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Abstract: This paper presents software variability management in complex cases of Software Product Lines where 
two kinds of variabilities emerge: domain variability and application variability. We illustrate the problem 
by means of a case study in Decision Support Systems. We have death with the first one by using variability 
points that are captured using decision-tree techniques in order to select base architectures and the second 
one by decorating the base architectures with the features of the application domain. In order to present this 
variability management, we focus on the diagnostic domain, a special case of Decision Support Systems. A 
generic solution for the automatic construction of systems of this kind is given using our approach: Baseline 
Oriented Modeling (BOM). 

1 INTRODUCTION 

The development of Decision Support Systems is 
complex since the elements that form their software 
architecture vary. These architectural elements 
change in their behaviour and in their structure. 

In these kinds of systems, the variability 
management cannot be performed through a unique 
Feature Model, and the variability must be treated in 
two phases: the first phase through different base 
architectures derived from a unique generic 
architecture; and the second phase by means of a 
more classic treatment using a Feature Model and 
decorating  these base architectures with different 
features. 

We have illustrated the variability management 
in the domain of Decision-Oriented Systems, and an 
application field: the diagnosis of educational 
programs using BOM (Baseline Oriented Modeling). 
BOM is a framework that semi-automatically 
generates DSS in a particular domain, based on 
product lines techniques. 

Our work integrates different technological 
spaces to cope with the complexity of the problem. 
These are the following: a) The generic architecture 
of Decision Support Systems (DSS) (Turban et al., 
2001) to capture the knowledge of experts and to try 
to imitate their reasoning processes when they solve 
problems in a certain domain; b) Model-Driven 
Architecture (MDA of OMG) (http://www.org/mda) 

at the abstract modelling level (PIM); c) The 
PRISMA Architectural Framework (Pérez, 2006) as 
the target software level (PSM); d) The Software 
Product Lines (SPL) (Clements et al., 2002) as a 
technique for systematic reuse in software products, 
and e) Feature-Oriented Modeling (FOM) (Trujillo, 
2007) to capture the different variabilities of the 
problem.  

Several methodologies and applications on SPL 
have produced a wide variety of research products, 
offering suggestions and solutions in specific 
domains. Our research is related to the following 
works:  
i) (Batory et al.,2006) express the domain 

features in the Feature Model.  
ii) (Trujillo, 2007) uses Feature-Oriented 

Programming as a technique for inserting 
the features.  

iii) (González-Braixauli et al.,2005) apply the 
MDA proposal as well as Requirements 
Engineering for Product Lines.  

iv) (Clements et al., 2002) use the SPL 
development approach, considering a 
division between domain engineering and 
application engineering phases for the reuse 
and the automation of the software process.  

v) (Trujillo, 2007) has developed the XAK 
tool for inserting features into XML 
documents by means of XSLT templates.  
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vi) (Santos, 2005) proposes the development of 
a technique based on MDA for variability 
management in Software Product Lines.  

vii) The AMPLE project (http://www.ample-
project.net) deals with variability 
management in different ways. This project 
mentions that (Bachman et al., 2005) 
propose to separate the variability 
declaration from the affected artifacts. 

The structure of the paper is the following: Section 2 
presents the variability management in the DSS. 
Section 3 introduces the variability dimensions of 
our domain (diagnosis). Section 4 introduces the 
variability in the application domain. Section 5 
describes the design of the Decision Software 
Architecture. Section 6 presents our conclusions and 
provides some ideas for future work. 

2 VARIABILITY MANAGEMENT 
IN DECISION SUPPORT 
SYSTEMS 

The development process of a specific application 
(member of the product line) starts from a unique 
generic architecture of the domain. The DSS domain 
unique generic architecture is presented in Figure 
1(a). This implies the existence of additional 
particular features that are represented as variability 
points, and their choice configure the final product. 
However, another variability emerges, in complex 
application domains. This variability is represented 
by the existence of several base architectures for the 
same generic architecture (see Figure 1(b)). We use 
a Modular view for describing the generic 
architecture conforming a Modular view metamodel 
(MM MODULAR VIEW) and a Component-
Connector view for describing the Base 
Architectures Skeletons conforming a Component-
Connector view metamodel (MM C-C 
SKELETON). Figure 1 shows a unique generic 
architecture and two base architectures.  

In these cases, there are two variability types 
which are orthogonal: one provided by the domain 
(e.g. diagnosis) and another one provided by the 
application domain (e.g. medical diagnosis, 
educational diagnosis).  

Therefore, we have treated variability in two 
phases. The initial variability is treated through 
variability points in a Decision Tree (DT). This DT 
selects the right base architecture. The second 
variability is managed by decorating this base 

architecture with the features of the application 
domain. 

To illustrate our approach, we have selected a 
case study: the diagnosis of educational programs 
within the diagnosis domain. Our research considers 
the following ontology: 
• The diagnosis consists of interpreting the status 

of an entity through its properties. 
• In the application domain of the diagnosis, the 

entity to be diagnosed is a postgraduate 
academic program, and the diagnosis result is 
the level of development of this program. The 
properties of the entities belong to the features 
and sub-features that are evaluated to obtain the 
validation of only one hypothesis 
(appropriate/inappropriate) as a result of the 
diagnosis.  

• The scenario for the academic diagnosis process 
is as follows: the system takes data that are 
given as input by the final user and relates it to 
the features of the educational program. The 
system infers other properties by deduction and 
subsequently does the same for the hypothesis. 
The result is the development level of the 
educational program. 
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(a) Modular View     (b) Component-Connector View 

Figure 1: Visual metaphor of (a) a unique Generic 
Architecture, and (b) two Base Architectures. 

3 THE VARIABILITY IN THE 
DOMAIN: V1  

The first type of variability involves a family of base 
architectures. This SPL must be constructed and 
stored on the Baseline. The Baseline is then itself a 
SPL, formed by all the assets necessary to construct 
the base architectures. 

Some assets are templates (or architectural 
element skeletons) and the configuration information 
for the base architectures. Thus, when we configure 
the base architectures, we obtain the first SPL.  
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This first type of variability represents the variability 
information of the domain (properties of the entity 
that participate in the diagnostic process, property 
levels, types of the reasoning, and hypotheses), and 
the variability in the final user requirements (number 
of use cases, actors, and use cases by actor).  

The features of the first variability type are 
present in the Feature Model (FM) of our SPL 
(Figure 2). These features are represented as 
variability points in a DT. This DT allows the access 
to the assets necessary to build base architectures 
(i.e. the architectural elements, their feature insertion 
processes, the base architectural model 
configuration, the feature insertion main process, the 
Application Domain Conceptual Model (ADCM), 
and the Reusable Asset Specification (RAS) 
(http://www.omg.org/technology/documents/formal/
ras.htm) model of assets. These assets are the leaves 
of the DT (Figure 3). The FM and the DT act as 
variability mechanisms that manage the variability at 
the artefact level. 
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Figure 2: Diagnostic Feature Model. 
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Figure 3: Diagnostic Decision Tree. 

We have detected seven types of features (or 
variability points) that are present in the FM and the 
DT:  

• entity views: an entity can be characterized by 
the same properties (the same view), or have 
different properties (different views) during the 
diagnostic process.  

• property levels: the properties of the entities can 
have n different abstraction levels. The 
deduction rules relate these properties between 
levels.  

• number of hypotheses: the goal of the 
diagnostic process is a single hypothesis. There 
can be one or several candidate hypotheses, 
which must all be validated in order to obtain 
the unique and correct hypothesis.  

• reasoning types: reasoning shows the way in 
which the rules are applied by the inference 
motor in order to infer a final diagnosis. The 
reasoning types can be: deductive reasoning 
(driven by data), inductive reasoning (driven by 
goals), and differential reasoning (establishing 
the difference between two or more diagnostic 
possibilities).  

• number of use cases: a use case indicates the 
division of the system based on its functionality; 
i.e., the different operations of the systems and 
how the system interacts with the environment 
(final users).  

• number of actors: represents the number of final 
users of the system.  

• use cases per actor: each final user can access 
different use cases.  

An example of these features applied to our 
educational program diagnosis is: the entity views 
are the same during the diagnostic process, there are 
two property levels, one hypothesis, deductive 
reasoning, one use case, one actor, and one use case 
per actor. With this information, the assets that will 
form the base architecture of this case study are 
selected (Figure 3). 

The variability shown in the use cases, actors, 
and use cases per actor is reflected in the 
construction of the assets of the architectural 
element skeletons and in the base architecture in the 
following way:  
• there is one connector that joins all the 

architectural component assets for each use 
case,  

• the number of ports of the Inference Process 
component is the same as the number of use 
cases,  

• the number of ports of the Knowledge Base is 
the number of use cases,  

• the number of User Interfaces is the number of 
actors of the use cases,  
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• the number of ports of the User Interface is the 
number of use cases that can be accessed by an 
actor. 

The domain variability management could be 
viewed as a transformation taking as input the 
Domain Conceptual Model (DCM) and the Decision 
Tree Model, and producing as output the 
corresponding Base Architecture Model (we call it 
T1).  

The structure of the architectural elements 
involves features on three variability points in the 
DT. These features are used to select assets that let 
to configure the base architectures. 

The behaviour of the architectural elements 
involves the features of four variability points in the 
DT: entity views, property levels, number of 
hypotheses, and reasoning types. These features are 
related to the services, the protocols and the 
played_roles of the aspects from the PRISMA 
architectural elements (the information of state, 
process, and roles, respectively).  

To optimize the feature insertion process, instead 
of repeating this information in each PRISMA type, 
we have placed it in the skeletons of the Baseline.  

4 VARIABILITY IN THE 
APPLICATION DOMAIN: V2 

The second type of variability involves the SPL of 
the application in a specific field. This variability 
allows to the base architectures to be enriched or 
decorated with the application domain features. 

In the process of the application variability 
management, the variations of the specific 
requirements of the application domain should be 
selected. This selection is made by means of an 
ADCM. The features are inserted (by means of 
QVT-Transformations (http://www.omg.org/ 
docs/formal/05-07-01.pdf) in the base skeletons in 
order to generate the types of the PRISMA software 
artifacts. These PRISMA architectural elements will 
be used to configure the PRISMA architectural 
model of the application. That model is 
automatically compiled into code (C#) using the 
PRISMA Model Compiler (Cabedo et al., 2005), and 
it is executable over the PRISMA NET Middleware 
(Costa et al., 2005).  

The features that are used to fill the skeletons to 
obtain PRISMA types that make up the PRISMA 
base architectures of our SPL are:  
• name and type of the entity properties, that will 

be diagnosed, 

• name and type of the hypotheses,  
• the rules that relate the entity properties. 

In the following, we present an example of these 
features (F) in our educational program diagnosis: 
• Features of the properties of level 0 (FP.0) = 

{student_population, graduation_rate, 
graduation_time, graduate_quality, 
control_school, critical_mass, 
academic_training, scientific_productivity, 
groups_lines_research, general_design, 
pupil_control, research_experience_students, 
number_courses, scheduled_duration, library, 
computer_equipment, laboratories, 
building&facilities, general_services } 

• Features of the properties of level 1 (FP.1) =    
{student_body, faculty, curriculum, 
infrastructure&services }   

• Features of the hypotheses (FH) = 
developmental_stage 

• Features of the rules of level 1 (FR.1) = 
{student_population=”good” and 
graduation_rate=”good” and 
graduation_time=”good” and 
graduate_quality=”good” and 
control_school=”good” } student_body 
=”good”    

• Features of the rules of level 2 (FP.2) =   
{student_body =” good” and faculty =” good” 
and curriculum =” good” and 
infrastructure&services=” good” }  
developmental_stage = “consolidated” 

The features considered as constants represent the 
base models (in our case, the skeletons). For 
example, S-IP-EPD, which means the “S-IP-EPD 
program”. It is a constant feature. S-IP-EPD is the 
nomenclature used for Inference Process Skeleton of 
the Educational Program Diagnosis. 

The skeletons selected will be filled or decorated 
with the features of the application domain in order 
to create the respective types. These types will 
include the features as functions, which are 
refinements of the base models. These models are 
extensions of the base model, which is taken as 
input. For example, F ● S-IP-EPD, wich means: 
“insert the F feature into the S-IP-EPD model”, 
where ● is the application of the F function. The 
successive decoration process with features will be 
represented as: 

S-IP-EPD0 = FP.0 ● S-IP-EPD1 =  
FP.0 ● (E-MI- DPE1) 

S-IP-EPD1 = FP.1 ● S-IP-EPD2 =  
FP.1 ● (E-MI- DPE2) 

S-IP-EPD2 = FH ●·S-IP-EPD3 =  
FH ● (E-MI- DPE3) 
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S-IP-EPD3 = FR.1 ● S-IP-EPD4 =  
FR.1 ● (E-MI- DPE4) 

S-IP-EPD4 = FR.2 ● S-IP-EPD5 =  
FR.2 ● (E-MI- DPE5) 

Figure 4 represents a visual metaphor of the feature 
insertion process in a skeleton selected from the 
Baseline (S-IP-EPD0) to create its PRISMA type.  

Tj = The j th transformation (feature insertion)
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Figure 4: Feature insertion process in a skeleton to create 
its PRISMA type. 

It is important to state that a Skeleton-Base 
Architecture can be instantiated to one or more 
PRISMA-Base Architecture types (i.e. several 
products of our SPL), when the decorating features 
are different. In two case studies performed by the 
authors (the diagnosis of the developmental_stage of 
educational programs, and the diagnosis of TV video 
quality), they shared the same skeleton, but each one 
of them has different PRISMA types. This was due 
to the fact that different properties of the application 
domain were inserted in each case. 

As an example of this, we present in Table 1 the 
functional aspect skeleton of the Knowledge Base 
and the PRISMA type. Both the skeleton and the 
type are specified in PRISMA-ADL (Architecture 
Description Language).  

Table 1: PRISMA-ADL of the Functional Aspect of the Knowledge Base (The different section holes are depicted in bold 
type. 

Functional aspect of the Knowledge Base 
of a skeleton 

Functional aspect of the Knowledge Base of a 
PRISMA type 

Functional Aspect FBaseEPD using 
IDomainDPEDT  
 
 Attributes 
 Variables 
<FP.0> 
 
 
 
 Derived  
<FP.1> 
 
<FH> 
...... 
  Derivations 
<FR.1> 
 
 
 
 
<FR.2> 
 
 
........ 
 Services 
...... 

 Played_Roles 
........ 

 Protocols 
...... 

End_Functional Aspect FBaseEPD 

Functional Aspect FBaseEPD using IDomainDPEDT 
 

 Attributes 
Variables 
laboratories:string, 
library:string, 
critical_mass:string, 
scientific_productivity:string; 

Derived  
infrastructure&services:string, 
faculty:string 
developmental_stage:string; 

...... 
   Derivations 
{laboratories=”good” and library=“good”} 
infrastructure&services:=“good”  
{critical_mass=”good” and 
scientific_productivity =“good”}   faculty:= 
“good” 
{infrastructure&services=“good” and faculty= 
“good”} developmental_stage:=“consolidated”;  
...... 

 Services 
...... 

 Played_Roles 
........ 

 Protocols 
...... 

End_Functional Aspect FBaseEPD 
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5 DESIGNING DECISION 
SOFTWARE 
ARCHITECTURES: PRODUCT 
ENGINEERING PHASE 

Figure 5 shows the transformations involved in the 
design of the decision software architectures. This 
figure illustrates how the two transformations 
performed at the model level are applied in the 
transformation process. Transformations T1 and 
T2 are executed at the model level (M1 in OMG-
MOF (http://www.omg/org/mof) shown in Figure 
5, they are defined as relations in QVT-Relational 
at the metamodel level (M2 in OMG-MOF). 

In transformation T1, the Component-
Connector (C-C) Skeleton model (c) is obtained 
from the DSS modular model (a) and the DCM (b). 
In transformation T2, the PRISMA architecture 
model (e) is obtained from the Skeleton C-C model 
generated in T1 (c) and the ADCM (d).  

The relations R1 and R2 that specify the 
corresponding transformations T1 and T2 are: 

  R1 ⊆  MM MODULAR VIEW X MMV1  →     
    def          MM C-C SKELETON ; 
 
 

  R2 ⊆  MM C-C SKELETON X MMV2  →   
    def           MM PRISMA VIEW ; 

 
Where MMV1 and MMV2 are the metamodels 
(MM) of the DCM and the ADCM. We use the 
UML metamodel  
(http://www.omg.org/docs/formal/05-07-04.pdf) 
for both. 

The relations R1 and R2 have been specified 
using QVT-Relational. One of them is (R1 
relations):  

MODULAR VIEW  →  C-C VIEW 
In BOM, the stakeholders only introduce the 

variability data by means of the Conceptual 
Models: In the fisrt step, the stakeholders introduce 
the variability of the domain by means of the DCM 
capturing the domain variability V1. T1 will obtain 
a base architecture “ad hoc” to the case study using 
the Generic Architecture Modular View. In the 
second step, the stakeholders introduce the 
variability of the application domain by means of 
the ADCM capturing the application variability 
V2. T2 will generate a PRISMA architecture 
model as a product of our SPL (application 
engineering), using the Skeleton C-C- model 
generated in the first step. The two conceptual 
models conform to their respective metamodels 
(MM): the UML metamodel. 
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Figure 5: The transformation of models in BOM. 
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5.1 Specification of the Relations 
between the Software Views 

The relations between the software views are 
specified by means of a MOF diagram, and the code 
for these relations is written in the QVT-relational. 
Code and diagrams are shown in (Limón et al., 
2007). In order to gain clarity the prefix “skeleton” 
will be omitted from now, i.e “skeleton component” 
will be written as “component”, and “skeleton 
connector” will be written as “connector”. The 
relations between the software views are the 
following: 

i) Relation moduleToComponent. This relation 
maps each module with a component. Relation 
moduleToComponent has two types of relations: the 
checkonly type and the enforce type. The object of 
the Module domain is of the checkonly type. In 
contrast, the object of the Component domain is of 
the enforce type. This creates an object of the 
Component class that is related to the Module class. 
The where clause indicates a call to the 
functionToService relation, which relates an object 
of the Module class with an object of the Component 
class.  

ii) Relation functionToService. This relation 
implies that a function of the module metamodel 
will generate a service of the Component class. 
When this occurs, the type of the Function will 
generate a port. In the where clause, the name of the 
port is obtained by calling the function typePort. 
When the relation is executed, the classes that are in 
the source metamodel can only be verified and the 
classes that are in the target meta-model will be 
created (only the ServiceToPort class).  

iii) Relation rUseModToConnector. The ‘uses’ 
relation is transformed from the modular meta-class 
to a link between a connector and two components 
in the C-C meta-class. The creation of objects for 
this relation is from 1 to n because a relation of two 
components is generated through a connector. In 
(Limón et al., 2007) is shown part of the code to 
illustrate how the relations are invoked in the 
‘where’ clause to create the relations among module, 
component, and functionToService. 

iv) Relation rCompositionModToComp. The set 
of modules will also generate a set of components. 
However, in this case when a component is created 
(container) a subordinate is created inside it.  

6 CONCLUSIONS 

The development of DSS is complex because there 
is variability in the architectural elements that 
conforms them as well as variability in their final 
architecture. This situation produces several base 
architectures in our SPL, sharing a unique generic 
architecture.  

Futhermore, the complexity problem of these 
kind of systems is not solved by means of a unique 
Feature Model and the insertion of its features. Since 
the variability management is the essence of SPL, 
we have taken a new approach. This approach 
manages the variability in two stages, wich 
correspond to the development of two SPL:  

i) the base architectures SPL that shares a generic 
architecture, and  

ii) the application SPL in a specific domain, that 
shares a base architecture. 
In this context, we describe how the variability is 
managed in our SPL by means of our BOM 
framework. BOM automatically generates DSS in a 
specific domain using SPL.  

BOM captures the data that characterize the 
domain variability and the application variability in 
conceptual models. DT and FOM exploit this data in 
the domain engineering and product engineering 
phases in order to obtain a specific application by 
means of Model Transformation techniques. In 
BOM, the variability appears in the construction of 
the DCM (which is represented as a DT showing the 
different variation points). The base assets are 
selected by the DT to configure a base architecture. 
These assets are enriched by the specific application 
features (given in the ADCM) by a process that 
results in PRISMA types (a product of our LPS).  

In the domain engineering phase, the user 
constructs the different assets and stores them in the 
Baseline. This Baseline is used in the application 
engineering phase by a production plan in order to 
obtain the final product. The production plan is one 
of the assets stored in the Baseline.  

We can conclude that the main characteristics of 
BOM are the following: 

i) Variability is managed at the model level 
rather than at the program level.  

ii) Systems variability is modeled using 
conceptual models independently of their functional 
models. The DSLs for expressing the variability are 
suited for the domain, instead of adding tangled 
variability annotations directly to the functional 
models (UML, ADLs) as other approaches have 
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proposed (AMPLE project: http://www.ample-
project.net).  

iii) Variability is operated by two orthogonal 
types: one provided by the features of the domain 
(e.g. diagnosis), and another one provided by the 
features of the application domain.  

iv) Various technological spaces are integrated to 
cope with the complexity of the problem.They are 
the current trends in Software Engineering.  

v) BOM implements a generic approach to SPL 
developement, that can be applied to different 
domains, application domains and systems. In this 
paper, the BOM framework is applied to the 
diagnostic domain. Other domains will be 
considered in the near future, e.g. interpretation, and 
prediction.  
A prototype of the BOM framework: ProtoBOM has 
been implemented and will be used in real case 
studies. In the future, we will use benchmarks in 
order to compare BOM results with other 
approaches.  
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