
AUTOMATIC TRANSFORMATION OF SQL RELATIONAL
DATABASES TO OWL ONTOLOGIES

Irina Astrova and Ahto Kalja
Tallinn University of Technology, Tallinn, Estonia

Keywords: Relational databases, ontologies, SQL and OWL.

Abstract: This paper proposes a novel approach to automatic transformation of relational databases (written in SQL)
to ontologies (written in OWL), where domains and constraints CHECK are also considered. The proposed
approach can identify (inverse) functional, symmetric and transitive properties, cardinality and value
restrictions, and enumerated classes and data types.

1 INTRODUCTION

Today it is common to get data from relational
databases over the Web. These databases are
generally separate and not easily used as merged
data sources. The W3C vision sees ways to unify the
description and retrieval of the data using
ontologies, thus allowing much of the Web to be
part of a large interoperable database.

Thus, there is a need to transform relational
databases to ontologies. However, manual
transformation is hard to do and often takes a lot of
time. Thus, there is also a need to automate the
transformation.

2 RELATED WORK

While there are several approaches to automatic
transformation relational databases to ontologies -
e.g. (Buccella et al., 2004; Li et al., 2005; Shen et
al., 2006; Astrova and Kalja, 2006; Sequeda et al.,
2007), many situations are too complex or require
more flexibility than the existing approaches enable.

E.g. a company may wish to trace the skills of its
employees in order to assign the employees to the
projects. Since an employee may have many skills,
skill becomes multivalued. It is possible to
represent skill as a data type property in the
ontology. But it is not possible to represent skill
as a column in the relational database, because the
column may have at most one value for each row in
the table (atomicity). One solution to this problem is

to create a separate table (McFadden et al., 1999).
This table could map to a data type property during
the transformation. However, the existing
approaches cannot recognize such a situation.
Rather, they map the table to a class. Moreover, the
existing approaches cannot identify inverse
functional, symmetric and transitive properties,
value restrictions, and enumerated classes.

As an attempt to resolve these problems, this
paper proposes a novel approach to automatic
transformation of relational databases to ontologies.
The main objective of the proposed approach is to
preserve as many semantics as possible during the
transformation. The proposed approach assumes that
a relational database is written in SQL (SQL, 2002)
and that an ontology is written in OWL (OWL,
2004).

3 APPROACH

The proposed approach maps constructs of a
relational database (i.e. tables, domains, columns,
constraints, and rows) to an ontology using the
names of constructs in the relational database as the
names of constructs in the ontology. Next this
mapping will be illustrated by example. An example
is the relational database of a company.

3.1 Mapping Tables

A table can be mapped to three different constructs
in the ontology: a class, a data type property, and an
object property and its inverse.

131
Astrova I. and Kalja A. (2008).
AUTOMATIC TRANSFORMATION OF SQL RELATIONAL DATABASES TO OWL ONTOLOGIES.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 131-136
DOI: 10.5220/0001515101310136
Copyright c© SciTePress

A table Project in Figure 1 has its own
primary key. Therefore, this table maps to a class
Project.

CREATE TABLE Project(
 ProjectID INTEGER PRIMARY KEY)

↓
<owl:Class rdf:ID=”Project”/>

Figure 1: Table maps to class.

The primary key of a table Software-
Project in Figure 2 is a foreign key to another
table Project. Therefore, this table maps to a class
SoftwareProject.

CREATE TABLE SoftwareProject(
 ProjectID INTEGER PRIMARY KEY,
 FOREIGN KEY (ProjectID) REFERENCES
Project)

↓
<owl:Class rdf:ID=”SoftwareProject”/>

Figure 2: Table maps to class (contd.).

The primary key of a table Involvement in
Figure 3 is composed of foreign keys to two other
tables Project and Employee, indicating a
binary (many-to-many) relationship. Since there are
no other columns in the table Involvement, it
maps to two object properties: EmployeeID (that
uses classes Project and Employee as its
domain and range, respectively) and ProjectID.
The latter is an inverse of the former, meaning that
the relationship is bidirectional (i.e. a project
involves employees and an employee is involved in
projects). If the table Involvement had an
additional column say hours, it would be mapped
to a class Involvement.

CREATE TABLE Involvement(
 EmployeeID INTEGER REFERENCES
Employee,
 ProjectID INTEGER REFERENCES Project,
 PRIMARY KEY (EmployeeID, ProjectID))

↓
<owl:ObjectProperty
rdf:ID=”EmployeeID”>
 <rdfs:domain rdf:resource=”#Project”/>
 <rdfs:range rdf:resource=”#Employee”/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID=”ProjectID”>
 <owl:inverseOf
rdf:resource=”#EmployeeID”/>
</owl:ObjectProperty>

Figure 3: Table maps to object property and its inverse.

The primary key of a table SkillValue in
Figure 4 is composed of a column skill and a
foreign key to another table Employee, meaning
that the column skill is multivalued (i.e. an
employee may have zero or more skills). Since there
are no other columns in the table SkillValue, it
maps to a data type property skill that uses a class
Employee as its domain. If the table
SkillValue had an additional column say
level, it would be mapped to a class
SkillValue.

CREATE TABLE SkillValue(
 skill VARCHAR,
 EmployeeID INTEGER REFERENCES
Employee,
 PRIMARY KEY (skill, EmployeeID))

↓
<owl:DatatypeProperty rdf:ID=”skill”>
 <rdfs:domain
rdf:resource=”#Employee”/>
 <rdfs:range
rdf:resource=”&xsd;sting”/>
</owl:DatatypeProperty>

Figure 4: Table maps to data type property.

The primary key of a table Involvement in
Figure 5 is composed of foreign keys to three other
tables Employee, Project and Skill,
indicating a ternary relationship. Since only binary
relationships can be represented through object
properties, this table maps to a class
Involvement.

CREATE TABLE Involvement(
 EmployeeID INTEGER REFERENCES
Employee,
 ProjectID INTEGER REFERENCES Project,
 SkillID INTEGER REFERENCES Skill,
 PRIMARY KEY (EmployeeID, ProjectID,
SkillID))

↓
<owl:Class rdf:ID=”Involvement”/>

Figure 5: Table maps to class (contd.).

3.2 Mapping Domains

A domain maps to a class unless there is a constraint
CHECK with enumeration on it. Then it maps to an
enumerated class.

A domain ProjectType in Figure 6 is defined
as the data type of all strings. Therefore, this domain

WEBIST 2008 - International Conference on Web Information Systems and Technologies

132

maps to a class ProjectType, with a data type
property say type that uses string as its range.

CREATE DOMAIN ProjectType AS VARCHAR

↓
<owl:Class rdf:ID=”ProjectType”>
 <owl:DatatypeProperty rdf:ID=”type”>
 <rdfs:range
rdf:resource=”&xsd;string”/>
 </owl:DatatypeProperty>
</owl:Class>

Figure 6: Domain maps to class.

A domain ProjectType in Figure 7 is defined
as the data type of all strings, again. However, there
is now a constraint CHECK on it. This constraint
specifies the domain ProjectType through a list
of values Software and Hardware (also known
as enumeration). Therefore, it maps to an
enumerated class ProjectType, with individuals
for each value in the list.

CREATE DOMAIN ProjectType AS VARCHAR
 CONSTRAINT ProjectType_Constraint
 CHECK IN (‘Software’, ‘Hardware’)

↓
<owl:Class rdf:ID=”ProjectType”>
 <owl:oneOf rdf:parseType=”Collection”>
 <owl:Thing rdf:about=”#Software”/>
 <owl:Thing rdf:about=”#Hardware”/>
 </owl:oneOf>
</owl:Class>

Figure 7: Domain maps to enumerated class.

3.3 Mapping Columns

A column that is not (part of) a foreign key maps to
a data type property unless it uses a domain as its
data type. Then it maps to an object property. This is
because the domain maps itself to either a class or an
enumerated class (see Section 3.2).

A column ssn in a table Employee in Figure 8
is not a foreign key. Therefore, this column maps to
a data type property ssn that uses a class
Employee as its domain. This property has a
maximum cardinality of 1, because the column ssn
may have at most one value for each row in the table
Employee (atomicity). Alternatively, the property
ssn could be defined as functional, which is the
same as saying that the maximum cardinality is 1. It
should be noted that if the column ssn were a
surrogate key, it would be ignored. A surrogate key
is internally generated by the relational database
management system using an automatic sequence

number generator or its equivalence; e.g. an
IDENTITY in SQL Server and Sybase, a
SEQUENCE in Oracle and an AUTO_INCREMENT
in MySQL.

CREATE TABLE Employee(
 ssn INTEGER CHECK (ssn > 0))

↓
<owl:DatatypeProperty rdf:ID=”ssn”>
 <rdfs:domain
rdf:resource=”#Employee”/>
 <rdfs:range
rdf:resource=”&xsd;positiveInteger”/>
</owl:DatatypeProperty>
<owl:Class rdf:ID=”Employee”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource=”#ssn”/>

<owl:maxCardinality rdf:datatype=
”&xsd;nonNegativeInteger”1/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 8: Column maps to data type property.

Most of the mapping of columns has to do with
the mapping of data types from SQL to XSD. Unlike
SQL, OWL does not have any built-in data types.
Instead, it uses XSD (XML Schema Data types).

A column ssn in Figure 8 uses INTEGER as its
data type. Therefore, a data type property ssn could
use integer as its range. However, there is a
constraint CHECK on the column ssn. This
constraint further restricts the range of values for the
column ssn to all integers greater than 0 (i.e. all
positive integers). Therefore, the data type property
ssn uses positiveInteger as its range.

3.4 Mapping Constraints

SQL supports constraints UNIQUE, NOT NULL,
REFERENCES, FOREIGN KEY, PRIMARY KEY,
CHECK, and DEFAULT. However, not all the
constraints can be mapped to OWL. E.g. a constraint
DEFAULT (that defines a default value for a given
column) has no correspondence in OWL. Therefore,
it is ignored.

3.4.1 Mapping Constraints UNIQUE

UNIQUE is a column constraint. It maps to an
inverse functional property.

A constraint UNIQUE in Figure 9 specifies that a
column ssn in a table Employee is unique,

AUTOMATIC TRANSFORMATION OF SQL RELATIONAL DATABASES TO OWL ONTOLOGIES

133

meaning that no two rows in the table Employee
have the same value for the column ssn (i.e. social
security numbers uniquely identify employees).
Therefore, this constraint maps to an inverse
functional property.

CREATE TABLE Employee(
 ssn INTEGER UNIQUE)

↓
<owl:InverseFunctionalProperty
rdf:ID=”ssn”/>

Figure 9: Constraint UNIQUE maps to inverse functional
property.

3.4.2 Mapping Constraints NOT NULL

NOT NULL is a column constraint. It maps to a
minimum cardinality of 1.

A constraint NOT NULL in Figure 10 specifies
that a column ssn in a table Employee is not null,
meaning that all rows in the table Employee have
values for the column ssn (i.e. all employees are
assigned social security numbers). Therefore, this
constraint maps to a minimum cardinality of 1.

CREATE TABLE Employee(
 ssn INTEGER NOT NULL)

↓
<owl:Class rdf:ID=”Employee”>
 <rdfs:subClassOf>
 <owl:Restriction>

 <owl:onProperty
rdf:resource=”#ssn”/>
 <owl:minCardinality rdf:datatype=
”&xsd;nonNegativeInteger”1/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 10: Constraint NOT NULL maps to minimum
cardinality of 1.

3.4.3 Mapping Constraints REFERENCES
and FOREIGN KEY

REFERENCES is a column constraint (to refer to a
single column), whereas FOREIGN KEY is a table
constraint (to refer to multiple columns). Both
constraints are used for specifying foreign keys. A
foreign key can be mapped to four different
constructs in the ontology: an object property, class
inheritance, a symmetric property, and a transitive
property.

A constraint REFERENCES in Figure 11
specifies that a column ProjectID in a table
Task is a foreign key to another table Project,

indicating a binary (one-to-zero-or-one, one-to-one
or many-to-one) relationship. Since the foreign key
is not the primary key, it maps to an object property
ProjectID that uses classes Task and Project
as its domain and range, respectively. This property
has a maximum cardinality of 1 (atomicity). In
addition, the property ProjectID is restricted to
all values from the class Project, because the
foreign key implies that for each (non-null) value of
the column ProjectID there is the same value in
the table Project.

CREATE TABLE TASK(
 TaskID INTEGER PRIMARY KEY,
 ProjectID INTEGER REFERENCES Project)

↓
<owl:ObjectProperty rdf:ID=”ProjectID”>
 <rdfs:domain rdf:resource=”#Task”/>
 <rdfs:range rdf:resource=”#Project”/>
</owl:ObjectProperty>
<owl:Class rdf:ID=”Task”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource=”#ProjectID”/>
 <owl:maxCardinality rdf:datatype=
”&xsd;nonNegativeInteger”1/>
 <owl:allValuesFrom rdf:resource=
”#Project”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 11: Foreign key maps to object property.

A constraint FOREIGN KEY in Figure 12
specifies that a column ProjectID in a table
SoftwareProject is a foreign key to another
table Project, indicating a binary relationship,
again. However, since the foreign key is now the
primary key, it maps to class inheritance:
SoftwareProject is a subclass of Project
(i.e. a software project is a project).

CREATE TABLE SoftwareProject(
 ProjectID INTEGER PRIMARY KEY,
 FOREIGN KEY (ProjectID) REFERENCES
Project)

↓
<owl:Class rdf:ID=”SoftwareProject”>
 <rdfs:subClassOf
rdf:resource=”#Project”/>
</owl:Class>

Figure 12: Foreign key maps to class inheritance.

A constraint REFERENCES in Figure 13
specifies that a column spouse in a table

WEBIST 2008 - International Conference on Web Information Systems and Technologies

134

Employee is a foreign key to the same table,
indicating a unary relationship. Therefore, the
foreign key maps to a symmetric property spouse
that uses a class Employee as both its domain and
range (i.e. if one employee is a spouse of another
employee, then the second employee is a spouse of
the first employee).

CREATE TABLE Employee(
 EmployeeID INTEGER PRIMARY KEY,
 spouse INTEGER REFERENCES Employee)

↓
<owl:SymmetricProperty rdf:ID=”spouse”>
 <rdfs:domain
rdf:resource=”#Employee”/>
 <rdfs:range rdf:resource=”#Employee”/>
</owl:SymmetricProperty >

Figure 13: Foreign key maps to symmetric property.

A constraint REFERENCES in Figure 14
specifies that a column subtask in a table Task is
a foreign key to the same table, indicating a unary
relationship, again. However, since the foreign key
is now accompanied by a trigger ON DELETE
CASCADE, this relationship consists of a whole and
a part, where the part cannot exist without the whole
(i.e. if a task is deleted, then all its subtasks must
also be deleted). Therefore, the foreign key maps to
a transitive property subtask that uses a class
Task as both its domain and range (i.e. if one task is
a subtask of another task and the other task is a
subtask of yet another task, then the first task is a
subtask of the third task).

CREATE TABLE Task(
 TaskID INTEGER PRIMARY KEY,
 subtask INTEGER REFERENCES Task ON
DELETE CASCADE)

↓
<owl:TransitiveProperty
rdf:ID=”subtask”>
 <rdfs:domain rdf:resource=”#Task”/>
 <rdfs:range rdf:resource=”#Task”/>
</owl:TransitiveProperty >

Figure 14: Foreign key maps to transitive property.

3.4.4 Mapping Constraints PRIMARY KEY

There are two forms of constraint PRIMARY KEY:
using it as a column constraint (to refer to a single
column) and using it as a table constraint (to refer to
multiple columns). Both constraints are used for
specifying primary keys.

To this end, each column in a primary key maps
to either a data type property or an object property

with a maximum cardinality of 1 (see Sections 3.3
and 3.4.3). This property will be defined as an
inverse functional property with a minimum
cardinality of 1 if the primary has a single column.
Otherwise, it will just have a minimum cardinality of
1.

A constraint PRIMARY KEY in Figure 15
specifies that a column ssn in a table Employee is
a primary key, which is the same as saying that the
column ssn is both unique and not null. Therefore,
this constraint maps to both an inverse functional
property and a minimum cardinality of 1.

CREATE TABLE Employee(
 ssn INTEGER PRIMARY KEY)

↓
<owl:InverseFunctionalProperty
rdf:ID=”ssn”/>
<owl:Class rdf:ID=”Employee”>
 <rdfs:subClassOf>

<owl:Restriction>
 <owl:onProperty

rdf:resource=”#ssn”/>
 <owl:minCardinality rdf:datatype=

”&xsd;nonNegativeInteger”1/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 15: Constraint PRIMARY KEY maps to both
inverse functional property and minimum cardinality of 1.

3.4.5 Mapping Constraints CHECK

There are two forms of constraint CHECK: using it as
a column constraint (to refer to a single column) and
using it as a table constraint (to refer to multiple
columns). A constraint CHECK maps to a value
restriction unless it has enumeration. Then it maps to
an enumerated data type. It should be noted that
OWL is not powerful enough to express all the value
restrictions that can be imposed by a constraint
CHECK (e.g. an employee’s age as an integer
between 18 and 65).

A constraint CHECK in Figure 16 specifies that a
column type in a table Project may have only a
value Software. Therefore, a data type property
type is restricted to have the same value for all
instances in a class Project.

AUTOMATIC TRANSFORMATION OF SQL RELATIONAL DATABASES TO OWL ONTOLOGIES

135

CREATE TABLE Project(
 type VARCHAR CHECK (type=‘Software’))

↓
<owl:Class rdf:ID=”Project”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource=”#type”/>
 <owl:hasValue
rdf:datatype=”&xsd;string”>Software
 </owl:hasValue>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 16: Constraint CHECK maps to value restriction.

A constraint CHECK in Figure 17 specifies the
range for a column type in a table Project
through a list of values Software and Hardware.
Therefore, this constraint maps to an enumerated
data type Project, with one element for each
value in the list.

CREATE TABLE Project (
 type VARCHAR CHECK (type IN
(‘Software’, ‘Hardware’)))

↓
<owl:DatatypeProperty rdf:ID=”type”>
 <rdfs:domain rdf:resource=”#Project”/>
 <rdfs:range>
 <owl:DataRange>
 <owl:oneOf>
 <rdf:List>
 <rdf:first
rdf:datatype=”&xsd;string”>Software
 </rdf:first>

 <rdf:rest>
 <rdf:List>
 <rdf:first

rdf:datatype=”&xsd;string”>Hardware
 </rdf:first>
 <rdf:rest

rdf:resource=”&rdf;nil”/>
 </rdf:List>
 </rdf:rest>
 </rdf:List>
</owl:oneOf>

 </owl:DataRange>
 </rdfs:range>
</owl:DatatypeProperty>

Figure 17: Constraint CHECK maps to enumerated data
type.

3.5 Mapping Rows

A row maps to an instance.
A row in a table Project in Figure 18 has a

value Software for a column type. Therefore,

this row maps to an (anonymous) instance of a class
Project that has the same value for a data type
property type.

INSERT INTO Project (type) VALUE
(‘Software’)

↓
<Project>
 <type
rdf:datatype=”&xsd:string”>Software
 </type>
</Project>

Figure 18: Row in table maps to instance of class.

4 CONCLUSIONS

This paper has proposed a novel approach to
automatic transformation of relational databases to
ontologies, where domains and constraints CHECK
are also considered. The proposed approach can map
all constructs of a relational database to an ontology,
with the exception of those constructs that have no
correspondences in the ontology (e.g. constraints
DEFAULT).

REFERENCES

Astrova, I., Kalja, A., 2006. Towards the Semantic Web:
Extracting OWL ontologies from SQL relational
schemata. In ICWI’06, IADIS International
Conference WWW/Internet.

Buccella, A., Penabad, M., Rodriguez, F., Farina, A.,
Cechich, A., 2004. From relational databases to OWL
ontologies. In RCDL’04, 6th National Russian
Research Conference.

Li, M., Du, X., Wang, S., 2005. Learning ontology from
relational database. In ICMLC’05, 4th International
Conference on Machine Learning and Cybernetics.

McFadden, F., Hoffer, J., Prescott, M., 1999. Modern
Database Management. 5th edition, Addison-Wesley.

OWL, 2004. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref

Sequeda, J., Tirmizi, S., Miranker, D., 2007. SQL
Databases are a Moving Target. In W3C Workshop on
RDF Access to Relational Databases.

Shen, G., Huang, Z., Zhu, X., Zhao, X., 2006. Research on
the rules of mapping from relational model to OWL.
In OWLED’06, OWL: Experiences and Directions.

SQL, 2002. Database language SQL. ANSI X3.135.
www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

Xu, Z., Zhang, S., Dong, Y., 2006. Mapping between
relational database schema and OWL ontology for
deep annotation. In WI'06, IEEE/WIC/ACM
International Conference on Web Intelligence.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

136

