
A NEW LEARNING ALGORITHM FOR CLASSIFICATION IN 
THE REDUCED SPACE  

Luminita State 
Department of Computer Science, University of Pitesti, Pitesti, Romania 

Catalina Cocianu, Ion Rosca 
Department of Computer Science, Academy of Economic Studies, Bucharest, Romania 

Panayiotis Vlamos 
Department of Computer Science, Ionian University, Corfu, Greece 

Keywords: Feature extraction, informational skeleton, principal component analysis, unsupervised learning, cluster 
analysis. 

Abstract: The aim of the research reported in the paper was twofold: to propose a new approach in cluster analysis 
and to investigate its performance, when it is combined with dimensionality reduction schemes. Our attempt 
is based on group skeletons defined by a set of orthogonal and unitary eigen vectors (principal directions) of 
the sample covariance matrix. Our developments impose a set of quite natural working assumptions on the 
true but unknown nature of the class system. The search process for the optimal clusters approximating the 
unknown classes towards getting homogenous groups, where the homogeneity is defined in terms of the 
“typicality” of components with respect to the current skeleton. Our method is described in the third section 
of the paper. The compression scheme was set in terms of the principal directions corresponding to the 
available cloud. The final section presents the results of the tests aiming the comparison between the 
performances of our method and the standard k-means clustering technique when they are applied to the 
initial space as well as to compressed data. 

1 INTRODUCTION  

Basically, a cluster analysis method can be viewed 
as an unsupervised learning technique and usually it 
is a pre-processing step in solving a pattern 
recognition problem. The objective of cluster 
analysis is simply to find a convenient and valid 
organization of the data, not to establish rules for 
separating future data into categories. 

The most intuitive and frequently used criterion 
function in partitional clustering techniques is the 
squared error criterion, which tends to work well 
with isolated and compact clusters. The k-means is 
the simplest and most commonly used algorithm 
employing a squared error criterion (McQueen 
1967).  

The aim of the present paper is to propose a new 
kind of approach in cluster analysis. Our attempt is 
based on group skeletons defined by a set of 
orthogonal and unitary eigen vectors (principal 
directions) of the sample covariance matrix. 
According to the well known result established by 
Karhunen and Loeve, a set of principal directions 
corresponds to the maximum variability of the 
“cloud” from metric point of view, as well as from 
informational point of view.  The performance of 
our algorithm is tested against the k-means method 
in the initial representation space as well as in the 
reduced space of features given by principal 
directions. In our approach the skeleton of a group is 
represented by the principal directions of this 
sample.  

Since similarity is fundamental to the definition 
of a cluster, a measure of the similarity between two 
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patterns drawn from the same feature space is 
essential to most clustering procedures. It is most 
common to calculate the dissimilarity between two 
patterns using a distance measure defined on the 
feature space. The dissimilarity measure used in our 
method is defined in terms of the Euclidian distance 
between the group skeletons. 

Our developments impose a set of quite natural 
working assumptions on the true but unknown 
nature of the class system. The search process for 
the optimal clusters approximating the unknown 
classes towards getting homogenous groups, where 
the homogeneity is defined in terms of the 
“typicality” of components with respect to the 
current skeleton. Our method is described in the 
third section of the paper. The final section presents 
the results of the tests aiming to derive comparative 
conclusions abut the performances of our method 
and the k-means in the initial representation space 
and the reduced spaces.  

2 A SKELETON-BASED 
DISSIMILARITY MEASURE  

Let us assume that the recognition task is formulated 
as a discrimination problem among M classes or 
hypothesis. We denote by H the set of hypothesis. 
The Bayesian point of view is usually expressed in 
terms of an a priori probability distribution ξ  on H, 
where for each Hh∈ , ( )hξ  stands for the 
probability of getting an example coming from class 
h. 

In the supervised framework, for each class h , a 
sample of examples coming from this class 

( ) ( ) ( ){ }h
hN

hh XXX ,...,, 21  is available. We denote by  
( ) ( ) ( ){ }U
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∈

=
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Therefore, each element of ℵ  can be viewed as 
a tagged component, where the tag is the label of the 
provenience class.   For each class, the sample mean 

( ) ( )∑
=

=
hN

i

h
i

h

h
hN X

N 1

1μ  can be viewed as a template or 

prototype for the class which typicality depends on 
the variability existing within the sample. The 
components of the sample covariance matrix  
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express the global correlations between the attributes 
measured in the representation space with respect to 
the sample coming from class h. Therefore, the 

variability degree of each class h  is usually 
expressed in terms of a real valued function f of 

( )h
hNμ  and ( )h

hN∑ . 
The global prototype and overall sample 

covariance matrix are given by the mixture of 
( ) ( )( ){ }Hhh

hN
h
hN ∈∑ ,,μ  with respect to ξ , that is 
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The value of  ( ) ( )( )h
hN

h
hNf ∑,μ  represents a measure 

of the overall variability existing in the “cloud” ℵ . 
In cases the probability distribution ξ  is unknown, it 
is usually estimated by the relative frequencies, that 

is, for each Hh∈ , ( )
N
N

h h≈ξ . 

In the unsupervised case, the available data  is 
represented by { }NXXX ,...,, 21=ℵ , an untagged set 
of examples of a certain volume N, coming from the 
classes of H. The task is to develop suitable 
algorithm to identify the groups of examples coming 
from each class. Usually, these groups are referred 
to as clusters. The problem is usually solved using a 
conventional dissimilarity measure defined in terms 
of the measured attributes, whose value for each pair 
of examples expresses in which extent these 
examples “are different”.  

In our attempt we define a dissimilarity measure 
to express the fitness degree of an element with 
respect to a cluster by a function expressing a 
measure of disturbance of cluster structure induced 
by the decision of including this element into the 
given cluster. Our developments   are based on the 
following set of working assumption.  
1. Each data of ℵ  is the realization of a certain random 
vector corresponding to an unique but unknown 
class of the set H. Let HM = , wher H  stands for 
the number of elements of H.  We assume that M is 
known.  

2. The classes are well separated in the 
representation space Rn.  

3. For each class Hk ∈ , it is available an 
example kP  coming from this class 

The idea behind our approach is to use the 
skeletons as basis in developing the search for M-
homogenous groups starting with MPPP ,..,, 21  as 
initial seeds. The closeness degree of a particular 
data X to a cluster C is measured by the distance 
between skeletons of  C and { }XC ∪ . From 
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intuitive point of view, in case C includes mostly 
elements coming from the same class k, C results 
homogenous, and for X coming from k, the distance 
between C and { }XC ∪  is negligible.  

The search process allots/re-allots data to the 
current set of clusters aiming to produce M clusters 
as homogenous as possible.  The computation of the 
distance between the skeletons of C and { }XC ∪  
can be simplified using first order approximation as 
follows. If { }rXXXC ,...,, 21= , the sample means 
and the sample covariance matrices of  C and 

{ }XC ∪  are given by, 
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Let r
n

rr λλλ ≥≥≥ ...21  be the eigen values and let 
r
n

r ψψ ,...,1  be the orthonormal eigen vectors of rΣ . 
In case the eigen values of rΣ  are pairwise distinct, 
the following first order approximations of the eigen 
values and eigen vectors of 1+Σ r  hold,  
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where rrr Σ−Σ=ΔΣ +1 . 
The closeness degree of X to C is defined by  
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 where 
2

 stands for the Euclidian norm in Rn.  
Obviously, the performance in time of any 

unsupervised classification method is strongly 
dependent on the dimension of the input data. 
Consequently, the decrease of the input data 
dimension by some sort of compression scheme 
could become worth from time efficiency point of 
view. However, any dimensionality reduction 
scheme implies missing information therefore the 
accuracy could become dramatically affected. 
Therefore, in real cluster analysis task, getting a 
tradeoff between accuracy and efficiency by 
selecting the most informational features becomes 

extremely important.  In case of unsupervised cluster 
analysis, the features have to be extracted 
exclusively from the available data.  

3 THE DESCRIPTION OF THE 
PROPOSED CLUSTER 
ANALYSIS SCHEME 

The aim of this section is to present a new 
unsupervised classification scheme (SCS) based on 
cluster skeletons. The input is represented by: 

 the data { }NXXX ,...,, 21=ℵ  to be classified; 
 M, the number of clusters; 
 the set  of initial seeds, MPP ,...,1 . 

Parameters: 
 n, the dimension of input data; 
 θ , the threshold value to control the cluster 

size; ( )1,0∈θ ; 
 nr, the threshold value to control the cluster 

homogeneity; 
 Cond, the stopping condition, expressed in 

terms of the threshold value NoRe, for the 
number of re-allotted data; 

 ρ ,    the control parameter, ( )1,0∈ρ , to control 
the fraction of “disturbing” elements identified 
as outliers and removed from clusters. 

 
P1. The Generation of the Initial Clusters, 

{ }00
2

0
1

0 ,...,, MCCC=C , { }kk PC =0 , Mk ,...,1=  
The initial clusters are determined around the seeds 
using a minimum distance criterion. 
P2. Compute the System of Cluster Skeletons, 

{ }t
M

tt SS ,...,1=S ,where { }t
nk

t
k

t
k

t
kS ,2,1, ,...,, ψψψ=  is 

the skeleton of the cluster k at the moment t. We 
denote by { }it

nk
it

k
it

k
it

kS ,
,

,
2,

,
1,

, ,...,, ψψψ=  the skeleton of 

{ }it
k XC ∪ , Ni ≤≤1 . 

P3. 
REPEAT 
t=t+1; 1−= tt SS ; 1−= tt CC ; 
{Compute the new cluster system  

        { }t
M

ttt CCC ,...,, 21=C } 
        for Mk ,...,1=    
 {compute the cluster t

kC } 

              =t
kC Ø; 

P3.1.  
for Ni ,1=   
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       for Mcl ,1=   compute ( )t
cli SXD , ; 

     endfor 
              compute ( )t

cliMcl
SXDl ,minarg

1 ≤≤
= ; 

              if  k=l  then  
                       { }it

k
t
k XCC ∪← ; { }it

p
t
p XCC \← ,  

                       where p is such that t
pi CX ∈  

               endif 
      endfor   

P3.2. {test the homogeneity of t
kC }   

compute t
kc  the center of t

kC ; ∑
∈

=
t
kCX

t
k

t
k X

C
c 1  

re-compute t
kS , the skeleton of t

kC ; 
compute

⎪⎭

⎪
⎬
⎫
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⎪
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−>−∈=
∈ 221 max t
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t
k

t
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compute ( ) ( ){ }t
j

t
k

t
k SXDSXDkjCXF ,,,2 >≠∃∈= ; 

if nrFF >∪ 21 then t
kC  is not homogenous 

else t
kC  is homogenous 

endif   
P3.3. {extend t

kC  in case it is homogenous by 
adding the closest elements } 
if t

kC  is homogenous then   

       for each t
kCX \ℵ∈   

               for Mcl ,...,1=   compute ( )t
clSXD ,  

   endfor  
          compute ( )t

clMcl
SXDl ,minarg

1 ≤≤
= ; 

          if  k=l   then 
                   { }it

k
t
k XCC ∪← ,    { }it

p
t
p XCC \← , 

     where p is such    that 1−∈ t
pi CX  

endif 
  endfor 

else { t
kC  is not homogenous } 

Felim ρ= ; 
compute SET1 the set of the most ”disturbing” elim 
elements from F (identified as outliers with respect 
to t

kC ) 

{elements of maximum distance to t
kS  } 

         for each 1SETX ∈   
               for Mcl ,...,1=   compute ( )t

clSXD , ; 
  endfor  

                compute ( )t
clMcl

SXDl ,minarg
1 ≤≤

= ; 

               if l<>k then 
                     { }XCC t

l
t
l ∪← ; { }XCC t

k
t
k \←  ; 

               endif 
         endfor 
        endif 
P3.4.  
       re-compute t

kS , the skeleton of  the new  t
kC  ; 

P3.5. {re-allot the elements of t
k

t
k CC \1− } 

for each t
k

t
k CCX \1−∈  

       for Mcl ,...,1=  compute ( )t
clSXD ,  

endfor  
       compute ( )t

clMcl
SXDl ,minarg

1 ≤≤
= ; 

      { }XCC t
l

t
l ∪←  ; 

endfor 
P3.6.  

Compute the new set of skeletons tS  
{the computation of t

kC  is over} 
endfor 
UNTIL Cond 
 

The use of the previously presented 
classification scheme combined with a compression 
applied to reduce data dimensionality can be 
developed either by compressing with respect to the 
overall principal directions (variant 1) or with 
respect to the principal directions of each initial 
cluster (variant 2).  

Set the value of m, nm <<1 , 
Variant 1. The overall compression 
1.1. Determine the principal directions of the 

initial data ℵ  using  Nμ  and N∑  given by (1) and (2).  

1.2. Get the m-dimensional representation mℵ  
of ℵ  by projecting the components of ℵ on the m-
dimensional subspace represented by the first m 
principal directions 

1.3. Apply the classification scheme to mℵ . 
Variant 2. Cluster compression 
2.1. Apply P1 to get the initial system of 

clusters { }00
2

0
1

0 ,...,, MCCC=C  
2.2. Determine the principal directions for each 

cluster of 0C . 
2.3. Get the compressed m-dimensional versions 

of data by compressing each element with respect to 
systems of principal directions corresponding to the 
cluster it belongs to. 
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2.4. Get mℵ  as the union of the resulted m-
dimensional versions. 

2.5. Apply the classification scheme to mℵ  

4 EXPERIMENTAL 
PERFORMANCE 
EVALUATION OF THE 
PROPOSED ALGORITHM  

A series of tests were performed in order to derive 
conclusions about the performance of our method as 
well as to test its performance against the k-means 
algorithm. The stopping condition Cond=True holds 
if IN the current iteration resulted at most NoRe re-
allots; in our tests NoRe was set to NoRe=10. The 
tests were performed for M=4, the data being 
randomly generated by sampling from normal 
repartitions.  Some of the repartitions were selected 
to correspond to “well separated” classes some 
others being generated to correspond to “bad 
separated” subsets of classes, the working 
assumption 2 not being necessarily fulfilled.  

In order to obtain conclusions concerning 
algorithm sensitivity to data dimensionality, several 
tests were performed for n=2, n=4, n=6, n=8, n=10. 
The tests on our algorithm and k-means pointed out 
the following conclusions. 

1. In cases when there is a natural grouping 
tendency in data, the initial system of skeletons is pretty 
close to the true one. In these cases, our algorithm gets 
stabilized in a small number of iterations.  

2. In case of data of relatively small size, the 
number of misclassified components by our 
algorithm is significantly less than the number of 
misclassified data using k-means. 

3. In cases of data of relatively small size, the 
performance of k-means algorithm in identifying the 
cluster structures is significantly less than the 
performance of our method.  

4. The k-means algorithm is significantly more 
sensitive to data dimensionality, its performance 
decreasing dramatically as the dimension n 
increases.  

5. In case of large sample sizes, the performance 
of our method is comparable to the performance of 
k-means. 

Several tests were performed for “well 
separated” classes, relatively “separated” and  “bad 
separated” respectively. In all tests, the performance 
of k-means proved moderated, while our method 
managed to identify the class structures and to 

correctly classify most of data. The closeness degree 
between the classes is computed in terms of the 
Mahalanobis distance. 

Some of the results are reported below. 
A. M=4, n=4 and relative small size data. The 

classes are weakly separated , the values of the 
Mahalanobis distances are  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

09349.3691386.8466289.351
9349.36903931.2655993.214
1386.8463931.26501542428
6289.3515993.21415424280

.
.

 

In this case, the classification scheme managed 
to discover the true structure of data in the initial 
space, but using the compression for 3=m and 

2=m its performance degraded dramatically. The k-
means algorithm  did not manage to identify the 
existing structure in the initial space. Some of he 
results are summarized in the following table. 

Note that for the samples S1 , S2 and S4  the k-
means failed to identify the cluster structures. 

Table 1: The comparison of our method against k-means. 

The sample S1 S2 S3 S4 
Number of 
misclassified examples 
by our method 

0 2 0 0 

Number of 
misclassified examples 
by k-means 

276 253 19 311 

Number of iterations 3 2 2 2 

B. M=4, n=4 and relative small size data. In this 
case, the true classes are better separated. The values 
of the Mahalanobis distances are  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

06171.019.19733.0
6171.002827.04139.0
19.12827.004183.0

9733.04139.04183.00

103  

In this case good results were obtained by 
applying the proposed classification scheme in the 
initial space as well as for m=3. All tests proved 
better performances of our method as compared to k-
means. Some of the results are summarized in the 
following table. 
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Table 2: The comparison of our method against k-means. 

The sample S1 S2 S3 S4 S5 
Number of 
misclassified examples 
by our method 

0 0 0 0 0 

Number of 
misclassified examples 
by k-means 

315 0 325 31
8 

0 

Number of iterations 2 2 3 2 2 

The 3-dimensional representations of data 
corresponding to S are depicted in figure 1. 

 
a. The true system of classes 

 
b. The clusters produced by k-means algorithm 

 
c. The clusters computed by our method 

Figure 1: The results on the sample S1. 
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