
A NEW CONCEPT FOR REAL-TIME WEB GAMES
Developing Highly Real-Time Web Games

Yoshihiro Kawano1, Masahiro Miyata2, Dai Hanawa3 and Tatsuhiro Yonekura4

1Intec NetCore, Inc.,Tokyo, Japan
2Department of Computer and Information Science, Ibaraki University, Ibaraki, Japan

3Department of Computer and Information Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
4Department of Computer and Information Science, Ibaraki University, Ibaraki, Japan

Keywords: Web game, Real-time, Ajax, Information extraction layer, Dead reckoning, Allocated Topographical Zone.

Abstract: Online games have rapidly gained popularity as network speed and computer performance has improved.
Network latency remains a significant problem, though, in applications needing high interactivity, such as
action games and real-time sports games. Such applications are called a Distributed Virtual Environment
(DVE). In general, a server-client architecture is used for a DVE. In this paper, we focus on the current Web
system, the most widely used infrastructure of this type, and propose a strategy for designing real-time Web
games. To date, no such design strategies have been explicitly established. In an earlier paper, we
introduced two techniques, called Dead reckoning and Allocated Topographical Zone. Here, we explain
how these can be used in real-time Web games to overcome the limitations of HTTP communication. As an
example of such application, we have implemented a Web-based real-time avatar operation game. This
implementation confirmed that our concept can be extended to various types of real-time Web application.

1 INTRODUCTION

Online games are increasingly popular due to
improved network speed and computer performance.
Network latency is a significant problem, however,
in applications requiring high interactivity, such as
action games and real-time sports games (Takemura,
1999). Such applications are called a Distributed
Virtual Environment (DVE). In general, a server-
client architecture is used for a DVE (Takemura,
1999).

Examples of highly real-time online games are
Counter-Strike (Valve Corporation, 2007), which is
a first-person shooter (FPS) game, and Age of
Empires III (Microsoft Corporation, 2007), a real-
time strategy (RTS) game. Another example is
SHIN-SANGOKU MUSOU BB (KOEI Co., Ltd.,
2007), which is a highly real-time multiplayer action
game that is only open to users of a particular
Internet service provider (ISP). To play such online
games, though, the user has to install dedicated
client software for each game. Moreover, if the
software uses a particular port-number, it might not
be possible to transmit the necessary data past the
user’s firewall.

In this paper, we focus on use of the Web as the
infrastructure to support online games because it is
the most widely used. When a game is actualized on
the Web, users can easily play it through a browser,
and this tends to lead to growth in the number of
users. On the other hand, if HTTP is used to transmit
the data, the transmission will not be limited by a
firewall. Such a technique can also be applied for
educational applications.

The Web game Dinoparc (Motion-Twin, 2005) is
an example of a multiplayer online game available
on the Web, although no highly real-time Web
games of this type have been reported. On the other
hand, a JAVA-based MMORPG (massively multi-
player online role playing game) called RuneScape
is available on the Web (Jagex Ltd., 2007), but this
game does not allow highly real-time interaction. A
Shockwave-based MMOFPS real-time Web game
called Tank Ball2 is also available (Maid Marian
Entertainment, 2004), but the consistency of
collision detection between tank and ball is
questionable even though the collision detection is
the most critical factor in the game. Such a lack of
consistency in real-time games means that shared
objects cannot be jointly controlled by all users

171
Kawano Y., Miyata M., Hanawa D. and Yonekura T. (2008).
A NEW CONCEPT FOR REAL-TIME WEB GAMES - Developing Highly Real-Time Web Games.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 171-177
DOI: 10.5220/0001525701710177
Copyright c© SciTePress

because of temporal differences between the local
and the remote avatars (virtual players) in terms of
their status in reference to each other (Hashimoto,
Sheridan and Noyes, 1986).

Thus, we have studied ways to improve
consistency for all states, including those of the
avatars and shared objects in a real-time Web game
where a shared field is equally accessible to and
controllable by each terminal, without sacrificing
throughput. We adopted the virtual ball game (VBG)
as an example of a real-time Web game. To
construct a VBG, in which the objects shared by the
players have the physical attributes of location,
orientation and velocity, a significant issue is how
the ownership (the decision as to which terminal
owns the key to control an object) and the attributes
for all avatars and objects can be kept consistent
among terminals. Based on our work, in this paper
we propose a new concept for designing real-time
Web games.

2 REAL TIME WEB GAME
REQUIREMENTS

Three requirements need to be met to achieve a
VBG type real-time Web game:

(1) Consistency in the attributes of avatars
(2) Throughput of the operations of users
(3) Speed and accuracy in the collision detection

for a shared object
HTTP data transmission using the Web has to satisfy
these three requirements, but HTTP transmission for
real-time games suffers from transmission lag,
bandwidth limitation, and jitter. Our goal has been to
overcome these critical issues to enable the playing
of real-time games on the Web.

To meet requirements (1) and (2), the game logic
part should be separate from the data transmission
part. For this purpose, we can use Ajax
(Asynchronous JavaScript + XML) (OpenAjax
Alliance, 2007). Ajax offers several advantages:

 Data can be transmitted asynchronously
 Game logic can be executed on the local client

side
 Parts can be changed only when necessary

When Ajax is used to support a real-time Web game,
each client executes a modelling-view-control
(MVC) loop and organizes a virtual world by
himself; thus, the server load can be decentralized.
Therefore, in this paper, our objective is Web games
that use Ajax. This concept permits some
inconsistency between the information represented

on each terminal because the network can be
considered a virtual peer-to-peer (P2P) model.
Synchronization between terminals is not easily
achieved, however, because such a network has no
server to provide synchronization management, as
does a server-client network. Therefore, it is
necessary to maintain consistency of the presented
information through Dead reckoning (DR) on each
terminal.

To meet requirement (3), we used the Allocated
Topographical Zone technique (AtoZ) (Kawano and
Yonekura, 2006). When AtoZ is used in a real-time
P2P VBG, each peer can clearly determine the
ownership of shared objects without synchronization
between peers regarding the ownership.

3 SYSTEM CONCEPT

In this section, we propose a new concept for
designing real-time Web games.

3.1 Information Extraction Layer

First, we propose a new hierarchical structure model
concept (Figure 1). The information extraction layer
(IEL) is a new layer in the model and it extracts
value from information that could be useful for the
application or the user. For example, a Google
search engine extracts search results from Web sites
worldwide, and an access analysis tool extracts
access statistics for a Web site from access logs. In
this paper, DR to predict a remote avatar’s attributes
and AtoZ to determine the ownership of shared
objects are IEL functions. Therefore, the IEL
mediates between the network and the application
(contents).

3.2 System Architecture

Figure 2 shows the system architecture designed to
satisfy the requirements given in Section 2, and
reveals how the system architecture lays over the
hierarchical structure model from Figure 1.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

172

Figure 1: Hierarchical structure model.

In Figure 2, each terminal has five components:
GUI Handler, Modeler, Viewer, Virtual Space
Resolver (VSR), and Network Handler. There is an
application layer MVC loop on each client side. The
interval of each MVC loop is asynchronous with that
of the network transmission with Ajax (Figure 3). In
Figure 3, the broken circle and arrow indicate
transmission. As shown, a local terminal acquires
information from a remote terminal within an MVC
loop interval based on the data received in the
network transmission interval.

In this paper, we focus on the roles of the IEL
and the VSR implemented on the IEL. The IEL
mediates between the application (the GUI Handler
and the Modeler) and the Network Handler, and
manages the virtual space with respect to the
requirements given in Section 2.

3.3 System Components

Here, we describe the role of the Web server and
each component making up the MVC loop.

3.3.1 Web Server

The Web server acts as part of the medium
connecting terminals. The data used to acquire a
virtual space (for example, the position of an avatar)
is transmitted using the JavaScript Object Notation
(JSON) (Internet Engineering Task Force, 2006)
format instead of XML format to reduce the data
size and parsing time (Ward, 2007).
The Web server receives the data for an avatar on
each terminal according to the HTTP request timing.
At that time, the server combines the latest data of
each terminal like a chain, and sends it as an HTTP
response.

Figure 2: System architecture.

Figure 3: Time-chart of MVC loop and network
transmission.

3.3.2 GUI Handler

The GUI Handler sends the user input to the VSR,
where it is computed and then provided to the
Modeler.

t

t
Remote

Local

transmission
interval

MVC loop’s interval

IEL
Application (Contents)

Explanatory notes (Layer)

Network

* MVC loop
Modeling: Modeler
View: Viewer
Control: GUI Handler

Web Server

HTTP response HTTP response Data A

Terminal A Terminal B

HTTP request

MVC loop

Data B

VSR
AtoZ DR

VSR
AtoZ DR

Modeler

Viewer GUI
Handler

Network
Handler

MVC loop

 Modeler

 Viewer GUI
Handler

 Network
Handler

Application
(Contents)

Information
Extraction

Network

Ajax
HTTP

Application
(Contents)

Information
Extraction

Network

Ajax
HTTP

Terminal A Terminal B

Application

Web
Server

Network

A NEW CONCEPT FOR REAL-TIME WEB GAMES - Developing Highly Real-Time Web Games

173

3.3.3 Modeler

The Modeler receives information from the VSR,
and then acquires a virtual space based on the
information and provides the virtual space to the
Viewer.

3.3.4 Viewer

The Viewer presents the game information provided
by the Modeler to a user. For this part, we use a Web
browser as the Viewer.

3.3.5 Virtual Space Resolver

The VSR includes DR and AtoZ, and resolves issues
regarding the virtual space (avatars and shared
objects) described in Section 2. The VSR receives
data regarding the user’s operation, and provides the
appropriate information to the Modeler. The VRS
also receives the latest data concerning remote
avatars from the Network Handler independently of
the above transmission. The VSR is a core
component in this system.

There is a time interval before the data are
received from the Network Handler. This time
interval can negatively affect the smoothness of the
game progression. To avoid this, the data of remote
avatars are extrapolated by DR (Singhal, 1996)
based on data with a time stamp. DR is also used in
networked computer games and simulations to
reduce lags caused by network latency and
bandwidth issues.

In this system architecture, synchronization
regarding the ownership of shared objects between
terminals is not easily achieved because the
architecture has no server to provide synchronization
management. To overcome this problem, which is
necessary to meet requirement (3) of Section 2, we
use AtoZ as a function of the VSR.

Thus, the objective of the VSR is to provide
appropriate information to the Modeler with no need
for a game developer to consider the effects of
network latency. Accordingly, game developers can
realize Real-time Web games by simply creating
content like a stand alone program.

3.3.6 Network Handler

The Network Handler uses Ajax to control the
transmission part to the Web server.

3.4 Advantages of the Design

The proposed design offers three main advantages:

(1) Distributed game computing
(2) Need to develop game content only
(3) Applicability of the mash-up technique

Regarding (1), the construction of a virtual space,
which is computed on the server in current Web
systems, can be done on each terminal and the server
load is reduced. Real-time Web games can therefore
be realized. Regarding (2), the VSR and the
Network Handler are made to a single component
and provided as an API. As a result, a Web game
developer has to create only the game content.
Regarding (3), using the mash-up technique and
combining the APIs of other site make it possible to
provide new services that provide additional value.

4 SYSTEM DESIGN

In this section, we describe the specific system
design.

4.1 System Design Strategy

The system design goal was to implement our
technology in the DVE for real-time Web games.
We have described the DR protocol (Hanawa and
Yonekura, 2007) and AtoZ (Kawano and Yonekura,
2006) elsewhere, and in this paper we examine the
implementation of these techniques.

4.2 Dead Reckoning Protocol

The DR protocol provides certain advantages. That
is, the DR protocol extrapolates the remote data
during transmission interval. Therefore, even if the
transmission interval is limited like HTTP,
information can be presented to user in real-time
without the effects of network latency. In this
section, we explain how the protocol can be applied
to a real-time web game. Figure 4 describes the
details of the DR component from Figure 2. The
hierarchical structure (Application and the IEL) is
indicated by solid lines, and the three components
(the VSR, the GUI Handler and the Modeler) are
indicated by broken lines.

In Figure 4, A(ti) and A’(ti) indicate the position
of avatar A at time ti and the differences of avatar A
at time ti, respectively, while A(ti+1) indicates the
predicted position of avatar A at time ti+1.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

174

Figure 4: The dead reckoning protocol in our system.

As shown in Figure 4, the DR protocol in our system
consists of three steps:

(1) Sampling of local data
First, the local terminal (Terminal A in Figure 4)
records data for the local avatar during interval ε,
which is a very small interval time. The data is used
to update the local historical data, where the
sampling data format is as shown in Figure 5a.

(2) Calculation of the differences
Second, the local terminal calculates the differences
based on the historical data, and these calculated
differences are transmitted during the interval u to
the remote terminal (Terminal B in Figure 4). The
transmitted data format is shown in Figure 5b.

(3) Extrapolation of the remote data
Third, the remote terminal extrapolates the data for
the local avatar during interval ε.

In the above, local sampling interval ε is set to less
than the update interval u. In addition, the DR
protocol is utilized as a function of the VSR.

Figure 5: JSON format used with dead reckoning protocol.

4.3 AtoZ (Allocated Topographical
Zone)

The AtoZ distributed processing protocol that we
can use for a P2P-type VBG has been described
elsewhere (Kawano and Yonekura, 2006). Here, we
focus on how using AtoZ enables us to introduce a
VBG on the Web. In the MVC loop of Figure 2, the
AtoZ component is included as a function of the
VSR in the same way as the DR protocol explained
in the previous section.

4.3.1 A P2P-Type Virtual Ball-Game

In a P2P-type VBG, each avatar and shared object
has physical attributes (location, orientation and
velocity). A significant issue is how ownership
(determination of which peer owns the key to
control a shared object) and the attributes for all
avatars and shared objects can be kept consistent
among peers. In addition, each player, or peer, can
manipulate exclusively the avatar dedicated to that
peer (no other player can manipulate that avatar).
Each shared objects can be continuously under the
control of only a certain avatar that is manipulated
by a certain player. In other words, only one avatar
exclusively owns the shared object at a given time.
The decision-making regarding ownership is
constantly computed, and ownership is dynamically
transferred from one avatar to another.

Application
(Contents)

Terminal A (Local)

A(ti)

A’s historical data

(1) Sampling of local
data: interval ε

A’(ti)

Application
(Contents)

Terminal B (Remote)

A(ti+1)

A’(ti)

Sending data of A’(ti) to
Terminal B via the server

(2) Calculation of
differences: interval u

(3) Extrapolation of
remote data: interval ε

GUI Handler Modeler

IEL IEL

DR in VSR

ti, A(ti), A(ti-ε),
A(ti-2ε),A(ti-3ε)

{ “name” : “name of the avatar (= ID)”,
“Px “: x component of the position at time t,
“Py” : y component of the position at time t,
“Pz” : z component of the position at time t,
“t” : current time }

{ “name” : “name of the avatar (= ID)”,
“Px” : x component of the position at time t,
“Py” : y component of the position at time t,
“Pz” : z component of the position at time t,
“Vx” : x component of the velocity at time t,
“Vy” : y component of the velocity at time t,
“Vz” : z component of the velocity at time t,
“Ax” : x component of the acceleration at time t,
“Ay” : y component of the acceleration at time t,
“Az” : z component of the acceleration at time t,
“t” : current time }

a. Sampling data format.

b. Transmitted data format.

A NEW CONCEPT FOR REAL-TIME WEB GAMES - Developing Highly Real-Time Web Games

175

4.3.2 Introduction of AtoZ

For use under such conditions, we developed the
following distributed cooperative protocols for
application among peers regarding ownership of a
shared object.

First, let’s consider that each avatar has a priority
field in which the ownership is given to that avatar
while the shared object remains within the field. The
priority field is defined as a set of spatial points in
order to decide which avatar can gain access
privilege to the shared object, and this must be
uniquely decided among the avatars. Hence, the
priority field is decided dynamically, considering the
relationship between the associated avatars in terms
of their position, velocity, acceleration and
orientation. In this paper, the priority field is referred
to as the AtoZ field formulated as

))},((min),(,|{)(j
Nj

ii pAccesspAccessZpAtoZ xxxx
∈

=∈= (1)

where pi denotes the i’th avatar (i = 1,2,…,N).
In the formula above, AtoZ(pi) is the AtoZ field

of avatar pi, x and Z respectively denote a spatial
point and the whole space in the DVE, and

),(
i

pAccess x denotes the estimated elapsed time

needed for avatar pi to reach out to x. Thus, AtoZ(pi)
indicates the set of points that avatar pi can reach out
to faster than any other avatar. This is illustrated in
Figure 6.

Figure 6: Overview of AtoZ.

If we assume that each peer uniquely determines
the attributes of each avatar, each peer also
commonly computes the AtoZ values for all avatars
because they use the same algorithm to determine
the AtoZ value (i.e., priority field) with the same
calculation accuracy. Thus, every peer may, though
acting independently, select the same avatar as the
one having ownership of a shared object because all

peers follow the same decision-making rule
regarding ownership. This satisfies the requirement
for ownership consistency.

4.4 Example of the Application

We implemented an avatar operation game as a
prototype system. In this system, a user who logs
into the web site can operate his own avatar, and the
motion of this and other avatars is displayed through
the browser. Figure 7 is an overview of the system,
and Figure 8 is an application screenshot. In this
application, we set the MVC loop interval to 100 ms
and the network transmission interval to 300 ms.
The URL of this Web site is http://
yard.cis.ibaraki.ac.jp/webgame/login.jsp

Figure 7: System overview of an avatar operation game.

Figure 8: Application screenshot.

User A User B

Web
Server

A B

C D

Browser

A B

C D

Browser

D C

A B

T=ti

O

AtoZ of B

AtoZ of A

AtoZ of D AtoZ of C

T=ti+1

AtoZ of B

D

C

A

B

O

AtoZ of C
AtoZ of D

WEBIST 2008 - International Conference on Web Information Systems and Technologies

176

5 CONCLUSIONS

We have described a new approach to designing
real-time Web games where we use DR and AtoZ to
overcome the limitations of HTTP communication.
As an example of this sort of application, we have
implemented a Web-based real-time avatar operation
game. This has demonstrated that our concept can be
extended to various types of real-time Web
application.

Our future work will involve the enhancement of
Web games based on our concept and further
evaluation of the concept’s validity throughout
games. We will also consider other types of
application in addition to Web games and
systematize our concept.

REFERENCES

Takemura, H., 1999. Journal of the Virtual Reality Society
of Japan, vol.4, no.1, pp.59-63, (in Japanese).

Hashimoto, T., Sheridan, T.B., Noyes, M.V., 1986.
“Effects of predicted information in teleoperation with
time delay”, Japan Ergonomics Society, vol.22, no.2,
pp.91-92, (in Japanese).

Valve Corporation, 2007. Counter-Strike, http://
www.steamgames.com/v/index.php?area=game&AppId=
240.

Microsoft Corporation, 2007. Age of Empires III, http://
www.ageofempires3.com/.

KOEI Co., Ltd., 2007. SHIN-SANGOKU MUSOU,
http://www.musou-bb.jp/.

Motion-Twin, 2005. Dinoparc, http://www.dinoparc.com/
OpenAjax Alliance, 2007. http://www.openajax.org/

index.html.
The Internet Engineering Task Force, 2006, RFC4627:

The application/json Media Type for JavaScript
Object Notation (JSON), http://www.ietf.org/
rfc/rfc4627.txt.

Singhal, S.K., 1996. Effective remote modeling in large-
scale distributed simulation and visualization
environments, Ph.D. Dissertation, Department of
Computer Science, Stanford University, Palo Alto.

Kawano, Y., Yonekura, T., 2006. Count Down Protocol:
Asynchronous Consistent Protocol in P2P Virtual Ball
Game for Multi-Player, in Proc. ACM NetGames2006.

Hanawa, D., Yonekura, T., 2007. Improvement on the
accuracy of the polynomial form extrapolation model
in distributed virtual environment, Springer-Verlag,
Visual Comput, 23: pp.369-379.

Maid Marian Entertainment, 2004. Tank Ball2, http://
maidmarian.com/Tank.htm.

Jagex Ltd., 2007. RuneScape, http://www.runescape.com/
James Ward, 2007. Census - RIA Data Loading

Benchmarks, http://www.jamesward.org/census/.

A NEW CONCEPT FOR REAL-TIME WEB GAMES - Developing Highly Real-Time Web Games

177

