
RANKING REFACTORING PATTERNS USING THE ANALYTICAL
HIERARCHY PROCESS

Eduardo Piveta1, Ana Moreira2, Marcelo Pimenta1

João Araújo2, Pedro Guerreiro3 and R. Tom Price1

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

2 Departamento de Informática, Universidade Nova de Lisboa, Caparica, Portugal

3 Departamento de Engenharia Electrónica e Informática, Universidade do Algarve, Faro, Portugal

Keywords: Refactoring, Refactoring Opportunities, Analytical Hierarchy Process.

Abstract: This paper describes how to rank refactoring patterns to improve a set of quality attributes of a piece of
software. The Analytical Hierarchy Process (AHP) is used to express the relative importance of the quality
attributes and the relative importance of refactoring patterns in regards to those selected quality attributes. This
ranking of refactoring patterns can be used to focus the refactoring effort on the most beneficial patterns to the
software being developed or maintained.

1 INTRODUCTION

Refactoring (Opdyke, 1992; Fowler et al., 1999;
Mens and Tourwe, 2004) is the process of improv-
ing the design of software systems without changing
its externally observable behaviour. Refactoring can
help to incrementally improve the quality attributes
of a software system through the application of be-
havioural preserving transformations called refacto-
ring patterns.

When refactoring a software module, the devel-
oper has to correctly evaluate the trade-offs between
refactoring patterns in terms of the affected quality at-
tributes. As these quality attributes can be conflicting
with each other (Boehm and In, 1996), the task of se-
lecting optimal refactoring patterns can be hard. As
the number of possible places to refactor can be very
high (Fowler et al., 1999), the developer has to nar-
row the search for refactoring opportunities to apply
refactoring patterns that bring benefits in terms of the
expected quality attributes.

Current research on the identification of refacto-
ring opportunities (Bois and Mens, 2003; Mens et al.,
2005; Bois, 2006) focuses on the improvements of
quality attributes considering eachindividual appli-
cation of a refactoring pattern, but does not consider
how this search can be narrowed to only those pat-
terns that improve the desired quality attributes of a
software system. Currently, there are no automated

mechanisms to rank refactoring patterns in terms of
quality attributes.

In this paper, we propose an approach to rank
refactoring patterns in terms of a set of quality at-
tributes. The relative importance of quality attributes
over the others and the relative importance of re-
factoring patterns over quality attributes is quantita-
tively expressed using the Analytical Hierarchy Pro-
cess (AHP) multi-criteria decision method (Saaty,
1990; Saaty, 2003).

Using this quantified information, a ranking of re-
factoring patterns in terms of quality attributes can be
automatically computed. The use of such ranking can
optimise the search for refactoring opportunities, en-
abling the developer to focus on the refactoring pat-
terns that improve the quality attributes most.

The creation of a refactoring patterns ranking is
exemplified using three quality attributes and four re-
factoring patterns. Although the example is based on
refactoring patterns for object-oriented software, the
approach can be used in other paradigms. Moreover,
the approach is general enough to be successfully ap-
plied in software models, source code or other arte-
facts.

This paper is organized as follows. Section 2 de-
tails AHP. Section 3 shows how to rank refactoring
patterns according to a set of quality attributes using
AHP and describes tool support. Section 4 discusses
related work and Section 5 concludes the paper.

195
Piveta E., Moreira A., Pimenta M., Araújo J., Guerreiro P. and Tom Price R. (2008).
RANKING REFACTORING PATTERNS USING THE ANALYTICAL HIERARCHY PROCESS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 195-200
DOI: 10.5220/0001686001950200
Copyright c© SciTePress



2 ANALYTICAL HIERARCHY
PROCESS

The Analytical Hierarchy Process (AHP) (Saaty,
1990) is a decision making method for evaluating a
set of different alternative solutions of a given prob-
lem. It focuses on finding an optimal solution using
qualitative and quantitative decision analysis.

AHP comprises of five steps: (a) definition of the
problem and its objective, (b) hierarchical representa-
tion, (c) estimation of priorities, (d) synthesis and (e)
results consistency analysis.

Thedefinition of the problem and its objectivees-
tablishes the context in which the decision making
process will occur. Next, the problem ishierarchi-
cally represented, with the objective having several
associated criteria and each criterion several alterna-
tives.

In thepriorities estimationstep, the developer de-
fines the priorities for the criteria and alternatives.
The relative importance of each criterion over the oth-
ers and each alternative over the others is ascertained
using pairwise comparisons. The scale in Table 1 is
used to numerically express the relative importance
between the criteria and the alternatives.

Table 1: The numerical values of each relative importance
(Saaty, 1990).

Value Relative Importance
1 Same importance
2 Slightly more important
3 Weakly more important
4 Weakly to moderately more important
5 Moderately more important
6 Moderately to strongly more important
7 Strongly more important
8 Greatly more important
9 Absolutely more important

In this process, a pairwise matrix can be created,
containing the relative importance of the criteria over
the others. Consider, for example, a set of crite-
ria C = {c1, . . . ,cn} and a matrixM representing
the relative importance of one criterion over another
W = {w11,w12, . . . ,wnn}. The pairwise matrix in this
case, is constructed as follows:

M =







1 w12 · · · w1n
1/w21 1 · · · w2n

...
...

. . .
...

1/wn1 1/wn2 · · · 1







(1)

For example, consider three criteriac1, c2, c3,
where c1 is weakly more importantthan c3, c2 is

slightly more importantthan c1 andc2 is weakly to
moderately more importantthanc3. A pairwise ma-
trix M containing the importance of each criterion
over another can be created as follows:

M =

c1 c2 c3
︷ ︸︸ ︷




1 1/2 3
2 1 4
1/3 1/4 1





c1

c2

c3

(2)

The same process is done to the alternatives. For
each criterion, a set of pairwise comparisons are cre-
ated between the alternatives and a pairwise matrix is
created to represent these comparisons.

The next step of AHP, namedsynthesis, computes
a vector containing the relative weights of all the cri-
teria in the matrix and a vector for each alternative
matrix. To compute each vector, the respective ma-
trix is squared successively. In each iteration, the row
sums are calculated and normalized. The computa-
tion stops when the differences of these sums in two
consecutive calculations are smaller than a prescribed
value. Usually two to four iterations are sufficient.

For the example matrixM , the ranking of prior-
ities can be derived from the weights vector of the
matrix. To compute this vector, the matrix is squared,
the sum of the row values is computed and the values
are normalized:

squared matrix
︷ ︸︸ ︷




3.00 1.75 8.00
5.33 3.00 14.00
1.17 0.67 3.00




=

sum o f rows
︷ ︸︸ ︷




12.7500
22.3332
4.8333





Total 39.9165

Eigenvector =

normalized
︷ ︸︸ ︷




0.3194
0.5595
0.1211





Norm. Total 1.0000

Iterating the process again, the computed vector
is:

V ′
= 〈0.3196 0.5584 0.1220〉

Additional iterations do not change these values
(using four digits precision). This normalized vector
is called the principal eigenvector (Saaty, 2003) of the
matrix. To compute the overall ranking of alterna-
tives in terms of the selected criteria, a matrix whose
columns are the alternatives eigenvectors is multiplied
by the criteria eigenvector. The resulting vector is the
overall ranking.

The last step of AHP,results consistency analy-
sis, evaluates the consistency level of the pairwise
comparison matrix. More details on how to com-
pute a consistency ratio are described by Saaty (Saaty,
1990).

ICEIS 2008 - International Conference on Enterprise Information Systems

196



3 RANKING REFACTORING
PATTERNS

This section describes the main steps for ranking
refactoring patterns according to a set of preferred
quality attributes and exemplifies each step using
three quality attributes and four refactoring patterns,
showing how AHP can be used to create a ranking of
refactoring patterns in terms of quality attributes.

3.1 Overview

Starting with a set of candidate refactoring patterns
and a set of selected quality attributes, the developer
performs the following steps to generate a ranking
of refactoring patterns according the preferred qual-
ity attributes:

1. Create pairwise comparisons for quality at-
tributes: The first step is to create pairwise com-
parisons between the selected quality attributes.
This is the developer’s main task in this approach,
as the relationship of quality attributes is usually
specific to a project.

2. Create pairwise comparisons for refactoring pat-
terns: A tool provider can make available a
knowledge base containing pairwise comparisons
for typical refactoring patterns and quality at-
tributes. The developer can then retrieve the pair-
wise comparisons from this base or add new ones
to the knowledge base (if there are no pairwise
comparisons available for a particular refactoring
pattern or quality attribute).

3. Compute the quality attributes ranking:In this
task, a pairwise matrix is created to express the
relationship between the quality attributes. The
quality attributes ranking is the eigenvector of the
quality attributes pairwise matrix. This step and
the next ones can be automated.

4. Compute the refactoring patterns rankings:For
each quality attribute, a pairwise matrix is created
to quantitatively express the relationship of the re-
factoring patterns vs. the quality attribute. The
ranking of refactoring patterns considering each
quality attribute in isolation is the eigenvector of
the respective pairwise matrix.

5. Compute the overall ranking:A ranking of the se-
lected refactoring patterns is computed using the
quality attributes eigenvector and the alternatives
(refactoring patterns) eigenvectors. To compute
the ranking of the refactoring patterns given the
set of quality attributes, a matrix is created with
the criteria (the quality attributes) and the alter-
natives (the refactoring patterns). This matrix is

multiplied by the eigenvector of the quality at-
tributes pairwise matrix.

This overall ranking can be used to focus the
search for refactoring opportunities for the best
ranked refactoring patterns, instead of looking for re-
factoring opportunities for refactoring patterns that
contribute little to the overall software quality (i.e. are
low ranked). Once a knowledge base containing the
relationship between the refactoring patterns and the
quality attributes is created, the developer has only
to provide pairwise comparisons for the quality at-
tributes, as the matrix manipulation activities can be
automated.

3.2 Creating the Quality Attributes
Pairwise Comparisons

The importance of the selected quality attributes de-
pends on the values of the development team, the pro-
cess, the project and the organisation. Each project
can have different sets and ordering of quality at-
tributes.

In this example, the following quality attributes
are considered: reusability, simplicity and compre-
hensibility. The following possible judgments for the
selected quality attributes are expressed as pairwise
comparisons:

• Simplicity ismoderately more importantthan reu-
sability andslightly more importantthan compre-
hensibility;

• Comprehensibility isslightly more importantthan
reusability.

Note that these pairwise comparisons are hypo-
thetical. Each project can have different needs in
terms of quality attributes and can have different
weights for each quality attribute. The responsibility
for creating these comparisons can be delegated to a
quality analyst, made by the project leader or by other
means.

3.3 Creating the Refactoring Patterns
Pairwise Comparisons

For the example being developed, four different re-
factoring patterns were chosen, because they manipu-
late classes, methods and interfaces:Pull Up Method
(pm),Rename Class(rc), Inline Method(im), andEx-
tract Interface(ei). They are compared and ranked in
terms of the selected quality attributes.

The first step is evaluating each refactoring pattern
in terms of each quality attribute, considering how
much one refactoring pattern improves each quality

RANKING REFACTORING PATTERNS USING THE ANALYTICAL HIERARCHY PROCESS

197



attribute compared to the others. Let us suppose that
the developer created a set of pairwise comparisons
of the refactoring patterns in terms of the first quality
attribute (simplicity), as follows:

• Pull Up Method isstrongly more importantthan
Rename Class,weakly more importantthan Inline
Method andstrongly more importantthan Extract
Interface

• Inline Method isslightly more importantthan Re-
name Class andstrongly more importantthan Ex-
tract Interface

• Rename Class isweakly more importantthan Ex-
tract Interface

The second quality attribute is reusability, for
which the following judgments are made to exemplify
the process:

• Pull Up Method isabsolutely more importantthan
Rename Class,moderately to strongly more im-
portant than Inline Method andslightly more im-
portantthan Extract Interface

• Inline Method has thesame importancethan Re-
name Class

• Extract Interface isstrongly more importantthan
Rename Class and Inline Method

The third quality attribute is comprehensibility.
For this quality attribute the following judgments are
made using pairwise comparisons:

• Extract Interface isslightly more importantthan
Pull Up Method and Rename Class and it isabso-
lutely more importantthan Inline Method;

• Rename Class isslightly more importantthan Pull
Up Method andstrongly more importantthan In-
line Method;

• Pull Up Method ismoderately more important
than Inline Method

These pairwise comparisons can be inserted in a
knowledge base to enable future reuse of the relations
between refactoring patterns and quality attributes.

3.4 Computing the Quality Attributes
Ranking

Using the pairwise comparisons defined in the pre-
vious section and the numerical values on Table 1,
the quality attributes pairwise matrixQ is straight-
forwardly created from the defined pairwise compar-
isons:

Q =

simp. reus. comp.
︷ ︸︸ ︷




1.00 5.00 2.00
0.20 1.00 0.50
0.50 2.00 1.00





simp.

reus.

comp.

This pairwise matrix is used to compute the
weight of each quality attribute. In this matrix, the
computed eigenvectorEq is:

Eq =





0.5954
0.1283
0.2764





simp.

reus.

comp.

TheEq vector shows that the most important qual-
ity attribute in this setting is simplicity, then compre-
hensibility and last reusability. This setting can vary
from project to project. The computed weights for
each quality attribute define which are the preferred
refactoring patterns for the selected quality attributes.
In this case, the consistency ratio of theQ matrix is
0.48% (the matrix is consistent).

3.5 Computing the Refactoring Patterns
Ranking

The ranking of refactoring patterns for each quality
attribute and the ranking of quality attributes can be
automatically created as follows.

The Simplicity Ranking. First, the pairwise com-
parisons for thesimplicityquality attribute are trans-
lated to their numerical equivalents and a pairwise
matrixS is computed as follows:

S =

pm im rc ei
︷ ︸︸ ︷





1.00 3.00 7.00 7.00
0.33 1.00 2.00 7.00
0.14 0.50 1.00 3.00
0.14 0.14 0.33 1.00






pm

im

rc

ei

Here is the computed eigenvector ofS , namedE s:

E s =






0,593
0,245
0,113
0,050






pm

im

rc

ei

In this case, Pull Up Method is the preferred re-
factoring pattern to be used, in terms of simplicity,
when compared with the other three refactoring pat-
terns (in order): Inline Method, Rename Class and
Extract Interface. The consistency ratio is 5.83% and
the pairwise matrix is consistent. Note that the differ-
ence between them is high. The developer can focus
on those patterns with high values of relative impor-
tance for the quality attribute.

The Reusability Ranking. The reusability pair-
wise matrixR , after translating the pairwise compar-

ICEIS 2008 - International Conference on Enterprise Information Systems

198



isons to their numerical equivalents, is:

R =

pm im rc ei
︷ ︸︸ ︷





1.00 6.00 9.00 2.00
0.17 1.00 1.00 0.14
0.11 1.00 1.00 0.14
0.50 7.00 7.00 1.00






pm

im

rc

ei

The computed eigenvectorE r is:

E r =






0.522
0.063
0.056
0.358






pm

im

rc

ei

Considering the ranking of refactoring patterns for
reusability, the preferred refactoring pattern is Pull Up
Method, followed by Extract Interface. The Inline
Method and Rename Class refactoring patterns do not
have much impact on this quality attribute. The con-
sistency ratio is 2.52% and the pairwise matrix is con-
sidered consistent.

The Comprehensibility Ranking. The pairwise
matrixC for comprehensibility is also created:

C =

pm im rc ei
︷ ︸︸ ︷





1.00 5.00 0.50 0.50
0.20 1.00 0.14 0.11
2.00 7.00 1.00 0.50
2.00 9.00 2.00 1.00






pm

im

rc

ei

And the computed eigenvectorE c is:

E c =






0.196
0.044
0.304
0.457






pm

im

rc

ei

Considering only comprehensibility, the best
ranked refactoring pattern is Extract Interface, fol-
lowed by Rename Class and Pull Up Method. The
Inline Method refactoring pattern does not have much
impact in terms of comprehensibility compared to the
other ones selected. The consistency ratio is 1.9% (the
pairwise matrix is consistent). Note that the order of
the refactoring patterns is different, depending on the
quality attribute.

3.6 Computing the Overall Ranking

For the example used in this paper the ranking is com-
puted by:

O =

simp. reus. compre.
︷ ︸︸ ︷





0.593 0.522 0.196
0.245 0.063 0.044
0.113 0.056 0.304
0.050 0.358 0.457






∗

criteria
︷ ︸︸ ︷




0.5954
0.1283
0.2764





Considering the initial quality attributes, the pair-
wise comparisons between them and the judgments
for the alternatives, the rankingO of refactoring pat-
terns is:

O =






0.4743
0.1658
0.1583
0.2018






pm

im

rc

ei

The overall ranking shows that, considering the
selected quality attributes, the selected refactoring
patterns and the pairwise comparisons made, the best
ranked refactoring pattern is Pull Up Method, fol-
lowed by Extract Interface, Inline Method and Re-
name Class.

After the ranking is created, the developer can de-
fine a threshold to reduce the initial set of refacto-
ring patterns to only those that have a ranking value
higher than this threshold. He can decrease the thresh-
old value to add more refactoring patterns to the
search for refactoring opportunities or increase it if
the search for low ranked refactoring patterns is not
being fruitful. The use of a threshold narrows the
search for refactoring opportunities, focusing on the
best ranked refactoring patterns.

3.7 Tool Support

A proof-of-concept tool was developed to assess the
practical use of the proposed approach. It (i) converts
pairwise matrices expressing the relative importance
of each quality attribute over the others and of each
refactoring pattern over the others (for each quality at-
tribute) to the equivalent AHP numerical representa-
tion, (ii) creates the pairwise matrices, (iii) computes
the eigenvectors, (iv) elaborates the quality attributes
ranking and (vi) computes the rankings of refactoring
patterns regarding each quality attribute.

These rankings are used to automatically compute
the overall ranking. If the refactoring patterns matri-
ces are created by a tool provider, for example, the
user has only to provide the pairwise comparisons be-
tween the quality attributes.

Note that the ranking does not need to be up-
dated frequently. Once the matrices relating refac-
toring patterns to quality attributes are created (by a
tool provider, for example), the developer only has to
inform the pairwise comparisons for the relative im-
portance of each quality attribute over the others.

The ranking must be recalculated if one of the
change scenarios occur: changes in the pairwise com-
parisons; addition of a refactoring pattern; addition of
a quality attribute. The tool can recalculate the rank-
ing automatically.

RANKING REFACTORING PATTERNS USING THE ANALYTICAL HIERARCHY PROCESS

199



4 RELATED WORK

Du Bois and Mens (Bois and Mens, 2003), (Bois,
2006) suggest the evaluation of refactoring patterns
by identifying conditions in which their application
minimize coupling and maximize cohesion. Their
formal analysis can be used together with our ap-
proach to provide additional information for the de-
veloper to express the relative importance of refacto-
ring patterns over the quality attributes using pairwise
comparisons.

Tourwe and Mens (Tourwe and Mens, 2003) use
logic meta programming to identify refactoring op-
portunities in a software design and propose the ap-
plication of refactoring patterns. Their approach can
be used together with ours to improve the results by
focusing on the refactoring patterns that improve most
the set of quality attributes selected by the developers.

Mens et al. (Mens et al., 2003) state that an open
problem is to assess the effects of a refactoring pattern
on the software quality, as some refactoring patterns
remove redundancy, raise abstraction or modularity
level and others have negative impact on reusability,
for example. By classifying refactoring patterns in
terms of the quality attributes they affect, the effect
of a refactoring on the software quality can be esti-
mated. In this paper, we provide a quantitative ap-
proach to rank a set of refactoring patterns according
to the quality attributes that the developers are con-
cerned about.

5 CONCLUSIONS

Usually, there is room for improvements in existing
software projects. However, resources are finite and
must be directed to those activities that bring more
benefits to the project. Considering refactoring activ-
ities, the developers should focus on the search for re-
factoring opportunities for those refactoring patterns
that are more likely to improve the software being de-
veloped or maintained.

AHP can help the developers to express the re-
lationship between quality attributes and refactoring
patterns and quality attributes between themselves.
These relations are used to compute a ranking of re-
factoring patterns (according to the selected quality
attributes), which can be used to focus the effort of
searching for refactoring opportunities for those re-
factoring patterns that can have more impact in the
software quality.

Without focusing in a restricted set of refactoring
patterns, the developers can be losing time with re-
factoring opportunities that bring little or nothing to

the software quality. The approach described in this
paper is adaptable: the quality attributes, the refacto-
ring patterns and the weights can be changed and a
new ranking computed automatically.

ACKNOWLEDGEMENTS

This work has been partially supported by CNPq un-
der grant No. 140046/2006-2 for Eduardo Piveta,
by Capes-Grices grant No. 166/06 and by PRO-
SUL No. 490478/2006-9 - Latin-America Research
Network on Aspect-Oriented Software Development
(Latin- AOSD).

REFERENCES

Boehm, B. W. and In, H. (1996). Identifying quality-
requirement conflicts.IEEE Software, 13(2):25–35.

Bois, B. D. (2006). A Study of Quality Improvements by
Refactoring. PhD thesis, Universiteit Antwerpen.

Bois, B. D. and Mens, T. (2003). Describing the impact of
refactorings on internal program quality. In1st Work-
shop on Evolution of Large-scale Industrial Software
Applications - ELISA’03. Amsterdam, Netherlands.

Fowler, M., Beck, K., Brant, J., Opdyke, W. F., and Roberts,
D. (1999). Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley.

Mens, T., Demeyer, S., Bois, B. D., Stenten, H., and van
Gorp, P. (2003). Refactoring: Current research and
future trends.ENTCS - Elsevier, 82(3):483 – 499.

Mens, T., Taentzer, G., and Runge, O. (2005). Detecting
structural refactoring conflicts using critical pair anal-
ysis. ENTCS - Elsevier, 127(3):113 – 128.

Mens, T. and Tourwe, T. (2004). A survey of software
refactoring. IEEE Trans. on Software Engineering,
30(2):126 – 139.

Opdyke, W. F. (1992).Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois.

Saaty, T. L. (1990). How to make a decision: The analytic
hierarchy process.European Journal of Operational
Research - Elsevier, 48(1):9 – 26.

Saaty, T. L. (2003). Decision-making with the ahp: Why is
the principal eigenvector necessary?European Jour-
nal of Operational Research - Elsevier, 145(1):85 –
91.

Tourwe, T. and Mens, T. (2003). Identifying refactoring op-
portunities using logic meta programming. In7th Eu-
ropean Conf. on Software Maintenance and Reengi-
neering - CSMR’03. Benevento, Italy., pages 91 – 100.

ICEIS 2008 - International Conference on Enterprise Information Systems

200


