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Abstract: An off-line technique enabling to robustify an initial Model Predictive Control (MPC) for multivariable sys-
tems via the convex optimization of a Youla parameter is presented. Firstly, a multivariable predictive con-
troller is designed for a nominal system and then robustified towards unstructured uncertainties, while 
guaranteeing stability properties over a specified polytopic domain of uncertainties. This condition leads to 
verify a Bilinear Matrix Inequality (BMI) for each vertex of the polytopic domain. This BMI can be 
mathematically relaxed to semi-definite programming (SDP) using a Sum of Squares (SOS) strategy, with a 
significant increase of the number of scalar decision variables. To overcome this inconvenient, an 
alternative tractable sub-optimal solution for the BMI is proposed, based on the elaboration of a stable 
solution obtained by minimization of the complementary sensitivity function. 

1 INTRODUCTION 

During the latest years, the robustness aspect of Mo-
del Predictive Control (MPC) has been considered 
both within online strategies (Kothare et al., 1996; 
Goulart and Kerrigan, 2007; Camacho and Bordons, 
2004) and off-line approaches (Wan and Kothare, 
2003; Rossiter, 2003; Rodríguez and Dumur, 2005). 
Mixed methods computing off-line a set of 
controllers have been developed, leaving on-line 
only the selection of the current controller (Olaru 
and Dumur, 2004; Lee and Kouvaritakis, 2006). 

This paper presents an off-line robustification 
procedure for model predictive control applied to 
multivariable (possibly non-square) uncertain 
systems. It considers both unstructured and polyto-
pic uncertainties. Firstly, a predictive controller for a 
nominal system is designed. Secondly, the robustifi-
cation problem under unstructured uncertainties is 
considered. This leads to a convex optimization of a 
multivariable Youla parameter solved with Linear 
Matrix Inequalities (LMIs) techniques, as described 
in (Stoica et al., 2007). Thirdly, the robust stability 
of the controlled system towards system polytopic 
uncertainties is considered. Since the polytopic 
domain is chosen as a convex polytope, this implies 
checking the stability only for the vertices of the 
polytope (Kothare et al., 1996). This condition leads 

to satisfy a Bilinear Matrix Inequality (BMI) for all 
vertices of the polytopic domain. This problem can 
be transformed into semi-definite programming 
(SDP) using Sum of Squares (SOS) relaxations 
described in (Scherer and Hol, 2006), with a 
significant increase of the number of scalar decision 
variables. To avoid this increase of the computing 
time, this paper proposes a sub-optimal tractable 
solution based on the minimization of the 
complementary sensitivity function which permits to 
enlarge the stability domain. A feasible solution for 
each vertex can be found, the stability conditions for 
all the vertices of the polytopic domain being then 
explicitly integrated. 

The most interesting result is that this 
robustification technique permits to guarantee the 
stability property on the entire polytopic uncertain 
domain, even if the initial MPC controller may be 
unstable for some regions of the polytopic domain. 

This paper is organized as follows. The main 
steps leading to a MIMO MPC and the related class 
of stabilizing controllers are presented in Section 2. 
The robustification procedure under unstructured 
and polytopic uncertainties is detailed in Section 3. 
Finally, some concluding remarks are given in 
Section 4. 
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2 CLASS OF STABILIZING MPC 

This section briefly presents the main steps leading 
to an initial stabilizing multivariable MPC in state-
space formalism and the class of stabilizing 
controllers obtained via the Youla parameter. More 
details can be found in (Stoica et al., 2007). Let us 
consider a discrete time MIMO LTI system with m 
inputs and p outputs, characterized by the 4-uplet 

),,,( 0CBA  of the state-space representation. 
In order to cancel the steady-state errors, an 

integral action on the control vector is added, 
leading to an extended state-space description: 
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Minimizing the quadratic objective function (2) 
gives the expression of the control signal. The 
following notations are used: ry  - the setpoint; JQ~ , 

JR~  - the weighting matrices. The future control 
increments )( ik +Δu  are supposed to be 0 for 

uNi ≥ . The same output prediction horizons ( 1N , 

2N ) and the same control horizon uN  are applied 
for all input/output transfers. 
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The predicted output )(ˆ ky is derived from: 
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with )(ˆ kx  obtained from the following observer: 
 

])(ˆ)([)()(ˆ)1(ˆ kkkkk eeeeee xCyKuBxAx −+Δ+=+
 

(4) 
 

An analytical minimization of (3) rewritten in a 
matrix form, as described in (Maciejowski, 2001), 
leads to the following control signal (Fig. 1): 
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Figure 1: Robustified MIMO MPC via Q parametrization. 

The structure of the control gain matrix 
[ ]21 LLL =  and the setpoint pre-filter wF  are the 

same as in (Stoica et al., 2007). The expression (5) 
provides an initial stabilizing controller. A possible 
way leading to the class of all stabilizing controllers 
is to use the Youla-Kučera parameter coupled with 
this control law. It is well known from the literature 
(Boyd and Barratt, 1991; Maciejowski, 1989) that 
any stabilizing controller can be represented by a 
state-space feedback controller coupled with an ob-
server and a Youla (also called Q) parameter. 
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Figure 2: Class of stabilizing controllers with Q parameter. 

The first step is to add supplementary inputs u′  
and outputs y′  with a zero transfer between them 
( 022 =zwT  in Fig. 2), which permits the connection 
of the Q parameter between y′  and u′  without 
restricting the closed-loop stability. As a result, the 
closed-loop function between w  and z  is linearly 
parametrized by the Q parameter, allowing convex 
specification (Boyd and Barratt, 1991): 
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where 
zwzwzw

TTT 211211 ,,  depends on the considered 
input/output ( w / z ) transfer. 
 
 
 

Observer 

−

)(ku′
)(ˆ kex

K

)(ky′
L

Q

rF
−

+

− )(ku

)(kuΔ

∫+

[ ]
⎥
⎦

⎤
⎢
⎣

⎡
0C

IBA

e

ee

+

+

uΔuW

)(kd
)(ky

⎥
⎦

⎤
⎢
⎣

⎡
0C
BA

)(ˆ ky +

+
)( 2Nkr +y )(kb)(kz

OFF-LINE ROBUSTIFICATION OF PREDICTIVE CONTROL FOR UNCERTAIN SYSTEMS - A Sub-optimal
Tractable Solution

265



 

3 ROBUSTNESS VIA THE 
YOULA PARAMETRIZATION 

A procedure enhancing robustness of the previous 
multivariable MPC in terms of the Youla parameter 
is presented in the particular case of the 
maximization of the robust stability under additive 
unstructured uncertainties, while guaranteeing 
stability properties over a specified polytopic 
domain of uncertainties. It will be shown that the 
global robustification problem is a necessary trade-
off between both robustification aspects. 

3.1 Robust Stability under 
Unstructured Uncertainties 

Along with the small gain theorem (Maciejowski, 
1989; Zhou et al., 1996), a necessary and sufficient 
condition for the robust stability under unstructured 
uncertainties uΔ  (Fig 3) is formulated as the 
following ∞H  norm minimization: 
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where ∞ℜH  is the space of stable transfers and zwT  
also contains the weighting factors. 
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Figure 3: Unstructured uncertainty. 

The minimization (7) may be more specifically 
formulated using the following theorem. 

Theorem (Clement and Duc, 2000; Boyd et al., 
1994): A discrete time system given by the state-
space representation ),,,( clclclcl DCBA  is stable 
and admits a ∞H  norm lower than γ  if and only if: 
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(8) 

 

where the notation “ 0f ”/“ 0p ” refers to a strictly 
positive/negative definite matrix. There exist 
appropriate techniques to transform the expression 
(8) into a LMI (Clement and Duc, 2000; Scherer, 
2000). The decision variables should be 1X , γ  and 
the Q parameter included in the closed-loop matrices 
(Stoica et al., 2007). As a result, the optimization 

problem is formulated as the minimization of γ  
subject to this first LMI constraint: 

 

γ
0

min
LMI

 (9) 
 

To restrict the search of the Q parameter which 
initially varies in the infinite-dimensional space 

∞ℜH , a sub-optimal solution is to consider for each 
input/output pairs ),( ji  a finite-dimensional 
subspace generated by an orthonormal base of 
discrete stable transfer functions (such as a 
polynomial or FIR filter). This MIMO Youla 
parameter can be obtained in the state-space 
formalism using a fixed pair ),( QQ BA  and 

searching only for the variable pair ),( QQ DC . 

3.2 Robust Stability under Polytopic 
Uncertainties 

The main result is the robustification procedure 
under polytopic uncertainties. Consider the 
following time-varying system, as a generalization 
of the polytopic system (Kothare et al., 1996): 
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where [ ] ΩCBA ∈)()()( kkk  and the polytope Ω  
(Fig. 4) represents the convex hull Co defined by the 
l vertices [ ]iii CBA . 

 

[ ]555 CBA

(nominal system) 
[ ]000 CBA  

[ ]333 CBA  

[ ]111 CBA  
[ ]222 CBA  

[ ]444 CBA  

Figure 4: Polytopic uncertainty representation ( 5=l ). 

As Ω  is a polytope (convex set), guaranteeing 
the stability of (10) on the entire space Ω  means to 
guarantee the stability for all the vertices of the 
polytope (Kothare et al., 1996). This is equivalent to 
satisfy the following condition (Boyd et al., 1994) 
for each vertex li ,1=  of the domain Ω : 
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This expression is bilinear in its decision 
variables 2X  and the Q parameter included in icl ,A . 
The global robustification problem towards both 
unstructured and polytopic uncertainties is achieved 
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by minimizing γ  subject to the constraints LMI0 and 
BMIi (11): 

 

γ
liBMILMI i ,1,,0

min
=

 (12) 
 

But this is a difficult problem since it involves 
BMI expressions, in addition containing decision 
variables (the Q parameter) jointly with a LMI. The 
challenge is to try to find a sub-optimal solution. 

A first mathematical approach based on Sum of 
Squares (SOS) for relaxing the BMIs (12) is 
developed in the literature by (Scherer and Hol, 
2006). But this relaxation technique leads to a huge 
number of scalar decision variables (that MatlabTM 
cannot deal with it for the moment) due to the size of 
SOS matrices. Hence it cannot be used within the 
presented robustification procedure. 

For this reason, a second sub-optimal tractable 
solution (in three steps) of solving these BMIs is 
proposed. Firstly, in order to enlarge the polytopic 
domain around the nominal system, the 
minimization of the complementary sensitivity 
function is added to (9). This is equivalent to add the 
minimization of the transfer between b and y 
(Fig. 1) to (9). This minimization is then trans-
formed into a LMI added to the first one (9): 

 

CSLMILMI
cc

CS

γγ 21,0

min +  (13) 

choosing appropriate coefficients 1c , 2c . Solving the 
optimization problem (13) leads to a Q parameter 
that will be used in the second step of the robustifi-
cation procedure. In fact, the minimization (13) is 
recomputed until the resulting stability domain 
includes at least the polytopic domain of 
uncertainties, by selecting appropriate weightings 

21,cc . The expression (13) offers the possibility to 
increase the stability domain, but does not offer any 
information about the limits of this domain. To 
explicitly include the considered polytopic domain, 
the second and third steps must be followed. 

In order to find a sub-optimal solution of (11), 
the second step is to search 2X  using the Q para-
meter obtained with (13). This can be achieved for 
instance by minimizing the trace of 2X  subject to 

the LMIi ( li ,1= ) derived from the BMIs (11), which 
permits to choose 2X  in order to enlarge the 
stability domain: 

 

)(min 2
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Thirdly, the value obtained for i,2X  is used in 
the final step of the optimization problem which 

decision variables are 1X , γ  and the Q parameter 
included in the closed-loop matrices from LMI0 and 
LMIi: 

 

γ
liLMILMI i ,1,,0

min
=

 (15) 
 

where LMIi are the relaxations of the BMIs (11) for 
the vertices iA , while fixing the variable 2X . The 
optimization (15) gives a Youla parameter that will 
guarantee the stability of the controlled system for 
all the vertices of the polytopic domain. 

4 CONCLUSIONS 

This paper has proposed an off-line methodology 
which improves the robustness of an initial 
stabilizing predictive controller via the convex 
optimization of the Youla parameter. This procedure 
deals with the stability robustness aspect of the 
nominal system towards unstructured uncertainties 
(solved with LMI tools), while guaranteeing the 
stability under a considered polytopic uncertain 
domain (leading to BMIs). In order to find a sub-
optimal solution for these BMIs, a new method 
presenting a sub-optimal technique of solving this 
non-convex problem is proposed: one matrix 
variable is fixed using the minimization of the 
complementary sensitivity function, while looking 
for the other matrix variable. This provides 
computationally tractable solutions. 

The main advantage of this robustification 
technique under polytopic uncertainties is that 
guaranteeing the BMI stability condition robustly 
stabilizes the controlled system for the entire 
polytopic domain, even if the system coupled with 
the initial predictive controller is unstable in some 
points of the polytopic domain. This offers a 
possible way of increasing the polytopic domain for 
which the stability is guaranteed. 
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