
VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT
LINES FOR DECISION SUPPORT SYSTEMS CONSTRUCTION

María Eugenia Cabello and Isidro Ramos
Polytechnic University of Valencia,Camino de Vera s/n, 46022 Valencia, Spain

Keywords: Software Product Lines, Decision Support Systems, Variability Management, Software Architectures.

Abstract: This paper presents software variability management in complex cases of Software Product Lines where
two kinds of variabilities emerge: domain variability and application variability. We illustrate the problem
by means of a case study in Decision Support Systems. We have death with the first one by using variability
points that are captured using decision-tree techniques in order to select base architectures and the second
one by decorating the base architectures with the features of the application domain. In order to present this
variability management, we focus on the diagnostic domain, a special case of Decision Support Systems. A
generic solution for the automatic construction of systems of this kind is given using our approach: Baseline
Oriented Modeling (BOM).

1 INTRODUCTION

The development of Decision Support Systems is
complex since the elements that form their software
architecture vary. These architectural elements
change in their behaviour and in their structure.

In these kinds of systems, the variability
management cannot be performed through a unique
Feature Model, and the variability must be treated in
two phases: the first phase through different base
architectures derived from a unique generic
architecture; and the second phase by means of a
more classic treatment using a Feature Model and
decorating these base architectures with different
features.

We have illustrated the variability management
in the domain of Decision-Oriented Systems, and an
application field: the diagnosis of educational
programs using BOM (Baseline Oriented Modeling).
BOM is a framework that semi-automatically
generates DSS in a particular domain, based on
product lines techniques.

Our work integrates different technological
spaces to cope with the complexity of the problem.
These are the following: a) The generic architecture
of Decision Support Systems (DSS) (Turban et al.,
2001) to capture the knowledge of experts and to try
to imitate their reasoning processes when they solve
problems in a certain domain; b) Model-Driven
Architecture (MDA of OMG) (http://www.org/mda)

at the abstract modelling level (PIM); c) The
PRISMA Architectural Framework (Pérez, 2006) as
the target software level (PSM); d) The Software
Product Lines (SPL) (Clements et al., 2002) as a
technique for systematic reuse in software products,
and e) Feature-Oriented Modeling (FOM) (Trujillo,
2007) to capture the different variabilities of the
problem.

Several methodologies and applications on SPL
have produced a wide variety of research products,
offering suggestions and solutions in specific
domains. Our research is related to the following
works:
i) (Batory et al.,2006) express the domain

features in the Feature Model.
ii) (Trujillo, 2007) uses Feature-Oriented

Programming as a technique for inserting
the features.

iii) (González-Braixauli et al.,2005) apply the
MDA proposal as well as Requirements
Engineering for Product Lines.

iv) (Clements et al., 2002) use the SPL
development approach, considering a
division between domain engineering and
application engineering phases for the reuse
and the automation of the software process.

v) (Trujillo, 2007) has developed the XAK
tool for inserting features into XML
documents by means of XSLT templates.

49
Eugenia Cabello M. and Ramos I. (2008).
VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES FOR DECISION SUPPORT SYSTEMS CONSTRUCTION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 49-56
DOI: 10.5220/0001675300490056
Copyright c© SciTePress

vi) (Santos, 2005) proposes the development of
a technique based on MDA for variability
management in Software Product Lines.

vii) The AMPLE project (http://www.ample-
project.net) deals with variability
management in different ways. This project
mentions that (Bachman et al., 2005)
propose to separate the variability
declaration from the affected artifacts.

The structure of the paper is the following: Section 2
presents the variability management in the DSS.
Section 3 introduces the variability dimensions of
our domain (diagnosis). Section 4 introduces the
variability in the application domain. Section 5
describes the design of the Decision Software
Architecture. Section 6 presents our conclusions and
provides some ideas for future work.

2 VARIABILITY MANAGEMENT
IN DECISION SUPPORT
SYSTEMS

The development process of a specific application
(member of the product line) starts from a unique
generic architecture of the domain. The DSS domain
unique generic architecture is presented in Figure
1(a). This implies the existence of additional
particular features that are represented as variability
points, and their choice configure the final product.
However, another variability emerges, in complex
application domains. This variability is represented
by the existence of several base architectures for the
same generic architecture (see Figure 1(b)). We use
a Modular view for describing the generic
architecture conforming a Modular view metamodel
(MM MODULAR VIEW) and a Component-
Connector view for describing the Base
Architectures Skeletons conforming a Component-
Connector view metamodel (MM C-C
SKELETON). Figure 1 shows a unique generic
architecture and two base architectures.

In these cases, there are two variability types
which are orthogonal: one provided by the domain
(e.g. diagnosis) and another one provided by the
application domain (e.g. medical diagnosis,
educational diagnosis).

Therefore, we have treated variability in two
phases. The initial variability is treated through
variability points in a Decision Tree (DT). This DT
selects the right base architecture. The second
variability is managed by decorating this base

architecture with the features of the application
domain.

To illustrate our approach, we have selected a
case study: the diagnosis of educational programs
within the diagnosis domain. Our research considers
the following ontology:
• The diagnosis consists of interpreting the status

of an entity through its properties.
• In the application domain of the diagnosis, the

entity to be diagnosed is a postgraduate
academic program, and the diagnosis result is
the level of development of this program. The
properties of the entities belong to the features
and sub-features that are evaluated to obtain the
validation of only one hypothesis
(appropriate/inappropriate) as a result of the
diagnosis.

• The scenario for the academic diagnosis process
is as follows: the system takes data that are
given as input by the final user and relates it to
the features of the educational program. The
system infers other properties by deduction and
subsequently does the same for the hypothesis.
The result is the development level of the
educational program.

INFERENCE
PROCESS

KNOWLEDGE
BASE

USER DIAGNOSTIC
CONNECTOR

INFERENCE
PROCESS

KNOWLEDGE
BASE

CLINICAL
USER

LABORATORY
USER

Connector 1

Connector 2

Connector 3

INFERENCE PROCESS INFERENCE PROCESS

KNOWLEDGE BASEKNOWLEDGE BASE

USER INTERFACEUSER INTERFACE

(a) Modular View (b) Component-Connector View

Figure 1: Visual metaphor of (a) a unique Generic
Architecture, and (b) two Base Architectures.

3 THE VARIABILITY IN THE
DOMAIN: V1

The first type of variability involves a family of base
architectures. This SPL must be constructed and
stored on the Baseline. The Baseline is then itself a
SPL, formed by all the assets necessary to construct
the base architectures.

Some assets are templates (or architectural
element skeletons) and the configuration information
for the base architectures. Thus, when we configure
the base architectures, we obtain the first SPL.

ICEIS 2008 - International Conference on Enterprise Information Systems

50

This first type of variability represents the variability
information of the domain (properties of the entity
that participate in the diagnostic process, property
levels, types of the reasoning, and hypotheses), and
the variability in the final user requirements (number
of use cases, actors, and use cases by actor).

The features of the first variability type are
present in the Feature Model (FM) of our SPL
(Figure 2). These features are represented as
variability points in a DT. This DT allows the access
to the assets necessary to build base architectures
(i.e. the architectural elements, their feature insertion
processes, the base architectural model
configuration, the feature insertion main process, the
Application Domain Conceptual Model (ADCM),
and the Reusable Asset Specification (RAS)
(http://www.omg.org/technology/documents/formal/
ras.htm) model of assets. These assets are the leaves
of the DT (Figure 3). The FM and the DT act as
variability mechanisms that manage the variability at
the artefact level.

DIAGNOSIS

Property Levels ReasoningHypothesis

same change

1 2

1

deductive differential

Use Cases

1 3

Actors

1 2

Use Cases
by Actor

1 2

NOMENCLATURE:
and or

(select 1)
mandatory optional

4 14

Entity Views

Figure 2: Diagnostic Feature Model.

Reasoning

Property Levels

Use Cases

Actors

Hypotheses

Entity Views

same change

deductive differential

1

1

14

1

2

3

2

1-2

1

1

11

Use Cases by Actor

BOX 1
BOX 2

BOX 3 BOX 4

1 1

1 1

22

4

Figure 3: Diagnostic Decision Tree.

We have detected seven types of features (or
variability points) that are present in the FM and the
DT:

• entity views: an entity can be characterized by
the same properties (the same view), or have
different properties (different views) during the
diagnostic process.

• property levels: the properties of the entities can
have n different abstraction levels. The
deduction rules relate these properties between
levels.

• number of hypotheses: the goal of the
diagnostic process is a single hypothesis. There
can be one or several candidate hypotheses,
which must all be validated in order to obtain
the unique and correct hypothesis.

• reasoning types: reasoning shows the way in
which the rules are applied by the inference
motor in order to infer a final diagnosis. The
reasoning types can be: deductive reasoning
(driven by data), inductive reasoning (driven by
goals), and differential reasoning (establishing
the difference between two or more diagnostic
possibilities).

• number of use cases: a use case indicates the
division of the system based on its functionality;
i.e., the different operations of the systems and
how the system interacts with the environment
(final users).

• number of actors: represents the number of final
users of the system.

• use cases per actor: each final user can access
different use cases.

An example of these features applied to our
educational program diagnosis is: the entity views
are the same during the diagnostic process, there are
two property levels, one hypothesis, deductive
reasoning, one use case, one actor, and one use case
per actor. With this information, the assets that will
form the base architecture of this case study are
selected (Figure 3).

The variability shown in the use cases, actors,
and use cases per actor is reflected in the
construction of the assets of the architectural
element skeletons and in the base architecture in the
following way:
• there is one connector that joins all the

architectural component assets for each use
case,

• the number of ports of the Inference Process
component is the same as the number of use
cases,

• the number of ports of the Knowledge Base is
the number of use cases,

• the number of User Interfaces is the number of
actors of the use cases,

VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES FOR DECISION SUPPORT SYSTEMS
CONSTRUCTION

51

• the number of ports of the User Interface is the
number of use cases that can be accessed by an
actor.

The domain variability management could be
viewed as a transformation taking as input the
Domain Conceptual Model (DCM) and the Decision
Tree Model, and producing as output the
corresponding Base Architecture Model (we call it
T1).

The structure of the architectural elements
involves features on three variability points in the
DT. These features are used to select assets that let
to configure the base architectures.

The behaviour of the architectural elements
involves the features of four variability points in the
DT: entity views, property levels, number of
hypotheses, and reasoning types. These features are
related to the services, the protocols and the
played_roles of the aspects from the PRISMA
architectural elements (the information of state,
process, and roles, respectively).

To optimize the feature insertion process, instead
of repeating this information in each PRISMA type,
we have placed it in the skeletons of the Baseline.

4 VARIABILITY IN THE
APPLICATION DOMAIN: V2

The second type of variability involves the SPL of
the application in a specific field. This variability
allows to the base architectures to be enriched or
decorated with the application domain features.

In the process of the application variability
management, the variations of the specific
requirements of the application domain should be
selected. This selection is made by means of an
ADCM. The features are inserted (by means of
QVT-Transformations (http://www.omg.org/
docs/formal/05-07-01.pdf) in the base skeletons in
order to generate the types of the PRISMA software
artifacts. These PRISMA architectural elements will
be used to configure the PRISMA architectural
model of the application. That model is
automatically compiled into code (C#) using the
PRISMA Model Compiler (Cabedo et al., 2005), and
it is executable over the PRISMA NET Middleware
(Costa et al., 2005).

The features that are used to fill the skeletons to
obtain PRISMA types that make up the PRISMA
base architectures of our SPL are:
• name and type of the entity properties, that will

be diagnosed,

• name and type of the hypotheses,
• the rules that relate the entity properties.

In the following, we present an example of these
features (F) in our educational program diagnosis:
• Features of the properties of level 0 (FP.0) =

{student_population, graduation_rate,
graduation_time, graduate_quality,
control_school, critical_mass,
academic_training, scientific_productivity,
groups_lines_research, general_design,
pupil_control, research_experience_students,
number_courses, scheduled_duration, library,
computer_equipment, laboratories,
building&facilities, general_services }

• Features of the properties of level 1 (FP.1) =
{student_body, faculty, curriculum,
infrastructure&services }

• Features of the hypotheses (FH) =
developmental_stage

• Features of the rules of level 1 (FR.1) =
{student_population=”good” and
graduation_rate=”good” and
graduation_time=”good” and
graduate_quality=”good” and
control_school=”good” } student_body
=”good”

• Features of the rules of level 2 (FP.2) =
{student_body =” good” and faculty =” good”
and curriculum =” good” and
infrastructure&services=” good” }
developmental_stage = “consolidated”

The features considered as constants represent the
base models (in our case, the skeletons). For
example, S-IP-EPD, which means the “S-IP-EPD
program”. It is a constant feature. S-IP-EPD is the
nomenclature used for Inference Process Skeleton of
the Educational Program Diagnosis.

The skeletons selected will be filled or decorated
with the features of the application domain in order
to create the respective types. These types will
include the features as functions, which are
refinements of the base models. These models are
extensions of the base model, which is taken as
input. For example, F ● S-IP-EPD, wich means:
“insert the F feature into the S-IP-EPD model”,
where ● is the application of the F function. The
successive decoration process with features will be
represented as:

S-IP-EPD0 = FP.0 ● S-IP-EPD1 =
FP.0 ● (E-MI- DPE1)

S-IP-EPD1 = FP.1 ● S-IP-EPD2 =
FP.1 ● (E-MI- DPE2)

S-IP-EPD2 = FH ●·S-IP-EPD3 =
FH ● (E-MI- DPE3)

ICEIS 2008 - International Conference on Enterprise Information Systems

52

S-IP-EPD3 = FR.1 ● S-IP-EPD4 =
FR.1 ● (E-MI- DPE4)

S-IP-EPD4 = FR.2 ● S-IP-EPD5 =
FR.2 ● (E-MI- DPE5)

Figure 4 represents a visual metaphor of the feature
insertion process in a skeleton selected from the
Baseline (S-IP-EPD0) to create its PRISMA type.

Tj = The j th transformation (feature insertion)

FP.0

T1

FP.1

T2
FP.0

FH

T3
FP.0,
FP.1

S-IP-EPD0 S-IP-EPD1 S-IP-EPD2

FR.1

T4

FR.2

T5FP.0, FP.1,
FH, FR.1

FP.0, FP.1,
FH

S-IP-EPD3 S-IP-EPD4 S-IP-EPD5

FP.0, FP.1,
FH, FR.1,
FR.2

Figure 4: Feature insertion process in a skeleton to create
its PRISMA type.

It is important to state that a Skeleton-Base
Architecture can be instantiated to one or more
PRISMA-Base Architecture types (i.e. several
products of our SPL), when the decorating features
are different. In two case studies performed by the
authors (the diagnosis of the developmental_stage of
educational programs, and the diagnosis of TV video
quality), they shared the same skeleton, but each one
of them has different PRISMA types. This was due
to the fact that different properties of the application
domain were inserted in each case.

As an example of this, we present in Table 1 the
functional aspect skeleton of the Knowledge Base
and the PRISMA type. Both the skeleton and the
type are specified in PRISMA-ADL (Architecture
Description Language).

Table 1: PRISMA-ADL of the Functional Aspect of the Knowledge Base (The different section holes are depicted in bold
type.

Functional aspect of the Knowledge Base
of a skeleton

Functional aspect of the Knowledge Base of a
PRISMA type

Functional Aspect FBaseEPD using
IDomainDPEDT

 Attributes
 Variables
<FP.0>

 Derived
<FP.1>

<FH>
......
 Derivations
<FR.1>

<FR.2>

........
 Services
......

 Played_Roles
........

 Protocols
......

End_Functional Aspect FBaseEPD

Functional Aspect FBaseEPD using IDomainDPEDT

 Attributes
Variables
laboratories:string,
library:string,
critical_mass:string,
scientific_productivity:string;

Derived
infrastructure&services:string,
faculty:string
developmental_stage:string;

......
 Derivations
{laboratories=”good” and library=“good”}
infrastructure&services:=“good”
{critical_mass=”good” and
scientific_productivity =“good”} faculty:=
“good”
{infrastructure&services=“good” and faculty=
“good”} developmental_stage:=“consolidated”;
......

 Services
......

 Played_Roles
........

 Protocols
......

End_Functional Aspect FBaseEPD

VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES FOR DECISION SUPPORT SYSTEMS
CONSTRUCTION

53

5 DESIGNING DECISION
SOFTWARE
ARCHITECTURES: PRODUCT
ENGINEERING PHASE

Figure 5 shows the transformations involved in the
design of the decision software architectures. This
figure illustrates how the two transformations
performed at the model level are applied in the
transformation process. Transformations T1 and
T2 are executed at the model level (M1 in OMG-
MOF (http://www.omg/org/mof) shown in Figure
5, they are defined as relations in QVT-Relational
at the metamodel level (M2 in OMG-MOF).

In transformation T1, the Component-
Connector (C-C) Skeleton model (c) is obtained
from the DSS modular model (a) and the DCM (b).
In transformation T2, the PRISMA architecture
model (e) is obtained from the Skeleton C-C model
generated in T1 (c) and the ADCM (d).

The relations R1 and R2 that specify the
corresponding transformations T1 and T2 are:

 R1 ⊆ MM MODULAR VIEW X MMV1 →
 def MM C-C SKELETON ;

 R2 ⊆ MM C-C SKELETON X MMV2 →
 def MM PRISMA VIEW ;

Where MMV1 and MMV2 are the metamodels
(MM) of the DCM and the ADCM. We use the
UML metamodel
(http://www.omg.org/docs/formal/05-07-04.pdf)
for both.

The relations R1 and R2 have been specified
using QVT-Relational. One of them is (R1
relations):

MODULAR VIEW → C-C VIEW
In BOM, the stakeholders only introduce the

variability data by means of the Conceptual
Models: In the fisrt step, the stakeholders introduce
the variability of the domain by means of the DCM
capturing the domain variability V1. T1 will obtain
a base architecture “ad hoc” to the case study using
the Generic Architecture Modular View. In the
second step, the stakeholders introduce the
variability of the application domain by means of
the ADCM capturing the application variability
V2. T2 will generate a PRISMA architecture
model as a product of our SPL (application
engineering), using the Skeleton C-C- model
generated in the first step. The two conceptual
models conform to their respective metamodels
(MM): the UML metamodel.

Modular Meta-model

UML-Class Meta-model: MMV1

conforms_to

conforms_to

(a)

(b)

T1

INFERENCE
MOTOR

KNOWLEDGE
BASE

USER
INTERFACE

Reasoning
Type: {deductive,
diferential,}

Use Cases

Number : nat

Actor

Number : nat

Use Cases
by Actor

Number : nat

Hypothesis
Number: nat

Property

Levels: nat

is_require

is_result

1..* 1

1..*

1..*

to_obtain

1

1..*

to_related

1

1

Entity View

Views: {same, change}

has
1..*

1

C-C View Meta-model

UML-Class Meta-model: MMV2

conforms_to

conforms_to

conforms_to

(c)

(e)

(d)

C-C View Meta-model

INFERENCE
MOTOR

KNOWLEDGE
BASE

USER
INTERFACE CONNECTOR

INFERENCE
MOTOR

KNOWLEDGE
BASE

USER
INTERFACE CONNECTOR

T2

Property

Name: string
Type: {string, nat, real, bool}
Level: nat

1..*

1

Property
Level n

Property
level n+1

Hypothesis

Name: string
Type: string

1

Rule

Clause: string
Level: nat

1

inferredinferred

1

1

11..*

Figure 5: The transformation of models in BOM.

ICEIS 2008 - International Conference on Enterprise Information Systems

54

5.1 Specification of the Relations
between the Software Views

The relations between the software views are
specified by means of a MOF diagram, and the code
for these relations is written in the QVT-relational.
Code and diagrams are shown in (Limón et al.,
2007). In order to gain clarity the prefix “skeleton”
will be omitted from now, i.e “skeleton component”
will be written as “component”, and “skeleton
connector” will be written as “connector”. The
relations between the software views are the
following:

i) Relation moduleToComponent. This relation
maps each module with a component. Relation
moduleToComponent has two types of relations: the
checkonly type and the enforce type. The object of
the Module domain is of the checkonly type. In
contrast, the object of the Component domain is of
the enforce type. This creates an object of the
Component class that is related to the Module class.
The where clause indicates a call to the
functionToService relation, which relates an object
of the Module class with an object of the Component
class.

ii) Relation functionToService. This relation
implies that a function of the module metamodel
will generate a service of the Component class.
When this occurs, the type of the Function will
generate a port. In the where clause, the name of the
port is obtained by calling the function typePort.
When the relation is executed, the classes that are in
the source metamodel can only be verified and the
classes that are in the target meta-model will be
created (only the ServiceToPort class).

iii) Relation rUseModToConnector. The ‘uses’
relation is transformed from the modular meta-class
to a link between a connector and two components
in the C-C meta-class. The creation of objects for
this relation is from 1 to n because a relation of two
components is generated through a connector. In
(Limón et al., 2007) is shown part of the code to
illustrate how the relations are invoked in the
‘where’ clause to create the relations among module,
component, and functionToService.

iv) Relation rCompositionModToComp. The set
of modules will also generate a set of components.
However, in this case when a component is created
(container) a subordinate is created inside it.

6 CONCLUSIONS

The development of DSS is complex because there
is variability in the architectural elements that
conforms them as well as variability in their final
architecture. This situation produces several base
architectures in our SPL, sharing a unique generic
architecture.

Futhermore, the complexity problem of these
kind of systems is not solved by means of a unique
Feature Model and the insertion of its features. Since
the variability management is the essence of SPL,
we have taken a new approach. This approach
manages the variability in two stages, wich
correspond to the development of two SPL:

i) the base architectures SPL that shares a generic
architecture, and

ii) the application SPL in a specific domain, that
shares a base architecture.
In this context, we describe how the variability is
managed in our SPL by means of our BOM
framework. BOM automatically generates DSS in a
specific domain using SPL.

BOM captures the data that characterize the
domain variability and the application variability in
conceptual models. DT and FOM exploit this data in
the domain engineering and product engineering
phases in order to obtain a specific application by
means of Model Transformation techniques. In
BOM, the variability appears in the construction of
the DCM (which is represented as a DT showing the
different variation points). The base assets are
selected by the DT to configure a base architecture.
These assets are enriched by the specific application
features (given in the ADCM) by a process that
results in PRISMA types (a product of our LPS).

In the domain engineering phase, the user
constructs the different assets and stores them in the
Baseline. This Baseline is used in the application
engineering phase by a production plan in order to
obtain the final product. The production plan is one
of the assets stored in the Baseline.

We can conclude that the main characteristics of
BOM are the following:

i) Variability is managed at the model level
rather than at the program level.

ii) Systems variability is modeled using
conceptual models independently of their functional
models. The DSLs for expressing the variability are
suited for the domain, instead of adding tangled
variability annotations directly to the functional
models (UML, ADLs) as other approaches have

VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES FOR DECISION SUPPORT SYSTEMS
CONSTRUCTION

55

proposed (AMPLE project: http://www.ample-
project.net).

iii) Variability is operated by two orthogonal
types: one provided by the features of the domain
(e.g. diagnosis), and another one provided by the
features of the application domain.

iv) Various technological spaces are integrated to
cope with the complexity of the problem.They are
the current trends in Software Engineering.

v) BOM implements a generic approach to SPL
developement, that can be applied to different
domains, application domains and systems. In this
paper, the BOM framework is applied to the
diagnostic domain. Other domains will be
considered in the near future, e.g. interpretation, and
prediction.
A prototype of the BOM framework: ProtoBOM has
been implemented and will be used in real case
studies. In the future, we will use benchmarks in
order to compare BOM results with other
approaches.

ACKNOWLEDGEMENTS

This work has been funded under the Models,
Environments, Transformations, and Applications:
META project TIN20006-15175-605-01.

REFERENCES

Bachman F., Goedicke M., Leite J., Nord R., Pohl K.,
Ramesh B., and Vilbig A, 2003. “A meta-model for
representing variability in product family
development”, The 5th International Workshop on
Product Family Engineering, pp. 66-80.

Batory D., Benavides D., and Ruiz-Cortés A., 2006.
Automated Analyses of Feature Models: Challenges
Ahead. ACM on Software Product Lines.

Cabedo R., Pérez J., Carsí J.A. y Ramos I., 2005.
“Modelado y Generación de Arquitecturas PRISMA
con DSL Tools”, IV Workshop DYNAMICA, Murcia,
España. (in spanish)

Clements P. and Northrop L.M., 2002. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering, Addison Wesley.

Costa C., Pérez J., Ali N., Carsí J.A. y Ramos I., 2005.
“PRISMANET: Middleware: Soporte a la Evolución
Dinámica de Arquitecturas Software Orientadas a
Aspectos”, X Jornadas de Ingeniería del Software y
Bases de Datos, Granada, España, pp. 27-34. (in
spanish)

González-Baixauli B. y Laguna M. A., 2005. “MDA e
Ingeniería de Requisitos para Líneas de Producto”,

Taller sobre Desarrollo Dirigido por Modelos. MDA y
Aplicaciones, Granada, España. (in spanish)

Limón Cordero R., Cabello Espinosa M.E., and Ramos
Salavert I., 2007. “Establish Relations among
Software Architecture Views through MDA for SPL”.
In Proceedings of the 14th International Congress on
Computer Science Research, CIICC'07, Veracruz,
México, ISBN 13 978-970-95771-0-5, pp. 175-187.

Pérez J., 2006. PRISMA: Aspect-Oriented Software
Architectures. PhD. Thesis of Philosophy in Computer
Science, Polytechnic University of Valencia, Spain.

Santos A.L., Koskimies K., and Lopes A., 2005. “Using
Model-Driven Architecture for Variability
Management in Software Product Lines”, Ph Thesis
Propasa, Facultade de Ciencias de la Universidade de
Lisboa, Portugal.

Trujillo S., 2007. Feature Oriented Model Driven Product
Lines. PhD. Thesis, The University of the Basque
Country, San Sebastian, Spain.

Turban, E., and Aronson, J.E., 2001. Decision Support
Systems and Intelligent Systems, Prentice Hall, ISBN:
0-13-089465-6, 865 pages.

ICEIS 2008 - International Conference on Enterprise Information Systems

56

