
CONTEXT-ORIENTED WEB METHODOLOGY WITH A
QUALITY APPROACH

Anna Grimán, María Pérez, Maryoly Ortega and Luis E. Mendoza
Processes and Systems Department, Simón Bolívar University, PO Box 89000, Caracas 1080-A, Venezuela

Keywords: Web Development, Methodology, Software Quality, Quality Assurance, Agile and Plan-driven methodolo-
gies.

Abstract: Dependency on Web systems and applications has increased in recent years. Their use and quality have
gained relevance and demands in this field have significantly increased in time. This has driven to the appli-
cation of processes that include considerations related to business dynamism and quality expectations for
the final product. This work is aimed at describing a methodology for Web applications development that
ensures quality at all phases and is especially useful in small and medium-sized projects regardless of the
platform or architecture used. We performed an analysis of the main existing methodologies that allowed us
to extract the best practices known and combining them in the proposed solution. Comparison between agile
and plan-driven methodologies established the most suitable process model for this type of development. As
a result thereof, a context-oriented web methodology -COWM- was obtained, including best practices to en-
sure quality throughout the whole process. Finally, a COWM evaluation was performed on a case study in
order to prove its applicability and efficiency for Web systems development.

1 INTRODUCTION

According to (Offutt, 2002) (Barry & Lang, 2001)
and (Lowe & Henderson-Sellers, 2001), there is a
remarkable difference in the quality characteristics
of Web applications when compared to traditional
developments. Some of the aspects that determine
such difference are: coupling among the business
model and the system technical design, criticality of
the architecture modularity, technological instability,
importance of actualization, maintenance of the con-
tent and emphasis of the user interface. According to
Offutt (2002), this quality dimension is so crucial
that Web developing organizations should focus on
quality and leave delivery times in a second place.

This article describes a methodology for devel-
oping Web applications that ensures quality at all its
phases, according to IEEE 1012 (1998) and Kan
(2002), regardless of the platform used. We per-
formed an analysis of the most popular methodolo-
gies that allowed us to extract the best practices to
be included in our proposal. The comparison be-
tween agile and plan-driven methodologies resulted
in a context-oriented web methodology –COWM-
which takes advantage of the efficiency of agile
methodologies and the stability of plan-driven meth-

odologies, and includes those practices guaranteeing
quality throughout the entire process.

Lastly, a COWM evaluation was performed on a
case study in order to prove its applicability and ef-
ficiency for a specific Web development.

2 PRIOR WORK ANALYSIS

This section includes the analysis of 9 methodolo-
gies for the development of Web applications, based
on the 11 criteria proposed in (Boehm & Turner,
2004): Business Modelling, Planning, Risk man-
agement, Integration strategies, Change and configu-
ration management, Process improvement, Integra-
tion with the client, Use of prototypes, Frequent de-
liveries, Lifecycle phases, and Quality.

The analyzed methodologies are: Scrum
(Schwaber, 1995), Crystal Clear (Letelier &
Penadés, 2004), Microsoft Solutions Framework -
MSF (Reynoso, 2004), Adaptative Software Devel-
opment –ASD (Abrahamsson et al., 2002), Dynamic
Systems Development Method –DSDM (Canós et
al., 2004), Feature Driven Development –FDD
(Letelier & Penadés, 2004), eXtreme Programming -
XP (Abrahamsson et al., 2002), Watch (Montilva &

213
Grimán A., Pérez M., Ortega M. and E. Mendoza L. (2008).
CONTEXT-ORIENTED WEB METHODOLOGY WITH A QUALITY APPROACH.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 213-219
DOI: 10.5220/0001689802130219
Copyright c© SciTePress

Barrios, 2002), Rational Unified Process -RUP
(Kruchten, 2003).

Upon the analysis of the 11 criteria on these
methodologies, we conclude that a methodology that
guarantees quality at all phases should fulfil the fol-
lowing requirements: System documentation and
user manuals, Change control, Risk management,
Knowledge management, Participation of a HCI,
Functional test design and inspection, Good plan-
ning aimed at determining reasonable delivery times
in accordance with the project budget, QA (in par-
ticular, maintainability and usability will be the
main quality characteristics for Web applications).

3 METHODOLOGY PROPOSAL

Our proposal combines the aforementioned require-
ments and adapts some practices of plan-driven and
agile methodologies to the particular Web systems
features, in order to make the development process
more adequate for the construction of Web applica-
tions. As a result, we have proposed a context-
oriented web methodology (COWM). COWM con-
siders 3 phases and other RUP elements as a starting
point. It improves delivery times while proposes a
clear and specific strategy that ensures Web applica-
tion quality. Following, we present the practices
supporting our proposal; each practice is expressed
in COWM as a set of activities or methodological
elements.

• Context-oriented Development. Contexts are

use-cases groups that share similar characteris-
tics. This lets the delivery of high-valuable sys-
tem versions.

• Frequent Deliveries. These let obtaining ongo-
ing feedback from users by verifying their con-
formity during the development process.

• Iterative Software Development. Software is
developed in little steps or short iterations,
which let a risk prompt identification and verifi-
cation to provide a proper response.

• Requirements Management. It comprises the
identification and requirements change man-
agement. Both, business and system func-
tional/non functional requirements are managed.
This flexibility is achieved by versioning docu-
ments and managing traceability among models.

• Visual Software Modelling. When using UML,
architecture and design can be clearly specified
and communicated to all involved parties.

• Component-based Development. Software

architecture presents more maintainability with
a component-based approach, as well as sub-
stantial savings of time, resources and efforts
for future developments.

• Methodology Refining. COWM proposes hold-
ing a meeting after every iteration to identify
possible changes and improvements to adapt the
methodology to the development project fea-
tures.

• Frequent Meetings. COWM proposes
weekly meetings in order to verify the project
status, identify any obstacles, and eliminate and
perform corrective measures.

• Continuing Quality Verification. COWM
proposes for each phase a group of quality as-
surance techniques. Each technique is applied to
an artefact for allowing us to estimate a quality
characteristic. Actually, quality characteristics
are evaluated through different metrics depend-
ing on the nature of the phase and the artefact
evaluated. Table 1 provides some examples of
quality features evaluated for the different
phases and artefacts.

3.1 Phases

COWM is composed of 4 development phases that
are inspired in RUP; however it tailors several RUP
components to Web domain. A quality check is per-
formed at the end of each phase.

3.1.1 Definition Phase

The main purpose of this phase is that the stake-
holders define the project scope, identify risks, and
design the phases and iterations plans. This phase
focuses on business-related documents. Table 2 pro-
vides an overview of the activities performed in this
phase. The artefacts generated in these activities
should later be formally revised as follows:

Table 1: Examples of quality features evaluated.

Features Phases Metrics

Fu
nc

tio
na

lit
y

 Construction

Does the context
work properly once
it is integrated to the
rest of the function-
ality?

Definition Phase Quality Verification
• Business Architecture Document Inspection.

Objective: Check for properly defined rules,
objectives and business processes; concordance

ICEIS 2008 - International Conference on Enterprise Information Systems

214

between defined roles and their responsibility;
and object adequacy with respect to events.
Quality characteristic: functionality, reliability,
maintainability.

• Glossary Inspection. Objective: Verification of
terms included in the glossary, properly defined
terms, and concordance of project terms. Qual-
ity characteristic: functionality.

• Vision Document Inspection. Objective: Check
that the need originated from this application is
properly described from the perspective of the
involved individuals; proper identification of
those individuals; well-defined high-quality
features. Quality characteristic: functionality,
reliability, maintainability.

• Requirements Specification Document Inspec-
tion. Objective: Check for understandability
and correctness of specified requirements.
Quality characteristic: functionality, reliability,
maintainability, usability and accessibility.

• Project Plan Inspection. Objective: Check for
well-defined work structures; adequate effort
estimates; reasonable duration and cost esti-
mates. Quality characteristic: functionality, cor-
rectness, reliability, maintainability.

• Risks List Inspection. Objective: Check for
well-defined, complete and properly classified
risks, including clear mitigation strategies.
Quality characteristic: functionality, reliability,
maintainability and usability.

• Quality Assurance Plan Inspection. Objective:
Check that each test specified in the quality as-
surance plan has a clearly-defined objective and
type. Quality characteristic: functionality, ma-
turity and maintainability.

• Creative Design Summary Inspection. Objec-
tive: Check that the site’s design is in accor-
dance with the target culture (types of users),
and that its look and feel is in accordance
with the image of the company for which the
development is performed. Quality character-
istic: usability and accessibility.

3.1.2 Architectural Baseline Phase

Necessary resources and activities are planned by
specifying use cases and architecture design. We do
not recommend performing more than one iteration
in this phase.

Upon completion of this phase, most use cases
and actors should have been identified, and the basic
software architecture should have been clearly de-
scribed, including the creation of its prototype. Ob-
jectives are oriented to risk management. Table 3
provides an overview of the activities performed in
this phase. Note that uses cases identified in the first
activity are organized in contexts according to their
nature and important for the user, those high-priority
contexts will be analyzed and implemented in this
phase whereas other contexts will be analyzed in the
construction phase.

The artefacts generated in these activities should
later be formally revised as follows:

Architectural Baseline Phase Quality Verification
• Requirements Specification Document Inspec-

tion. Objective: Check that use cases identified
have not been already designated under a differ-
ent name or similar task. Make sure that all use
cases with a higher-than-normal impact are
really as such, and that all use cases have been.

Table 2: Products’ Definition Phase.

Activity Description / Product / Roles
Business model-

ling
Describe the business process and define the scope and objectives of the business environment. Ar-
tefacts: Business Architecture Document and Project Glossary. Roles: Business Analyst and Busi-
ness Expert

Scope formula-
tion

Capture the most relevant context, requirements, and restrictions leading to final product acceptance.
Artefacts: Vision Document, and Requirements Specification Document. Roles: Client, System
Analyst, Quality Assurance Manager, Software Architect.

Initial
planning

Prepare work plans, cost estimates, delivery dates, etc. Risks are identified and the quality assurance
plan is prepared. Validation and Verification techniques are established to ensure quality of software
to be subsequently delivered to users. Artefacts: Project plan, Risks List and Quality Assurance Plan
Roles: Project Manager, Quality Assurance Manager, Client, Programmer, and Tester.

Creative inter-
face design

Guarantee basic quality components such as learnability, efficiency, memorization, and satisfaction.
Artefacts: Creative Design Summary. Roles: Usability Manager, Interface Designer and Client.

Phase final
meeting

Analyze the feasibility of continuing with the project. If the project fails in the following items, it
should be cancelled or reanalyzed. Artefacts: Updated plan for the next iteration. Roles: all Stake-
holders.

CONTEXT-ORIENTED WEB METHODOLOGY WITH A QUALITY APPROACH

215

Table 3: Products’ Architectural baseline Phase.

Activity Description / Product / Roles
Identification of
Use Cases and
Contexts

Identify and classify use cases by context; identify and prioritize use cases with highest impact on
the architecture, and proceed with their analysis. The remaining use cases will be analyzed in detail
by context at the construction phase. Artefacts: Requirements Specification Document including
use cases and contexts. Roles: Analyst and Client.

Architecture
analysis and de-
sign

The Software Architecture Document –SAD– is a preliminary version that does not include the
study of all system use cases. This document shall be improved all along the construction phase by
including elements corresponding to the use cases analyzed at each construction iteration. Artefacts:
SAD first version (including behaviour diagrams, class diagrams, navigation map, and E-R dia-
gram). Roles: Software Architect and System Analyst.

Preparation of the
base application
architecture

Obtain an executable architecture version. This version is conceived as an evolving prototype for
the purpose of adding system requirements on an incremental basis. Artefacts: Prototype. Roles:
Programmer, Interface Designer and Software Architect.

Preparation of the
creative design
composition

Submit to the client approval a set of visual options for the site’s style. This should be done through
diagrams that simulate the site’s ordering and look. Artefacts: Creative design composition. Roles:
Interface designer, Usability Manager and Client.

Phase final meet-
ing

Analyze the feasibility of continuing with the project. If the project fails in the following items, it
should be cancelled or reanalyzed. Artefacts: Plan updated for the next iteration. Roles: all the
stakeholders.

properly classified into the corresponding
groups. Quality characteristic: Functionality, re-
liability, maintainability

• Behaviour Diagrams’ Inspection. Objective:
Check that behaviour diagrams include the cor-
rect interactions. Quality characteristic: Func-
tionality, reliability, maintainability.

• Class Diagrams Inspection. Objective: Check
for class diagrams’ correctness. Quality charac-
teristic: functionality, reliability, maintainability.

• Initial Navigation Map Review. Objective:
Check for coherence and clear definition of the
initial navigation map. Quality characteristic:
usability, functionality and accessibility.

• E-R Diagram’s Review. Objective: Check for
proper and complete nomenclature. Quality
characteristic: functionality, reliability and main-
tainability.

• Review of Software Architecture Document
against Requirements Specification Document.
Objective: The base architecture designed should
support the remaining use cases not described in
detail. Quality characteristic: functionality, reli-
ability and maintainability.

• Architecture Stress Testing. Objective: The ar-
chitecture should fulfil the system requirements
and support the application’s most critical func-
tionalities. Quality characteristic: functionality
and reliability.

• System Compatibility Tests. Objective: Evaluate
system compatibility with external systems.
Quality characteristic: functionality, reliability
and interoperability.

• Review of the Creative Design Summary. Objec-

tive: Check for compliance and traceability of
visual options in the prototype with the Creative
Design Summary. Quality characteristic: usabil-
ity and accessibility.

• Review of Look and Feel. Objective: Determine
the visual option that best suits the client’s taste
and expectations. Quality characteristic: usability
and accessibility.

3.1.3 Construction Phase

During this phase, all components and functional-
ities of the application are developed, tested and
integrated into a product. This phase consist of the
construction process where emphasis should be
made in resources’ management and cost, agenda
and quality control. This is the longest phase, and at
the end of each iteration a product version is ob-
tained (e.g.: alpha, beta or deliverable). This is a
highly iterative phase, the main purpose of which is
to produce valuable elements for the client. It is also
aimed at reducing development costs through re-
sources’ optimization, while avoiding unnecessary
time losses. Table 4 provides an overview of the
activities performed in this phase. The artefacts
generated in these activities should later be formally
revised as follows:

Construction Phase Quality Verification. The
following diagrams and models are evaluated using
the same techniques than described in the previous
phase: Behaviour diagram, class diagram, navigation
map, and E-R diagram. Additional techniques are
applied as follows:

ICEIS 2008 - International Conference on Enterprise Information Systems

216

• Proposed Use Cases Inspection. Objective:
Check for correctness of use case models and
specifications. Quality characteristic: functional-
ity, reliability, maintainability.

• State Machine Diagrams’ Inspection. Objective:
Check for status diagrams’ correctness. Quality
characteristic: functionality, reliability, main-
tainability.

• UX Models and Storyboards Inspection. Objec-
tive: Check for correctness of models and story-
boards. Quality characteristic: usability, func-
tionality.

• Review of the Creative Design Document. Objec-
tive: Check that the context graphic interface
prototype takes into account the style and other
aspects described in the Creative Design Docu-
ment. Quality characteristic: usability.

• Code Walkthroughs or Direct Inspections. Ob-
jective: Check for right code. Quality character-
istic: functionality, reliability and maintainabil-
ity.

• Integrity Tests (gray-box), Task-oriented Func-
tional and Exploratory Testing. Objective:
Check for functionality of the context imple-
mented. Quality characteristic: functionality, re-
liability, usability and accessibility.

• Incremental Integration Tests. Objective: Check
for proper integration of context elements. Qual-
ity characteristic: functionality and reliability.

• Incremental Integration, Compatibility, and
Configuration tests. Objective: Check for proper
integration of the context with other contexts al-
ready implemented. Quality characteristic: func-
tionality and reliability.

3.1.4 Transition Phase

The purpose of this phase is to successfully deploy
the system. Some amendments or new versions of
the system may arise, which require the develop-
ment of new releases, correction of issues, and in-
clusion of final features that were previously post-
poned. Table 5 provides an overview of the activities
performed in this phase. The artefacts generated in
these activities should later be formally revised as
follows:

Transition Phase Quality Verification
• Complete System Stress and Resources Testing.

Objective: Check the complete system to deter-
mine that its limits satisfy the project’s expecta-
tions. Quality characteristic: functionality and re-
liability.

• Functionality Testing. Objective: Evaluate the
complete system functionality. Quality charac-
teristic: functionality.

• Security and Warranty Testing. Objective:
Evaluate complete system security. Quality
characteristic: reliability and functionality.

• Gray-box Testing. Objective: Overall system
evaluation. Quality characteristic: functionality,
reliability and usability.

• Interoperability and Configuration Tests. Objec-
tive: Check for proper operation of the system in
different browsers. Quality characteristic: func-
tionality, reliability, usability and compatibility.

• On-line Help Testing. Objective: Check for
proper operation of the on-line help content.
Quality characteristic: functionality, usability
and accessibility.

Table 4: Products’ Construction Phase.

Activity Description / Product / Roles
Context design Update the SAD in accordance with use cases, by adding detailed use cases, and context sequences

diagrams and state machines as they are prepared. Artefacts: Improved Software Architecture
Document. Roles: Software Architect and Analyst.

Context graphic
interface design

Detail the interface graphic elements and usability related to the development context. First of all,
the context interface document is generated and, then a prototype incorporating the new papers
related to the context is generated. This design activity can be performed in parallel with the SAD
update. Artefacts: Context Graphic Interface Document and Context Interface Prototype. Roles:
Usability Manager and Interface Designer.

Context imple-
mentation

Once the context design and interface analysis are performed, we proceed with the implementation
or adaptation of the elements identified. Artefacts: Implemented Context. Roles: Programmer, In-
terface Designer and Tester.

New context
integration

The new context is integrated to the rest of the application. This integration is made by layer, be-
ginning with the data layers and ending with the presentation layer. Artefacts: Integrated context.
Roles: Programmer and Tester.

Phase final meet-
ing

Analyze the feasibility of continuing with the project. If the project fails in the following items, it
should be cancelled or reanalyzed. Artefacts: plan updated for the next iteration. Roles: all stake-
holders.

CONTEXT-ORIENTED WEB METHODOLOGY WITH A QUALITY APPROACH

217

Table 5: Products’ Transition Phase.

Activity Description / Product / Roles
Application de-
ployment

Stabilization of the final solution in order to transfer the system from the development environment
to the production environment. Artefacts: Application implemented. Roles: Programmer.

Users’ training However, if the application’s final users are properly defined and accessible a training process
should be considered. Artefacts: Users’ manuals. Roles: Usability Manager.

Phase final meet-
ing

Analyze the feasibility of releasing the project. If the project fails, it should be cancelled or reana-
lyzed. Artefacts: updated plan. Roles: all stakeholders.

• Online Help Content Review. Objective: Check
that online help contents are understandable.
Quality characteristic: functionality, usability
and accessibility.

• Users’ Manual Inspection. Objective: Check for
documents with accurate and understandable in-
formation for the system target users. Quality
characteristic: usability and accessibility.

As final recommendation, we suggest to distrib-

ute the development effort as follows: definition
phase (10%), architecture baseline phase (10%),
construction phase (50%) and transition phase
(30%).

4 EVALUATION

We validated this methodology through its applica-
tion on a specific organization. The evaluation
method included two phases: 1) Activities for devel-
oping a system using COWM, and 2) COWM
evaluation through certain proposed features.

4.1 Case Study

The case study consists of a system that provides
support to a company (which for privacy reasons,
shall be called LearnEnglish). Its main purpose is to
provide an e-learning solution to those internet users
that want to improve their English with focus on oral
expression. Given that it is an e-learning application,
the technological component is the central axis of
the process. Considering that the development of the
whole support system and multimedia material
would take a long time, we decided to focus on the
development of the LEnglishAdmin sub-project
which supports all operations related to new users’
recording, access control, and class reservations,
among others.

4.2 Feature Analysis

Figure 1 shows features that we evaluated after ap-

plying COWM to the case study. These features
were proposed based on Callaos (1992), Whitten et
al. (2004), Krutchten (2004), Cockburn (1998) y
WCAG (1999).

While general features evaluate the quality of the
proposed methodology to describe and apply meth-
odology–oriented concepts, specific features evalu-
ate the presence and application of the following
components: basic Web aspects; requirements of
individuals with disabilities (Accessibility); short
development times; adaptability to any type of pro-
ject, technique, method or tool and support to re-
quirements changes; satisfaction of the most relevant
Web quality aspects (functionality, reliability, main-
tainability and usability). Upon completion of the
case study review and application of an instrument
to measure the aforementioned features, we ob-
served that such features were deemed acceptable
within the evaluation context, which corresponded to
acceptance levels above 80%.

FEATURES

GENERAL SPECIFIC

STRUCTURE

DISCIPLINES

TECHNIQUES

ARTIFACTS

ROLES

WEB

ACCESIBILITY

TIME-LINE

ADAPTABILITY

QUALITY

FEATURES

GENERAL SPECIFIC

STRUCTURE

DISCIPLINES

TECHNIQUES

ARTIFACTS

ROLES

WEB

ACCESIBILITY

TIME-LINE

ADAPTABILITY

QUALITY
Figure 1: Evaluated features.

5 CONCLUSIONS

COWM has been conceived as a methodology that
allows solving deficiencies in the analyzed method-
ologies through the combination of the advantages
of both, agile and plan-driven methodologies and the
inclusion of activities, roles and artefacts which fa-
cilitate to manage the particular characteristics of the
Web applications. As a consequence, COWM pre-

ICEIS 2008 - International Conference on Enterprise Information Systems

218

sents a process which uses contexts to rapidly gener-
ate products being valuable for users without omit-
ting neither documentation nor, QA activities needed
for guaranteeing a high-quality Web system. Addi-
tionally, at each phase, COWM includes techniques
to ensure quality of each artefact, thus reducing the
project critical risks and guaranteeing successful
project completion.

ACKNOWLEDGEMENTS

This research was supported by National Fund of
Science, Technology and Innovation, Venezuela,
under contract S1-2005000165. Authors also want to
thank to Miurika Valery and Wilmer Sarmiento for
their valuable contribution to this research.

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., Juhani, W.
(2002). Agile software development methods. Review
and analysis. Espoo. VTT Publications.

Ambler, S., Nalbone, J., Vizdos, M. (2005). The Enter-
prise Unified Process: Extending the Rational Unified
Process. Prentice Hall.

Barry, C., Lang, M. (2001). A Survey of Multimedia and
Web Development Techniques and Methodology Us-
age. IEEE Multimedia, 2-10.

Boehm, B., Turner, R. (2004). Balancing Agility and Dis-
cipline: A Guide for the Perplexed. Pearson Education,
Inc.

Callaos, N. (1992). A Systemic ‘Systems methodology’, 6º
International Conference on Systems Research Infor-
matics and Cybernetics, International Institute of Ad-
vanced Studies in Systems Research and Cybernetics
and Society for Applied Systems Research, Florida.

Canós, J., Letelier, P., Penadés, M. (2004). Metodologías
ágiles en el desarrollo de software. Universidad Poli-
técnica de Valencia.

Coad P., Lefebvre E., De Luca J. (1999). Java Modelling
In Colour With UML: Enterprise Components and
Process. Prentice Hall.

Cockburn, A. (1998). Surviving Object-Oriented Projects.
Addison-Wesley.

Ginige, A., Murugesan, S. (2001). “Web engineering: A
methodology for developing scalable, maintainable
Web applications”. Cutter IT Journal, 14(7), 24-35.

Heumann, J. (2003). User experience storyboards: Build-
ing better UIs with RUP, UML, and use cases. The
Rational Edge.

IEEE 1012. (1998). “Standard for Software Verification
and Validation”. Software Engineering Standards
Committee.

ISO/IEC 9126-1. (2001). “Software engineering — Prod-
uct quality — Part 1: Quality Model”.

Kan, S. (2002). Metrics and Models in Software Quality
Engineering, Second edition. Boston-EEUU: Addison
Wesley.

Kroll, P., Kruchten, P. (2003). The Rational Unified Proc-
ess Made Easy: A Practitioner's Guide to the RUP.
Addison-Wesley.

Kruchten, P. (2003). The Rational Unified Process An
Introduction. Third Edition. Addison-Wesley.

Kruchten, P. (2004). The Rational Unified Process – An
Introduction. Addison Wesley.

Letelier, P., Penadés, M. (2004). Metodologías ágiles para
el desarrollo de software: eXtreme Programming (XP).
Universidad Politécnica de Valencia.

Lott, C. (1997). “Breathing new life into the waterfall
model”. Morristown, NJ. Bellcore.

Lowe, D., Henderson-Sellers, B. (2001). Infrastructure for
e-business, e-education, and e-science. SSGRR.

Montilva, J., Barrios, J. (2002). A Component-Based
Method for Developing Web Applications. Universi-
dad de Los Andes.

Offutt, J. (2002). Quality Attributes of Web Software Ap-
plications. IEEE Software: Special Issue on Software
Engineering of Internet Software, pp 25-32,
Marzo/Abril 2002.

Reynoso, C. (2004). Métodos Heterodoxos en Desarrollo
de Software. http://www.microsoft.com/spanish/
msdn/arquitectura/roadmap_arq/heterodox.asp

Schwaber, K. (1995). The Scrum Development Process.
http://www.controlchaos.com/old-site/scrumwp.htm.
OOPSLA'95 Workshop on Business Object Design
and Implementation.

Schwaber K., Beedle M., Martin R.C. (2001). Agile Soft-
ware Development with SCRUM. Prentice Hall.

Whitten, L., Bentley, L., Dittman, K. (2004). System
Analysis and Design Methods. McGraw-Hill.

WCAG (1999). Web Content Accessibility Guidelines 1.0.
W3C.

Woojong, S. (2005). Web Engineering: Principles and
Techniques. Idea Group Inc.

Wu, Y., Offutt, J. (2002). “Modelling and Testing Web-
based Applications”. George Mason University: In-
formation and Software Engineering Department.

CONTEXT-ORIENTED WEB METHODOLOGY WITH A QUALITY APPROACH

219

