
MASHING UP THE DEEP WEB
Research in Progress

Thomas Hornung, Kai Simon and Georg Lausen
Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee, Gebäude 51, 79110 Freiburg i.Br., Germany

Keywords: Assisted Mashup Generation, Deep Web, Information Integration.

Abstract: Deep Web (DW) sources offer a wealth of structured, high-quality data, which is hidden behind human-centric
user interfaces. Mashups, the combination of data from different Web services with formally defined query
interfaces (QIs), are very popular today. If it would be possible to use DW sources as QIs, a whole new set of
data services would be feasible.
We present in this paper a framework that enables non-expert users to convert DW sources into machine-
processable QIs. In the next step these QIs can be used to build a mashup graph, where each vertex represents a
QI and edges organize the data flow between the QIs. To reduce the modeling time and increase the likelihood
of meaningful combinations, the user is assisted by a recommendation function during mashup modeling
time. Finally, an execution strategy is proposed that queries the most likely value combinations for each QI in
parallel.

1 INTRODUCTION

Aggregating information about a specific topic on
the Web can easily result in a frustrating and time-
consuming task, when the relevant data is spread over
multiple Web sites. Even in a simple scenario, if
we try to answer the query ”What are the best-rated
movies which are currently in theaters nearby?” it
might be necessary to first query one Web site which
returns a list of all movies and then iteratively ac-
cess another site to find the ratings for each movie.
One characteristic that underlies many of such ad hoc
queries is the dynamic nature of their results, e.g. in-
formation about movies that were shown last week
is of no avail. Additionally it is often necessary to
fill out HTML forms to navigate to the result pages,
which contain the desired information.
The part of the Web that exhibits the abovementioned
properties is often referred to as the Deep or Hid-
den Web (DW) (Raghavan and Garcia-Molina, 2001).
Due to its exponential growth and great subject di-
versity as recently reported in (He et al., 2007) it
is an excellent source of high-quality information.
This sparked several proposals for DW query engines,
which either support a (vertical) search confined to a
specific area with a unified query interface, e.g. (He
et al., 2005) and (Chang et al., 2005), or offer ad hoc

query capabilities over multiple DW sources such as
(Davulcu et al., 1999).
Although these proposals are quite elaborate and
powerful, they either constrain the possible combi-
nations of DW sources or are based on a complex
architecture which needs to be administrated. For
instance domain experts might be necessary to de-
fine the salient concepts for a specific area or to pro-
vide wrappers for data extraction from result pages.
Hence, a framework which allows non-expert users to
adminstrate the system while retaining the possibil-
ity to pose complex queries and solve real-life infor-
mation aggregation problems in an intuitive fashion
would be beneficial. A promising approach for this
could be mashup tools such as Yahoo Pipes1, which
offer a graphical interface to arrange different Web
query interfaces (QIs) in a graph, where nodes rep-
resent QIs and arcs model the data flow. This en-
ables users with little or no programming skills to in-
tuitively aggregate information in an ad hoc fashion.
Unfortunately mashups are nowadays based on a fix
set of pre-defined Web QIs that return structured data
with a formal, known semantics. Therefore users
have to rely on content providers to supply these pro-
grammable interfaces, which unnecessarily limits the

1http://pipes.yahoo.com/pipes/

58
Hornung T., Simon K. and Lausen G. (2008).
MASHING UP THE DEEP WEB - Research in Progress.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 58-66
DOI: 10.5220/0001523900580066
Copyright c© SciTePress

number of combinable data sources.
In this paper we propose a framework which enables
non-expert users to generate mashups based on DW
sources. All aspects of the mashup lifecycle are sup-
ported: starting with the acquisition of new sources
via the assisted generation of mashup graphs until the
final execution.

1.1 Challenges

As our approach is focused on DW sources that are
designed for human visitors, neither the fully auto-
mated access to sources nor their combination is triv-
ial. Particularly, we have to cope with the following
issues:

• Form interaction: In order to fill out the respective
form fields, the user input has to be matched to a
legal combination of input element assignments.
We assume in this context a single stage interac-
tion, i.e. the form field is filled with meaningful
combinations and submitted, which directly leads
to the result page.

• Data record extraction and labeling: Each result
page usually contains multiple data records which
cluster related information, similar to a row in a
labeled table. These data records need to be iden-
tified, extracted and labeled correctly. For this
purpose we use the fully automated Web data ex-
traction tool ViPER (Simon and Lausen, 2005).
The interested reader is referred to (Laender et al.,
2002) for a brief survey of other existing tools and
their capabilities.

• Fuzzy result lists: A formally defined QI always
returns exact results, i.e. if more than one result is
returned, all results are known to be equally rel-
evant. However Deep Web sources normally re-
turn a list of results that match the input criteria to
some extent, often ranked by relevance.

• Data cleaning: For each column of a data record
the correct data type has to be determined and the
data has to be transformed into a canonical repre-
sentation, e.g. to bridge different representations
of numbers. Additionally it might be necessary to
convert the data to another reference system, for
instance another currency.

• Assisted mashup generation: Manually combin-
ing different QIs to a mashup graph is only fea-
sible in a small world-scenario, because the user
easily looses track of possible and meaningful
combinations. Therefore it is of paramount im-
portance to assist the user during the generation
phase.

• Combinatorial explosion: As mentioned above
DW sources normally return result lists. This
can lead to a combinatorial explosion in possi-
ble value combinations. E.g. let source Q3 be
the sink in a mashup graph with two incoming
data edges from sources Q1 and Q2. For an ex-
haustive search we would have to query Q3 with
|Q1| ∗ |Q2| value combinations2, or in the general
case for a data mashup graph with one sink and
n incoming data edges Πn

i=1|Qi| value combina-
tions need to be considered. Moreover, a typical
data mashup graph would more likely have mul-
tiple levels as the one shown in Figure 1, which
means that the combinations additionally multiply
along each path as well.

1.2 Contributions

We propose a DW-based mashup framework called
FireSearch, which:

• Supports the semi-automatic acquisition of new
DW sources (Section 2),

• Assists the user in combining these sources to a
mashup graph based on a recommendation func-
tion (Section 3),

• And finally executes mashup graphs with special
consideration for the limiting factors of an online
Web scenario (Section 4).

The main components of the framework have been
implemented as an extension for the Firefox3 browser
and tested on Linux and Windows platforms.

1.3 Running Example

When planning to buy an electronic device, it is often
desirable to aggregate information from several trust-
worthy sources considering different aspects. It might
for instance not be advisable to buy the device at the
store that offers the cheapest price, if the customer
service is disappointing. Therefore the user wants to
define a mashup graph that assembles the necessary
information based on the following DW sources:

• Source Q1 is the official Web site of a trustwor-
thy magazine, which regularly performs extensive
tests of new electronic devices and publishes the
results on the Web site,

• Source Q2 is a searchable, community-driven
Web portal with user experience-based ratings and
reviews of Web retailers,

2Here |Qi| denotes the number of results of source Qi.
3http://www.mozilla.com/en-US/firefox/

MASHING UP THE DEEP WEB - Research in Progress

59

City:

Street:

Electronic Device:

Sunset Boulevard

Los Angeles

TV Set

Q1

Q5

Q2

Q4

Q3

Figure 1: Data mashup graph that collects data about TV
sets.

• Source Q3 is an online database of Web retailers
and their addresses, searchable by the name of the
store,

• Source Q4 is a route and map service, and

• Source Q5 is a price comparison service which
searches multiple stores for the cheapest price of
electronic devices.

Figure 1 shows a mashup graph that yields the de-
sired results. The user is presented with an interface
where she can enter the necessary data that is needed
to initialize the mashup. First Q1 is accessed to find
the best-rated TV sets and then for each TV set the
cheapest stores are determined by Q5. Afterwards Q2
and Q3 are queried in parallel to obtain reviews and
addresses for each store and finally Q4 computes the
distance between the initial entered address and each
store. As a result the user is presented with a tabu-
lar view of the aggregated data and can now decide
which TV set meets her desired criteria.

2 ACQUISITION OF NEW DEEP
WEB SOURCES

Because our framework is implemented as an exten-
sion to the Firefox browser, new DW sources can be
integrated while surfing the Web similar to Piggy-
Bank (Huynh et al., 2007). But unlike PiggyBank
we consider dynamic Web pages that can only be
accessed by filling out HTML forms. To transform
such a DW source into a machine-processable QI, we
have to identify the implicitly associated signature,
i.e. the labels and datatypes of the input arguments
of the form and the labels of datatypes of the data
records that are buried in the result page. Addition-
ally each signature has to be associated with a con-
figuration that assures that the correct form fields are
filled in and the data records in the result page are ex-
tracted and labelled correctly. Because our framework
is geared towards a non-expert user, the technical de-

tails of the configuration generation are transparent.
It is sufficient to label the relevant input form field
elements and the column headers of a tabular repre-
sentation of the result page.

2.1 User Vocabulary

The labeling of DW sources is inspired by the idea of
social bookmarking: each user has a personal, evolv-
ing vocabulary of tags. Here a tag is the combination
of a string label with an XML datatype (Biron and
Malhotra, 2004). The user can generate new tags any
time during the labeling process and can thereby suc-
cessively build up her own terminology. The associ-
ated datatype is used for data cleaning purposes and
to check that only meaningful comparison operators
are used in the final mashup. As a means to organize
the vocabulary the user can specify relationships be-
tween different tags, if she wants. For this purpose we
identified three types of meaningful relationships thus
far, called tag rules:

1. Equality: Two tags refer to the same concept (in-
dicated by≡). If the tags refer to similar concepts
but are given with respect to different reference
systems, e.g. different currencies, then the user
can register conversion functions to assure com-
patibility,

2. Compound tag: Two or more tags that are con-
catenated (indicated by +) are equal to another
concept,

3. Subtag: One tag is more specific than another tag
(indicated by v).

Table 1 illustrates the abovementioned tag rules with
an example. The system assures that the user can only
specify rules that are datatype compatible to encour-
age meaningful rules.

2.2 Deep Web Query Interfaces

To enable easy and accurate labeling of input argu-
ments the relevant tags can be dragged to the elements
of the selected form. When the user submits the form,
her label assignments and form submission related in-
formation, i.e. the POST or GET string is captured.
As a result the system can now interact with the Web
source and delegate values for the input arguments ap-
propriately. In the next step, the result page is ana-
lyzed and converted into a tabular representation.
The analysis of the result page is done by the fully
automatic data extraction system ViPER (Simon and
Lausen, 2005). ViPER suggests identified structured
data regions with decreasing importance to the user

WEBIST 2008 - International Conference on Web Information Systems and Technologies

60

Table 1: Supported tag rules.

Relationship Example
1 Equality film≡movie
2 Equality and Function price-eur≡ convert(price-usd,price-eur)
3 Compound tag firstName+ familyName≡ name
4 Subtag posterPicturev picture

Figure 2: User-defined vocabulary, depicted as tag cloud.

based on visual information. In general the fore-
most recommendation meets the content of interest
and thus is suggested by default. On the other hand it
is also possible to opt for a different structured region
if desired. Regardless of the selection the extraction
system always tries to convey the structured data into
a tabular representation. This rearrangement enables
to automatically clean the data and serves as a com-
fortable representation for labeling. Again, the user
can label the data by dragging tags of her personal
vocabulary as depicted in Figure 24; this time to the
columns of the resulting table consisting of extracted
instances. The picture at the top shows an excerpt of
the original Web page and the tabular representation
at the bottom shows the relevant part of the ViPER
rendition of this page. The arrows indicate the tags
the user has dragged to the column headers. Hav-
ing in mind that the data originates from a backend
database the extraction and cleaning process can be
seen as reverse engineering on the basis of material-
ized database views published in HTML. For the data
cleaning process the rule-based approach presented in
(Simon et al., 2006), which allows to fine-tune the
extraction and cleaning of data from structured Web
pages, is used. For the basic datatypes, such as in-
teger and double a heuristics-based standard parser
is provided. The user has the chance to addition-
ally implement and register her own parsers, e.g. a

4The vocabulary is depicted as tag cloud (Hassan-
Montero and Herrero-Solana, 2006) based on the frequency
of the used tags.

parser specifically for addresses, which can be arbi-
trarily sophisticated. The system then decides at run-
time which parser is used based on the annotated data
type.
The assigned labels constitute the functionality char-
acteristics of a QI. We additionally consider two non-
functional properties for each QI: the average re-
sponse time, denoted tavg, and the maximum number
of possible parallel invocations of the QI, denoted k.
We can determine tavg by measuring the response time
of a QI over the last N uses and then taking the arith-
metic mean, i.e. tavg := 1

N ∗ ΣN
i=1ti. Here, t1 is the

response time of the last invocation, t2 the response
time of the invocation before that and so on, and N
denotes the size of the considered execution history,
e.g. ten. We initially set tavg := ∞.
Since each QI is essentially a relational DB with a
form-based query interface, which is designed to han-
dle requests in parallel, we can invoke a QI multiple
times with different input parameters in parallel. Ob-
viously, the number of parallel executions needs to
be limited by an upper bound, because otherwise we
would perform a Denial of Service attack on the Web
source. To assure this, we set k := 3 for all QIs for
now, but we are working on a heuristic to update k
to reflect the capabilities of the underlying QI more
faithfully. In the remainder of the paper the following
more formal definition of a QI is used:
Definition 1 (Query Interface (QI)). A query inter-
face Qi is the quintuple (I,O,k, tavg,d), where I is the
set of tags that have been dragged to input arguments
(the input signature) and O is the set of tags that have
been dragged to columns in the tabular representation
of the result page (the output signature), k is the max-
imum number of parallel invocations, tavg is the aver-
age response time, and d is a short description of the
QI.

The provided input arguments of a QI are used
to fill out the form, which is then submitted. The
data records contained in the result page are then ex-
tracted, cleaned and returned as RDF triples (Manola
and Miller, 2004). RDF is used as data format because
data can be represented in an object-centered fashion
and missing or multiple attributes are supported. The
integration of data from different sources, explained
in Section 4, is another place where the properties of

MASHING UP THE DEEP WEB - Research in Progress

61

RDF are convenient. Generally, an RDF graph is de-
fined as a set of triples oidi := (si, pi,oi), where the
subject si stands in relation pi with object oi. In the
following we use ID(si) = {oid1,. . . ,oidn} to denote
the set of triples where the subject is identical to si,
akin to the definition of an individual proposed in
(Wang et al., 2005). Similarily, π2(ID(si)) := {pi |
(si, pi,oi) ∈ ID(si)} is the set of all RDF properties of
an individual. In the remainder of the paper, we use
the notation πi(R) to project to the ith position of an
n-ary relation R, where 1 ≤ i ≤ n, and the terms tag
and property will be used interchangeably either to
identify an item in the user’s vocabulary or to denote
its counterpart in the RDF result graph.

3 ASSISTED MASHUP
GENERATION

The previous section has illustrated how new DW
sources can be integrated and how QIs are formally
defined. We can use this information to assist users
in generating data mashup graphs without writing a
single line of code. The basic idea is that a subset
T of the set of all used tags T can be interpreted as
properties of π2(ID(si)) analogously to the Universal
Relation paradigm presented in (Maier et al., 1984).
In fact, (Davulcu et al., 1999) used the same approach
to describe a user query, with the difference that the
attributes were defined by the system and in our sce-
nario each user can utilize her own vocabulary. This
alleviates the unique role assumption5 in our case to
some extent because the user has a clear conception
of the meaning of the tag. Additionally since we as-
sist the user in incrementally building a mashup graph
she can further decide on the intended meaning of the
query by selecting appropriate sources.
Figure 3 illustrates the mashup generation process.
The user first drags the desired tags into the goal tags
pane (shown at the bottom). Here she can addition-
ally specify the desired constraints, e.g. that the price
should be smaller than 450 EUR. Based on these goal
tags, the system assists her in choosing QIs that can
contribute to the desired results. By clicking on each
start tag the system recommends relevant input QIs.
She can select the ones she likes and then iteratively
refine the mashup by invoking the recommendation
function for each input QI again. When she is satis-
fied with the generated data mashup graph, the system
collects all missing input arguments. These constitute
the global input for the data mashup and are shown

5The name of a tag unambigiously determines a concept
in the real world.

Figure 3: Excerpt of a result specification for an electronic
device.

Price (in EUR) Product Rating Product Review …

Q1Q5

QI

Q1

Description Rank
Product reviews and ratings for
electronic devices… (more)

Q8

Q9
… …

0.42

Product reviews and ratings for
books… (more)

0.16Movie information… (more)

0.42

…

Recommendations for Q5:

Figure 4: Ranked list of proposed QIs, if the recommenda-
tion system is invoked for Q5.

in the box above the mashup graph in Figure 1. Af-
ter finishing the mashup generation, the user can store
the generated mashup graph for future use as well.
Each time the user invokes the recommendation sys-
tem, a ranked list of the best matching QIs is com-
puted and shown based on the coverage of input ar-
guments and the utilization frequency in the past (cf.
Figure 4). More formally, let Qselected denote the se-
lected QI. Thereby, the rank of each QI with respect
to Qselected can be computed as follows:

Definition 2 (QI Rank). R(Qi) := w1 ∗
coverage(Qi)+w2 ∗utilization(Qi), where:

• coverage(Qi) := |ext(π2(Qi)) ∩ (π1(Qselected)|
|(π1(Qselected)| ; ext(T)

expands the original set of tags T with all tags that
are either equal or more specific with respect to
the user’s tag rules,

• utilization(Qi) := f (Qi)
ftotal

; f (Qi) is the amount of
times Qi has been used in data mashups before,
and ftotal is the total amount of used QIs. If
ftotal = 0, i.e. the first mashup graph is generated,
f (Qi)
ftotal

:= 1,

• Σn
i=1wi = 1, where n is the number of available

QIs. Intuitively, the weights wi balance the influ-
ence of coverage vs. utilization frequency of a QI,

• Since coverage(Qi) ∈ [0,1] and utilization(Qi) ∈
[0,1], given the constraints on the weights above,
we can assure that R(Qi) ∈ [0,1], where 1.0 indi-
cates a perfect match and 0.0 a total mismatch.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

62

We additionally distinguish between two special
cases: If the rank function is computed for a start tag
Ti, we define π1(Qselected) := {Ti} and if two QIs have
the same rank, they are re-ordered with respect to their
average response time tavg.

The coverage criterion favors QIs that can provide
a large portion of the needed input arguments. The
utilization criterion captures the likelihood of a QI to
be relevant without regard for the signature. There-
fore it is intended to provide an additional hint when
choosing between different QIs that match the input
signature to some extent. Thus, w1 should be chosen,
such that w1� w2, e.g w1 = 0.8 and w2 = 0.2.
Figure 4 shows a use of the recomendation function.
The user has already identified two QIs she wants to
use and now wants a recommendation for an input to
Q5. The system then presents her with a ranked list
of matching QIs and connects the QIs appropriately
after she made her choice. To assure a meaningful
data flow between the QIs, we require that the final
mashup graph is weakly connected, i.e. replacing all
directed edges with undirected edges results in a con-
nected (undirected) graph.

4 MASHUP EXECUTION

The mashup graph determines the order, in which the
QIs are accessed. All QIs whose input vertices have
either already been accessed or that do not have an
input vertice, can be queried in parallel. The access
to a QI consists of two phases: first the valid input
combinations need to be determined based on the in-
put vertices and the output values of the QI have to be
integrated afterwards.

4.1 Computing Query Combinations

As mentioned above it is not advisable to query all
possible value combinations. Therefore we need a
way to identify the top m combinations, which are
most likely to yield relevant results. (Raghavan and
Garcia-Molina, 2001) presented three different rank-
ing value functions for improving submission effi-
ciency in a Deep Web crawler scenario. They in-
crementally collected possible value assignments for
form elements and assigned weights to them. A
weight is increased each time a value assignment is
used successfully in a form submission and decreased
otherwise.
DW sources usually return a ranked list of results,

Input QIs. Results are identified via their rankings:

• Q1 = {1,2,3,4}
• Q2 = {1,2,3}
• Q3 = {1,2}

Resulting combinations:

Roverall R1 R2 R3

1 3 1 1 1
2 4 1 1 2
3 4 1 2 1
4 4 2 1 1

Figure 5: Query combination computation for a QI with
three different input QIs where m = 4.

which we interprete as an assigned weight6. There-
fore we can similarily compute a rank for each value
combination based on those weights. Thus Roverall :=
Σn

i=1Ri is the overall ranking, where Ri is the ranking
of a value from the ith DW source. Since the ranks of
the input QIs usually depend on their predecessors as
well, the notion of accumulated ranks is introduced
in the next section, which considers the access his-
tory of each QI. Figure 5 illustrates the computation
for three QIs which each return a different number of
results7. In this example m is four and therefore we
would query the first three combinations in parallel,
since we decided to have k = 3 in Section 2.2, and
afterwards the fourth combination.

4.2 Data Integration

The final goal of the integration process is to align
the triples that were generated during query time in
such a way, that each set π2(ID(si)) contains all re-
quired goal tags that were initially specified by the
user. Hence, if multiple Web QIs contribute proper-
ties to the overall result as in this scenario, different
sets ID(si) need to be merged, split or aggregated in
the data reconciliation process.
Tables 2 and 3 are used to further illustrate the data
reconciliation process. Table 2 shows an excerpt of
the state of the global triple store after the first source
of the mashup (Q1) depicted in Figure 1 has been ac-
cessed and all results have been inserted. Since this
was the first QI, which has been accessed, no aggre-
gation, splitting or merging operations are necessary.

Table 3 shows the global store after the next QI
(Q5) has been accessed. The original triple set ID(s1)

6If no ranking information is provided, we assign to each
value the rank 1.

7Note that in a real-life scenario the accumulated ranks
are usually not integers.

MASHING UP THE DEEP WEB - Research in Progress

63

Table 2: Triple Store before accessing Q5.

S P O
1 s1 product-name ”Sharp Aquos”
2 s1 product-rating 80.0
3 s1 source Q1
4 s1 rank 1

.

Table 3: Triple Store after accessing Q5.

S P O
1 s1 product-name Sharp Aquos
2 s1 product-rating 80.0
3 s1 source Q1
4 s1 rank 1
5 s1 store-name Amazon
6 s1 price-eur 1120.00
7 s1 rank 1
8 s1 source Q5
9 s3 product-name Sharp Aquos

10 s3 product-rating 80.0
11 s3 source Q1
12 s3 rank 1
13 s3 store-name Dell
14 s3 price-eur 1420.00
15 s3 source Q5
16 s3 rank 2
.

has been split in two branches: one with the informa-
tion about the price for the device at Dell (the triple set
ID(s3)) and the other with information about Amazon
(the triple set ID(s1)) and aggregated with the related
pricing data. This split is important, since if all data
had been aggregated around s1 the connection be-
tween store and price would have been lost. Another
aspect which is shown in Table 3 is that we accumu-
late the source and ranking information. The source
information is used to fill the according upcoming QIs
with the correct data and the ranking information is
used to estimate the accumulated ranking of a sub-
ject, which is used as input for the query combina-
tion computation described in Section 4.1. The ac-
cumulated rank is the arithmetic mean over all ranks;
Raccumulate := 1

n Σn
i=1Ri, where n is the number of rank-

ings.
After all branches have finished executing, all out-
put values occuring from different QIs in a branch
are automatically associated with each other depend-
ing on the query history, i.e. the respective input
values. Hence in our running example the branches
(Q1,Q5,Q2) and (Q1,Q5,Q3,Q4) are already inte-
grated. To correlate the information between this
branches we merge the respective sets ID(si) based

on their common properties. Note that this is always
possible, because as described in Section 3 we only
allow weakly connected, directed mashup graphs and
therefore each set ID(si) in a different branch shares
at least on property.
Finally the results are selected with an automatically
generated SPARQL (Prud’hommeaux and Seaborne,
2007) query, where all goal tags occur in the SELECT
clause and the user-specified constraints are checked
in the WHERE clause. The integrated results are then
presented in a tabular representation, as if the user had
just queried a given RDF store, which already con-
tained all relevant information.

5 RELATED WORK

Even nowadays many frameworks for querying het-
erogeneous sources present the end user with a pre-
defined query interface or a fix query language she
has to learn in order to pose more complex queries to
the system. One of the main drivers behind the idea
of Web 2.0 is that users can control their own data.
That might be one reason why data-centric mashup
tools are such a strong trend at the moment. Here the
user is a first-class citizen and can arrange her sources
in an intuitive ad hoc fashion. Representative frame-
works to build such mashups based on distributed ser-
vices or structured data are for instance YahooPipes8,
IBM’s QEDwiki9 and MashMaker (Ennals and Garo-
falakis, 2007). YahooPipes provides an interactive
feed aggregator and manipulator to quickly gener-
ate its own mashups based on available XML related
services. Additionally, YahooPipes realizes data ag-
gregation and manipulation by assembling data pipes
from structured XML feeds by hand. QEDwiki is
similar in spirit and is implemented as a Wiki frame-
work, which offers a rich set of commands with a
stronger focus on business users. MashMaker sup-
ports the notion of finding information by exploring,
rather than by writing queries. It allows to enrich the
content of the currently visited page with data from
other Web sites. Our system differs in the way that
we focus on unstructured resources and aim to pro-
vide a user with strong automatic mechanisms for
data aggregation. As a consequence we concentrate
on the problems yielding from Web resource integra-
tion, such like form field interaction, automatic con-
tent extraction, and data cleaning. Furthermore we as-
sist the user during the assembly of the mashup with
our recommendation service, whereas in the above

8http://pipes.yahoo.com/pipes/
9http://services.alphaworks.ibm.com/

qedwiki/

WEBIST 2008 - International Conference on Web Information Systems and Technologies

64

examples the sources have to be manually wired to-
gether. In contrast to MashMaker our idea is not to
enrich the content of one Web page but to provide an
integrated view of multiple sources to aggregate in-
formation about a specific topic.
Since our approach is focused on DW sources, we
need to solve the problem of extracting and label-
ing Web data in a robust manner. (Laender et al.,
2002) have shown in a survey the most prominent ap-
proaches to Web data extraction. More recent frame-
works for this task are Dapper10, which is focused
on extraction of content from Web sites to generate
structured feeds. It provides a fully visual and interac-
tive web-based wrapper generation framework which
works best on collections of pages. Thresher (Hogue
and Karger, 2005), the extraction component of the
standalone information management tool Haystack
(Karger et al., 2005), facilitates as well a simple but
still semi-supervised and labor-intensive wrapper11

generation component. Another more complex su-
pervised wrapper generation tool, where the genera-
tion of the wrapper is also done visually and interac-
tively by the user, is Lixto (Baumgartner et al., 2001).
Our proposal does not rely on an interactive wrapper
generation process which is feasible at a small scale
where sources can be manually wrapped. Instead a
user only has to label form elements and automati-
cally extracted content with concepts of her own vo-
cabulary. Thus, the integration of new Web resources
is totally automated except of the annotation process.
This meets the problem of large scale information in-
tegration where many tasks have to be automated and
wrapper maintenance is an issue.
Another related field are Web search engines, which
usually offer a keyword-based or canned interface
to DW sources. Recently proposed complete frame-
works for querying the Web, especially the deep Web
are (He et al., 2005) and (Chang et al., 2005) for in-
stance. They cover tasks like Deep Web resource dis-
covery, schema matching, record linkage and seman-
tic integration tasks. Although there are many sim-
ilarities between these approaches and our proposed
system, they are operating in a bottom-up approach,
starting with the Web sources, whereas we model the
world from a user-oriented perspective. Additionally
we support an ad hoc combination of heteregenous
data sources, which is not supported by these frame-
works.
Because our underlying data model is an adapted
version of the Universal Relation assumption we

10http://www.dapper.net/
11A wrapper in this context is only concerned with the

extraction of data from Web pages and does not provide any
transformation of query capabilities.

share some elements with the architecture proposed
in (Davulcu et al., 1999). Especially the idea to boot-
strap the mashup generation process with a set of goal
tags is similar to the way queries can be specified in
their framework. However, in our approach the user
can organize his vocabulary without any dependency
on domain experts, and the way queries are build on
top of the initial specification is different as well.
Finally, the Semantic Web application Piggy Bank
(Huynh et al., 2007) is also focused on the conversion
of Web information into semantically enriched con-
tent, but requires as well skilled users to write screen
scraper programs as information extraction compo-
nents. The main idea is that users can share their col-
lected semantically enriched information. We share
with Piggy Bank the idea to semantically enrich the
Web and the idea of an omnipresent browser exten-
sion accompanying a user during his daily surf expe-
rience. In contrast we do not store the information, in-
stead we are interested in querying fresh information
on-the-fly with fast and robust extraction and annota-
tion components.

6 FUTURE WORK

To integrate more sophisticated DW sources which
make extensive use of JavaScript, we are currently in-
vestigating the use of navigation maps as proposed in
(Davulcu et al., 1999). Moreover this would allow us
to incorporate sources with multi-form interactions,
where the final result pages are only shown after sev-
eral interactive user feedback loops.
As a side-effect or our implementation efforts, we
were surprised that there seems to be no support for
shared property values between different subjects in
existing RDF stores. As this can happen easily in our
approach when a split occurs, as described in Section
4.2, we are implementing an RDF store, which is opti-
mized for the needs of our framework, at the moment.
Finally, the user-centric nature of our approach makes
it an excellent candidate for integrating collabora-
tive intelligence or human computation (von Ahn and
Dabbish, 2004), i.e. to ease the large-scale annota-
tion of DW sources, which is in a way similar to
the way tagging is done in social networks, such as
del.icio.us12. Currently we are researching the use of
machine learning approaches to recommend tags for
new DW sources based on the user’s labeling behav-
ior in the past.

12http://del.icio.us/

MASHING UP THE DEEP WEB - Research in Progress

65

7 CONCLUSIONS

Many real-life queries can only be answered by com-
bining data from different Web sources. Especially
Deep Web (DW) sources offer a vast amount of high-
quality and focused information and are therefore a
good candidate for automatic processing. In this pa-
per we presented a framework which allows to con-
vert these sources into machine-accessible query in-
terfaces (QIs) by tagging the relevant input arguments
and output values. Since the framework is geared to-
wards non-expert users the whole acquisition can be
done without writing a single line of code.
In the next step users can iteratively build a mashup
graph in a bottom up fashion, starting with the desired
goal tags. Each vertex in the resulting mashup graph
represents a QI, and edges organize the data flow be-
tween the QIs. To reduce the modeling time and in-
crease the likelihood of meaningful combinations, she
can invoke a recommender for each vertex, which re-
turns a ranked list of possible new input QIs.
The execution strategy for the thus generated mashup
graphs is based on the idea to process the most likely
value combinations for each QI in parallel while
avoiding to access a particular DW source too often
in a given time frame. Although a modular architec-
ture based on an analysis of the main challenges has
been proposed, more experimental work needs to be
done to evaluate the practicability of our framework
and to fine-tune the QI recommender.

REFERENCES

Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Visual
Web Information Extraction with Lixto. In VLDB,
pages 119–128.

Biron, P. V. and Malhotra, A. (2004). XML
Schema Part 2: Datatypes Second Edition.
http://www.w3.org/TR/xmlschema2/.

Chang, K. C.-C., He, B., and Zhang, Z. (2005). Toward
Large Scale Integration: Building a MetaQuerier over
Databases on the Web. In CIDR, pages 44–55.

Davulcu, H., Freire, J., Kifer, M., and Ramakrishnan, I. V.
(1999). A Layered Architecture for Querying Dy-
namic Web Content. In SIGMOD Conference, pages
491–502.

Ennals, R. and Garofalakis, M. N. (2007). MashMaker:
Mashups For the Masses. In SIGMOD Conference,
pages 1116–1118.

Hassan-Montero, Y. and Herrero-Solana, V. (2006). Im-
proving Tag-Clouds as Visual Information Retrieval
Interfaces. In InScit2006.

He, B., Patel, M., Zhang, Z., and Chang, K. C.-C. (2007).
Accessing the Deep Web. Commun. ACM, 50(5):94–
101.

He, H., Meng, W., Yu, C. T., and Wu, Z. (2005). WISE-
Integrator: A System for Extracting and Integrating
Complex Web Search Interfaces of the Deep Web. In
VLDB, pages 1314–1317.

Hogue, A. and Karger, D. R. (2005). Thresher: Automating
the Unwrapping of Semantic Content from the World
Wide Web. In WWW, pages 86–95.

Huynh, D., Mazzocchi, S., and Karger, D. R. (2007). Piggy
Bank: Experience the Semantic Web Inside Your
Web Browser. J. Web Sem., 5(1):16–27.

Karger, D. R., Bakshi, K., Huynh, D., Quan, D., and Sinha,
V. (2005). Haystack: A General-Purpose Information
Management Tool for End Users Based on Semistruc-
tured Data. In CIDR, pages 13–26.

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., and
Teixeira, J. S. (2002). A Brief Survey of Web Data
Extraction Tools. SIGMOD Record, 31(2):84–93.

Maier, D., Ullman, J. D., and Vardi, M. Y. (1984). On the
Foundations of the Universal Relation Model. ACM
Trans. Database Syst., 9(2):283–308.

Manola, F. and Miller, E. (2004). RDF Primer.
http://www.w3.org/TR/rdf-primer.

Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL
Query Language for RDF. http://www.w3.org/TR/rdf-
sparqlquery/.

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the
Hidden Web. In VLDB, pages 129–138.

Simon, K., Hornung, T., and Lausen, G. (2006). Learning
Rules to Pre-process Web Data for Automatic Integra-
tion. In RuleML, pages 107–116.

Simon, K. and Lausen, G. (2005). ViPER: Augmenting Au-
tomatic Information Extraction with Visual Percep-
tions. In CIKM, pages 381–388.

von Ahn, L. and Dabbish, L. (2004). Labeling Images With
a Computer Game. In CHI, pages 319–326.

Wang, S.-Y., Guo, Y., Qasem, A., and Heflin, J. (2005).
Rapid Benchmarking for Semantic Web Knowledge
Base Systems. In ISWC, pages 758–772.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

66

