm 
flank has the following coordinates:  

 
Figure 2: Worm flank geometry.  
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 For the left flank: 
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In the above relations, ν1 and ν2 are variable 

parameters of the right flank and left flank, 
respectively. Generally, the helical motion can be 
written by means of two coordinate transformations 
corresponding to simple motions, components of the 
helical motion: rotation about Oz axis, having 
parameter ϕ, and translation on the same axis, 
proportional to the rotation angle p⋅ϕ, p being helical 
parameter. In this way, the helical motion of the 
movable coordinate system XYZ is described by the 
matrix equation: 

 
x X aT= ⋅ +ω ϕ3 ( )                        (4) 

or 
x
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where x is the matrix of a point coordinates with 
respect to the coordinate system xyz fixed to the 
frame, X is the matrix of the same point coordinates 
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with respect to the movable coordinate system, a is 
the matrix of the point O coordinates (the origin of 
the movable coordinate system) with respect to the 
point O1 (see Figure 3), and ω3(ϕ) is the matrix of 
the rotation transformation.  

 
Figure 3: Coordinate system applied for the helical 
motion. 

Substituting (1), (2) and (3) in (4), we obtain the 
parametric equations of the right flank surface and 
left flank surface.  

Then, crossing these surfaces with the plane 
x=H, the curve representing the worm profile 
corresponding to the sectional plane takes the form 
(for example, the right flank): 
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2.2 Determination of the Worm-Gear 
Flank Profile 

The worm-gear tooth surface is generated by the 
rolling.  

We apply the “minimum distance method” on 
the algorithm of the discretization in the case of 
generation with the rack-bar tool.  

First of all, we get the discretization of the 
generating curve CΣ, which in this case is the worm 
profile, represented by the vector (7), where: 

yi and zi are the coordinates of the profile from 
the “H” plane, which were determined by (5).  

The gear flank generation of the elementary gear 
drive is made with the rack-bar tool (see Figure 4). 
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The rolling condition interpreted in “discrete” way is 
the following: 

K⋅Δλ=Rr⋅Δϕ⋅j                          (8) 
 
Where Δϕ is the angular increment of the rolling. It 
is then obvious that for generating a profile with 
high accuracy from the technical viewpoint, this 
increment has to be enough small. 

2.2.1 Generation Motion 

The generation motions of the worm-gear flank are: 
1) Rotation of centroid, associated to the gear of the 
elementary gear drive, with respect to the fixed 
coordinate system xyz, described by the matrix 
equation 

x=ω1
T(j⋅Δϕ) X.                     (9) 

 
In this relation, x is the matrix of the point 

coordinates with respect to the fixed coordinate 
system, X is the coordinates matrix of the same 
point with respect to movable coordinate system 
XYZ and ω1(ϕ) is matrix of the rotation 
transformation about Ox axis; 
2) Translation of the movable coordinate system ξηζ 
associated to the rack, with respect to the fixed 

Rolling line of  
the rack 

 

 

 

 

 

 

 

Figure 4: Worm-gear flank generation. 
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coordinate system, described by the equation (a is 
the coordinates matrix of the point O1, the origin of 
the movable coordinate system, with respect to the 
point O): 

x=ξ+a                           (10) 
with  

a R
R j

r

r

= −
− ⋅ ⋅

0

( )Δϕ

.                (11) 

 
3) Relative motions 

Combining (9) and (10) we obtain that the 
motion equation of a point on the generating curve 
“g” (Figure 4) from the coordinate system XYZ with 
respect to the coordinate system ξηζ is as follows: 

 

ξ=ω1
T(j⋅Δϕ) X-a                     (12) 

 
X=ω1

T(j⋅Δϕ)[ξ+a].                  (13) 
 

From the last equation, we infer that 
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The system of equations (14) represents the 

family of generating curves “g” with respect to the 
coordinate system of the worm-gear, η and ζ being 
the coordinates of the points that are on the 
generating curve (Figure 5).  

 
Figure 5: Coordinates of the meshing pole P. 

The envelope to the family (14) is what we have 
to determine, more precisely, the gear profile (see 
Figure 6, flank of gear).  

 

Figure 6: Line of contact (l.a.) in the plane H0. 

The enveloping condition is given by the 
minimum of distance 

 

d Y Y Z ZP P= − + −( ) ( )2 2 ,                    (15) 
 

where YP and ZP (coordinates of the meshing pole) 
are: 

YP= -Rr⋅cos(j⋅Δϕ); ZP= Rr⋅sin(j⋅Δϕ).         (16) 

2.3 Surface of Contact 

The surface of contact is defined as locus of the 
contact points of the two conjugated surfaces (which 
are in enveloping) in the fixed coordinate system 
xyz (Figure 4). The parametric equations of the 
surface of contact are obtained associating the 
enveloping condition to the absolute motion 
equation of the worm-gear flank profile. In the 
sectional plane x=H, the line of contact is given by: 
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          (17) 

3 WORM-GEARING TOOTH 
RIGIDITY 

Once the algorithm for the determination of the 
contact points, both on the flank height and along 
the line of contact, is performed, then it is possible 
to evaluate the rigidity of the worm-gearing tooth.  

3.1 Bases of Design 

The mathematical model is based on the following 
assumptions: 
 The worm-gearing is errors free and the gears are 

rigid except the teeth; 
 Taken into consideration only the bending 

produced by the meshing normal force; 
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 Consider that the worm-gearing consists of more 
plane-gear drives (pinion-rack drives), named 
“elementary gear drives”, that in fact are cross 
sections perpendicular to axis of rotation of the 
worm-gear (Figure 1); 
 The tooth of the elementary gear drive is 

supposed to be a beam fixed at one end in the body 
of gear; 
 The assembly of the plane-gear drives into the 

worm-gear drive was made provided that the teeth of 
the elementary gear drives to deform together and 
not separately under the same load. 

3.2 Computer Program 

Our algorithm to evaluate the rigidity of the worm-
gearing tooth is the following (Ghelase, D., 2005): 

1) Computation of the rigidity for an elementary 
tooth; 
2) Computation of the rigidity for a pair of 
elementary teeth; 
3) Computation of the rigidity for an elementary 
gearing tooth (pinion-rack drive); 
4) Computation of the rigidity for the worm-
gearing tooth. 
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Figure 7: Rigidity of the worm-gearing tooth. 

By means of the numerical modelling, these 
steps will be added to the computer program used 
for the study of the worm-gearing tooth geometry, 

finally providing the instrument for the 
determination of the worm-gearing tooth rigidity. 
The computation diagram of rigidity of worm-
gearing tooth can be seen in Figure 7.  

The cvasisinusoidal zone of the curve from 
Figure 7 repeats periodically, because it represents 
the rigidity during the meshing when the all plane-
gear drives are involved in the meshing. Thus, if the 
input and output rigidities are eliminated, being less 
importing for our study, we get the elasticity 
characteristic of the worm-gearing tooth. 

3.3 Elasticity Characteristic 

The elasticity characteristic represents the variation 
of rigidity of the worm-gearing tooth depending on 
the rolling angle (j·Δφ), where “j” is the rolling 
angular parameter (Ghelase, D., Tomulescu, L., 
2003). It is cvasisinusoidal curve with the high 
jumps when a tooth binds or recesses (Figure 8). 

The investigation of the elasticity characteristic 
is very important for the study of an elastic system, 
such as: gearing, linkage. Hence, the introduction of 
this concept contributes to the completion of the 
used gearing study and it leads to increase of the 
gearing tooth rigidity. 

 
Figure 8: Elasticity characteristic of the worm-gearing 
tooth. 

3.4 Influence of Geometrical 
Parameters 

The influence of the geometrical parameters on the 
rigidity was obtained by means of the computerized 
simulation (Ghelase, D., 2003). It was applied to 150 
worm-gear drives and we can present the following 
conclusions: 
1. The rigidity of worm-gearing tooth increases if 
diametral quotient q increases and radius of profile 
curvature R increases (Ghelase, D., 2003). 
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2. The rigidity of worm-gearing tooth reduces if 
profile angle α increases (Ghelase, D., 2003) and 
number of the gear teeth z2 increases (Figure 9, 
Table 1). 
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Figure 9: Rigidity depending on number of gear teeth z2. 

Table 1: Influence of number of gear teeth on rigidity. 

z2 

Maximum 
Rigidity 
[kN/mm] 

Minimum 
Rigidity 
[kN/mm] 

Medium 
Rigidity 
[kN/mm] 

53 2267.385 1215.140 1741.262 
80 1727.633 1132.201 1429.917 
90 1581.896 1079.696 1330.796 
169 1055.990 853.826 954.908 

4 CONCLUSIONS 

Finally, we can draw the following conclusions:  
1) A method to evaluate the rigidity of worm-

gearing tooth was developed; 
2) The proposed approach may be applied for 

any types of cylindrical worm-gearing and for spur 
gearing and bevel gearing. These mechanisms are in 
the structure of robot and by them rigidity depends 
the kinematical accuracy of robot;  

3) The introduction of “elasticity characteristic” 
concept contributes to the completion of study for 
the used mechanisms; 

4) The developed computer program enables to 
obtain numerical solutions and graphic illustration;  

5) The numerical method, proposed and analyzed 
in this paper, affords the geometry optimization and 
the study of the meshing for various geometrical 
parameters of the worm-gearing, being in fact a 
simulation of meshing; 

6) Moreover, we can determine the parameters 
which influence the improvement of rigidity for 
worm-gearing tooth and the increase of accuracy of 
robot linkages.   
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