
TREE EMBEDDING AND XML QUERY EVALUATION

Yangjun Chen
Dept. Applied Computer Science, University of Winnipeg, Canada

Keywords: XML databases, Trees, Paths, XML pattern matching, Twig joins.

Abstract: Tree pattern matching is one of the most fundamental tasks for XML query processing. Prior work has
typically decomposed the tree pattern into binary structural (parent-child and ancestor-descendent)
relationships or paths, and then stitch together these basic matches by join operations. In this paper, we
propose a new algorithm that explores both the document tree and the twig pattern in a bottom-up way and
show that the join operation can be completely avoided. The new algorithm runs in O(|T|⋅|Q|) time and
O(|Q|⋅leafT) space, where T and Q are the document tree and the tree pattern query, respectively; and leafT
represents the number of leaf nodes in T.

1 INTRODUCTION

In XML, data is represented as a tree; associated
with each node of the tree is an element type from a
finite alphabet ∑. The children of a node are ordered
from left to right, and represent the content (i.e., list
of subelements) of that element.
To abstract from existing query languages for XML
(e.g. XPath, XQuery, XML-QL, and Quilt), we
express queries as twig patterns (or say, tree
patterns) where nodes are types from ∑ ∪ {*} (* is a
wildcard, matching any node type) and string values,
and edges are parent-child or ancestor-descendant
relationships. As an example, consider the query tree
shown in Fig. 1, which asks for any node of type b
(node 2) that is a child of some node of type a (node
1). In addition, the b type (node 2) is the parent of
some c type (node 4) and an ancestor of some d type
(node 5). Type b (node 3) can also be the parent of
some e type (node 7). The query corresponds to the
following XPath expression:
 a[b[c and //d]]/b[c and e//d].

In this figure, there are two kinds of edges: child
edges (c-edges) for parent-child relationships, and
descendant edges (d-edges) for ancestor-descendant
relationships. A c-edge from node v to node u is
denoted by v → u in the text, and represented by a
single arc; u is called a c-child of v. A d-edge is
denoted v ⇒ u in the text, and represented by a
double arc; u is called a d-child of u.

Figure 1: A query tree.

Definition 1. An embedding of a tree pattern Q into
an XML document T is a mapping f: Q → T, from
the nodes of Q to the nodes of T, which satisfies the
following conditions:
(i) Preserve node type: For each u ∈ Q, u and f(u)

are of the same type. (or more generally, u’s
node test is satisfied by f(u).)

(ii) Preserve c/d-child relationships: If u → v in Q,
then f(v) is a child of f(u) in T; if u ⇒ v in Q,
then f(v) is a descendant of f(u) in T.

If there exits a mapping from Q into T, we say, Q
can be imbedded into T, or say, T contains Q. In
addition, if label(T’s root) = label(Q’s root), we say
that the embedding is root-preserving.

As an example, see the document tree and the
tree pattern query shown in Fig. 2(a).

There exits a mapping from Q to T as illustrated
by the dashed lines, by which each node of Q is
mapped to a different node of T. However,
according to the definition, an embedding could map
several nodes of Q (of the same type) to the same
node of T, as shown in Fig. 2(b), by which nodes q2
and q5 in Q are mapped onto a single node v2 in T,
and q3 and q4 are mapped onto a single node v3 in T.

4 c d 5

2 b

d 8

1 a

6 c

b 3

e 7

output node

173
Chen Y. (2008).
TREE EMBEDDING AND XML QUERY EVALUATION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 173-178
DOI: 10.5220/0001690301730178
Copyright c© SciTePress

Figure 2: Illustration for tree embedding.

For the purpose of query evaluation, either of the
mappings is recognized as a tree embedding.

In fact, almost all the existing strategies are
designed to work in this way.
In this paper, we discuss a new algorithm, which
works in a bottom-up way and shows that the join or
join-like operations can be completely avoided. The
algorithm works in O(|T|⋅|Q|) time and O(|Q|⋅leafT)
space, where leafQ is the number of the leaf nodes of
Q.

The remainder of the paper is organized as
follows. In Section 2, we review the related work. In
Section 3, we discuss our main algorithm. In Section
4, we extend this algorithm to general cases that ‘∨’
and ‘¬’ logic operators are included. Finally, a short
conclusion is set forth in Section 5.

2 RELATED WORK

With the growing importance of XML in data
exchange, the tree pattern queries over XML
documents have been extensively studied recently.
Most existing techniques rely on indexing or on the
tree encoding to capture the structural relationships
among document elements, such as the methods
discussed in (Li and Moon, 2001; Goldman and
Widom, 1997; Cooper and et al., 2001; Chung and
et al., 2002; Kaushik and et al., 2002; Wang and et
al., 2003; Wang and Meng, 2005).

All the above mentioned methods need to
decompose a tree pattern into a set of binary
relationships between pairs of nodes, such as parent-
child and ancestor-descendant relations, or into a set
of paths. The sizes of intermediate relations tend to
be very large, even when the input and final result
sizes are much more manageable. As an important
improvement, TwigStack was proposed by Bruno et
al. (Bruno and et al., 2002), which compress the
intermediate results by the stack encoding, which
represents in linear space a potentially exponential

number of answers. However, TwigStack achieves
optimality only for the queries that contain only d-
edges. In the case that a query contains both c-edges
and d-edges, some useless path matchings have to be
performed. In addition, in the worst case, TwigStack
needs O(|D||Q|) time for doing the merge joins as
shown by Chen et al. (see page 287 in (Chen and et
al., 2006)), where D is a largest data stream
associated with a node q in Q, which contains all the
document nodes that match q. Since then, several
methods that improve TwigStack in some way have
been reported. For instance, iTwigJoin (Chen and et
al., 2005) exploits different data partition
possibilities while TJFast (Lu and et al., 2005)
accesses only leaf nodes of document trees by using
Dewey IDs. But both of them still need to do some
useless matchings as shown by the theoretical
analysis made in (Choi and et al., 2003). Twig2Stack
(Chen and et al., 2006) is the most recent method
that improves TwigStack. By this method, the stack
encoding is replaced with the hierarchical stack
encoding, by which each stack associated with a
query node contains an ordered sequence of stack
trees. In this way, the path joins are replaced by the
so called result enumeration. In (Chen and et al.,
2006), it is claimed that Twig2Stack needs only
O(|D|⋅|Q| + |subTwigResults|) time. But a careful
analysis shows that the time complexity of the
method is actually bounded by O(|D|⋅|Q|2 +
|subTwigResults|). It is because each time a node is
inserted into a stack associated with a node in Q, not
only the position of this node in a tree within that
stack has to be determined, but a link from this node
to a node in some other stack has to be constructed,
which requires to search all the other stacks. The
number of these stacks is |Q| (see Fig. 4 in (Chen
and et al., 2006) to know the working process.) The
bottom-up method discussed in (Chen, 2007) needs
no join operations.

In this paper, we improve the method proposed
in (Chen, 2007) by removing all the merging
operations, which are needed by that method to form
matching sets associated with each node in T. In
addition, the method is extended to handle general
cases.

3 ALGORITHM

In this section, we discuss our algorithm according
to Definition 1. The main idea of this algorithm is to
search both T and Q bottom-up and checking the
subtree embedding by generating dynamic data
structures. In the process, a tree labeling technique is

c v3 v4 b q3 c q4 c (b)

c v3 v4 b

b v2

a v1

v8 b

v6 c c v5 v7 d

q3 c q4 c

b q2

q1 a

q5 b

(a)

b v2

a v1

v8 b b q2

q1 a
q5 b

ICEIS 2008 - International Conference on Enterprise Information Systems

174

used to facilitate the recognition of nodes’
relationships. Therefore, in the following, we will
first show the tree labeling in 3.1. Then, in 3.2, we
discuss the main algorithm.

3.1 Tree Labeling

Before we give our main algorithm, we first restate
how to label a tree to speed up the recognition of the
relationships among the nodes of trees.

Consider a tree T. By traversing T in preorder,
each node v will obtain a number (it can an integer
or a real number) pre(v) to record the order in which
the nodes of the tree are visited. In a similar way, by
traversing T in postorder, each node v will get
another number post(v). These two numbers can be
used to characterize the ancestor-descendant
relationships as follows.

Proposition 1. Let v and v’ be two nodes of a tree T.
Then, v’ is a descendant of v iff pre(v’) > pre(v) and
post(v’) < post(v).
Proof. See Exercise 2.3.2-20 in (Knuth, 1969).

If v’ is a descendant of v, then we know that
pre(v’) > pre(v) according to the preorder search.
Now we assume that post(v’) > post(v). Then,
according to the postorder search, either v’ is in
some subtree on the right side of v, or v is in the
subtree rooted at v’, which contradicts the fact that
v’ is a descendant of v. Therefore, post(v’) must be
less than post(v). The following example helps for
illustration.

Example 1. See the pairs associated with the nodes
of the tree shown in Fig. 3. The first element of each
pair is the preorder number of the corresponding
node and the second is its postorder number. With
such labels, the ancestor-descendant relationships
can be easily checked.

Figure 3: Illustration for tree encoding.

For instance, by checking the label associated
with v2 against the label for v6, we see that v2 is an
ancestor of v6 in terms of Proposition 1. Note that
v2’s label is (2, 6) and v6’s label is (6, 3), and we
have 2 < 6 and 6 > 3. We also see that since the pairs
associated with v8 and v5 do not satisfy the condition
given in Proposition 1, v8 must not be an ancestor of
v5 and vice versa.

Definition 2. (label pair subsumption) Let (p, q) and
(p’, q’) be two pairs associated with nodes u and v.
We say that (p, q) is subsumed by (p’, q’), denoted
(p, q) (p’, q’), if p > p’ and q < q’. Then, u is a
descendant of v if (p, q) is subsumed by (p’, q’).

In the following, we also use T[v] to represent a
subtree rooted at v in T.

3.2 Algorithm for Twig Pattern
Matching

Now we discuss our algorithm for twig pattern
matching. During the process, both T and Q are
searched bottom-up. That is, the nodes in T and Q
will be accessed along their postorder numbers.
Therefore, for convenience, we refer to the nodes in
T and Q by their postorder numbers, instead of their
node names.

In each step, we will check a node j in T against
all the nodes i in Q.

In order to know whether Q[i] can be embedded
into T[i], we will check whether the following two
conditions are satisfied.
1. label(j) = label(i).
2. Let i1, ..., ik be the child nodes of i. For each ia (a

= 1, ..., k), if (i, ia) is a c-edge, there exists a child
node jb of j such that T[jb] contains Q[ia]; if (i, ia)
is a d-edge, there is a descendent j’ of j such that
T[j’] contains Q[ia].
To facilitate this process, we will associate each j

in T with a set of nodes in Q: {i1, ..., ij} such that for
each ia ∈ {i1, ..., ij} Q[ia] can be root-preservingly
embedded into T[j]. This set is denoted as M(j). In
addition, each i in Q is associated with a value β(i),
defined as below.
i) Initially, β(i) is set to φ.
ii) During the computation process, β(i) is

dynamically changed. Concretely, each time we
meet a node j in T, if i appears in M(jb) for some
child node jb of j, then β(i) is changed to j.
In terms of above discussion, we give the

following algorithm.

Algorithm tree-matching(T, Q)
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q
(with nodes 1, ..., |Q|)
Output: a set of nodes j in T such that T[j] contains
Q.
begin
1. for j := 1, ..., |T| do
2. {let j1, ..., jk be the children of j;
3. for l := 1, ..., k do
4. {for each i’ ∈ M(jl) do β(i’) ← j;
5. remove Μ(jl);}

A v1

B v2 v6 B

C v3 v4 B

v5 C

(1, 8)

(2, 6)

(3, 1) (4, 5)

(5, 2)

(8, 7)

v5 C v5 C (6, 3) (7, 4)

TREE EMBEDDING AND XML QUERY EVALUATION

175

5. for i := 1, ..., |Q| do
6. if label(i) = label(j) then
7. {let i1, ..., ig be the children of i;
8. if for each il (l = 1, ..., g) we have
9. (i, il) is a c-edge and β(il) = j, or
10. (i, il) is a d-edge and β(il) is subsumed by j;
11. then {insert i into M(j);
12. if i is the root of Q, then report the

subtree rooted at j as an answer;}
13. }
end

In the above algorithm, each time we meet an j in
T, we will establish the new β values for all those
nodes of Q, which appear in Μ(j1), ..., Μ(jk), where
j1, ..., jk represent the child nodes of j (see lines 1 -
4). Then, all Μ(jl)’s (l = 1, ..., k) are removed. In a
next step, we will check j against all the nodes i in Q
(see lines 5 - 13). If label(i) = label(j), we will check
β(i1), ..., β(ig), where i1, ..., ig are the child nodes of i.
If (i, il) (l ∈ {1, ..., g}) is a c-edge, we need to check
whether β(il) = j (see line 9). If (i, il) (l ∈ {1, ..., g})
is a d-edge, we simply check whether β(il) is
subsumed by j (see line 10). If all the child nodes of
i survive the above checking, we get a root-
preserving embedding of the subtree rooted at i into
the subtree rooted at j. In this case, we will insert j
into M(j) (see line 11) and report j as one of the
answers if i is the root of Q (see line 12).

The time complexity of the algorithm can be
divided into two parts:
1. The first part is the time spent on generating β

values (see lines 2 - 5). For each node j in T, we
will access M(jl) for each child node jl of j.
Therefore, this part of cost is bounded by

 O(∑
=

⋅
||

1
|)(|

T

j
j jMd) ≤ Ο(∑

=
⋅

||

1
||

T

j
j Qd) = O(|T|⋅|Q|),

where dj is the outdegree of j.
2. The second part is the time used for constructing

M(j)’s. For each node j in T, we need O(∑
i

ic)

time to do the task, where ci is the outdegree of i
in Q, which matches j. So this part of cost is
bounded by

 O(∑ ∑
j i

ic) ≤ O(∑
=

||

1
||

T

j
Q) = O(|T|⋅|Q|).

The space overhead of the algorithm is easy to
analyze. During the processing, each j in T will be
associated with a M(j). But M(j) will be removed
later once j’s parent is encountered and for each i
∈ M(j) its β value is changed. Therefore, the total
space is bounded by O(leafT⋅|Q| + |T| + |Q|), where
leafT represents the number of the leaf nodes of T. It

is because at any time point for any two nodes on the
same path in T only one is associated with a M.

4 GENERAL CASES

In this section, we extend the algorithm discussed in
the previous section to handle queries containing
‘∧’, ‘∨’ and ‘¬’ logic operators.
Without loss of generality, we assume that in an
XPath expression a predicate is a path, or a
conjunctive normal form. As an example, consider
the following XPath expression:
 a[b[c and .//f]]/b[c or e//*]/g[not c].

This expression can be represented as an And-Or
tree Q shown in Fig. 4.

Figure 4: A query tree with different logic operators.

In such a tree, we distinguish between two kinds
of nodes:
- name nodes: nodes corresponding to the node

test.
- operator nodes: nodes labeled with ∧ or ∨.

As with a simple twig pattern, it may contain two
kinds of edges: /-edges and //-edges; but an edge
may be labeled with ‘¬’. If an edge (q, q’) is labeled
with ‘¬’, q’ is called a negative node; otherwise, q’
is called a positive node.
In an And-Or tree Q, the following conditions
always hold:
1. The child nodes of any ∨-node are name nodes.
2. The child nodes of any ∧-node are ∨-nodes.
3. Any name node has no children or has only one

node which is a ∧-node.
According to the above properties, the tree

embedding of Q into a document tree T can be
defined as follows.

a

∧

∨ ∨

b b

∧ ∧

∨ ∨ ∨ ∨

c f c e g

∧ ∧

∨ ∨

c *

¬

output node

ICEIS 2008 - International Conference on Enterprise Information Systems

176

Let i be a node in Q with child nodes i1, ..., ik. Let
j be a node in T with child nodes j1, ..., jl.
(i) If i is a ∨-node, T[j] contains Q[i] if one of the

following conditions holds:
 - There exists a positive //-child qa (1 ≤ a ≤ k)

such that T[j] contains Q[ia].
 - There exists a positive /-child ia (1 ≤ a ≤ k) such

that T[j] contains Q[ia] and label(j) = label(ia).
 - There exists a negative //-child ia (1 ≤ a ≤ k)

such that T[j] does not contain Q[ia].
 - There exists a negative /-child ia (1 ≤ a ≤ k) such

that T[j] does not contain Q[ia] or T[j] contains
Q[ia] but label(j) ≠ label(ia).

(ii) If i is a ∧-node, T[j] contains Q[i] if the
following conditions hold:

 - for every positive node ia (1 ≤ a ≤ k), there
exists a jb (1 ≤ b ≤ l) such that T[jb] contains
Q[ia].

 - for every nagative node ia (1 ≤ a ≤ k), there
exists no jb (1 ≤ b ≤ l) such that T[jb] contains
Q[ia].

(iii) If i is a name node, T[j] contains Q[i] if the
following conditions hold:

 - T[j] contains Q[i1] (i has only one child node i1.)
 - label(j) = label(i).

In the following, we give an algorithm to check
the embedding of an And-Or tree Q into a document
tree T. For this purpose, we associate with each j in
T two sets: (j) and H(j). F(j) contains all those name
nodes i in Q such that Q[i] can be imbedded into
T[j]; and H(j). contains all those ∨-nodes i in Q such
that Q[i] can be imbedded into T[j]. Besides, in order
to calculate H(j), we maintain an array NQ containing
all the negative nodes in Q.
With F(j) and H(j), we design our general algorithm,
in which three functions are called:
- general-node-check(j, i): It checks whether T[j]

contains Q[i]. If it is the case, return {i}.
Otherwise, it returns an empty set ∅.

- leaf-node-check(j): It returns a set of leaf nodes in
Q: {i1, ..., ik} such that for each ia (1 ≤ a ≤ k)
label(j) = label(ia).

- calculate-H(j, F(j)): It compute H(j) based on F(j)
and NQ. It is done exactly according to the
conditions given above for checking ∨-node
containment. Especially, in the presence of ‘¬’,
we have to check each negative node in NQ to see
whether it appears in F(j).~

Algorithm general-tree-embedding(v)
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q
(with nodes 1, ..., |Q|)
Output: a set of nodes j in T such that T[j] contains
Q.

begin
1. for j := 1, ..., |T| do
2. {if j is not a leaf node in T then
3. {let j1, ..., jk be the children of j;
3. for l := 1, ..., k do
4. {for each i’ ∈ H(jl) do β(i’) ← j;}
5. F ← merge(F(j1), ..., F(jk)); (*See (Chen,
 2007) for the definition of the merge operation.*)
6. assume that F = { i1, ..., ic};
7. S1 := ∅; S2 := ∅;
5. for i := 1, ..., |Q| do
6. S1 := S1 ∪ general-node-check(j, i);
15. }
16. S2 := leaf-node-check(j);
17. F(j) := merge(F, S1, S2);
18. call calculate-H(j, F(j));
end
Function leaf-node-check(j)
begin
1. S2 := ∅;
2. for each leaf node i in Q do
3. {if label(i) = label(j) then {S2 := S2 ∪ {i};
4. if i is root then mark j;}
5. return S2;
end
Function general-node-check(j, i)
begin
1. S1 := ∅;
2. if label(i’s parent) = label(j) then
 (*If i is *, the checking is always successful.*)
3. { let i1, ..., ik be the child nodes of i;
4. if for each ia (a = 1, ..., k) β(ia) is equal to j
5. then {S1 := {i};
6. if i’s parent is root then mark j;}}
7. return S1;
end
Function calculate-H(j, F)
begin
1. H := ∅; A := ∅;
2. for each i ∈ F do {
3. if ((i is a /-child and label(i) = label(j)) or
4. i is a //-child)
5. then H := H ∪ {i’s parent});
6. }
7. for each i’ ∈ NQ do {
8. if (i’ ∉ F or (i’ ∈ F and
 i’ is a /-child with label(i’) ≠ label(j)))
9. then A := A ∪ {i’s parent};}
10. return merge(H, A);
end
Algorithm general-tree-embedding() is similar to
Algorithm tree-embedding(). The only difference is
that M(j) in tree-embedding() is replaced with F(j)

TREE EMBEDDING AND XML QUERY EVALUATION

177

in general-tree-embedding(). In F(j), we maintain
all those query nodes i such that Q[i] can be
embedded (not only root-preservingly embedded) in
T[j]. Although more time is needed for this, the
whole time complexity remains unchanged. See line
5, in which the merge operation is first introduced in
(Chen, 2007). The time complexity of
merge(F(j1), ..., F(jk)) is bounded by O(k⋅leafQ).
Special attention should be paid to Function general-
node-check(). It is used to check ∧-nodes in Q.
Since each name node has only one ∧-node as its
child, the checking of name nodes is integrated into
this process to simplify the procedure (see line 2 in
this function.)
In Function calculate-H(j, F(j)), we compute H(j)
based on F(j). It is done exactly according to the
conditions given above for checking ∨-node
containment. Especially, in the presence of ‘¬’, we
have to check each negative node in NQ to see
whether it appears in F(j). (see lines 7 - 9 in this
function). It needs O(|NQ|⋅log|F(j)|) time. So the total
time of the algorithm is bounded by O(|T|⋅leafQ +
|NQ|⋅|T|⋅logleafQ).

5 CONCLUSIONS

In this paper, a new algorithm is proposed to
evaluate twig pattern queries in XML document
databases. The algorithm works in a bottom-up way,
by which an important property of the postorder
numbering is used to avoid join or join-like
operations. The time complexity and the space
complexity of the algorithm are bounded by
O(|T|⋅|Q|) and O(|Q|⋅leafT), respectively, where T is
the document tree and Q the twig pattern query, and
leafT represents the number of leaf nodes in T.
Experiments have been done to compare our method
with some existing strategies, which demonstrates
that our method is highly promising in evaluating
twig pattern queries.

ACKNOWLEDGEMENTS

The work is supported by NSERC 239074-01
(242523) (Natural Science and Engineering Council
of Canada).

REFERENCES

A. Aghili, H. Li, D. Agrawal (2006). and A.E. Abbadi,
TWIX: Twig structure and content matching of
selective queries using binary labeling, in:
INFOSCALE, 2006.

N. Bruno, N. Koudas, and D. Srivastava (2002) Holistic
Twig Hoins: Optimal XML Pattern Matching, in Proc.
SIGMOD Int. Conf. on Management of Data,
Madison, Wisconsin, June 2002, pp. 310-321.

C. Chung, J. Min, and K. Shim (2002). APEX: An
adaptive path index for XML data, ACM SIGMOD,
June 2002.

S. Chen et al. (2006). Twig2Stack: Bottom-up Processing
of Generalized-Tree-Pattern Queries over XML
Documents, in Proc. VLDB, Seoul, Korea, Sept. 2006,
pp. 283-323.

Y. Chen (2007). A New Algorithm for Tree Mapping in
XML Databases, in Proc. of the Internet and
Multimedia Systems and Applications Conference
(IMSA 2007), Honolulu, Hawaii, USA.

B.F. Cooper, N. Sample (2001). M. Franklin, A.B.
Hialtason, and M. Shadmon, A fast index for
semistructured data, in: Proc. VLDB, Sept. 2001, pp.
341-350.

R. Goldman and J. Widom (1997). DataGuide: Enable
query formulation and optimization in semistructured
databases, in: Proc. VLDB, Aug. 1997, pp. 436-445.

G. Gottlob, C. Koch, and R. Pichler (2005). Efficient
Algorithms for Processing XPath Queries, ACM
Transaction on Database Systems, Vol. 30, No. 2,
June 2005, pp. 444-491.

C.M. Hoffmann and M.J. O’Donnell (1982). Pattern
matching in trees, J. ACM, 29(1):68-95, 1982.

Q. Li and B. Moon (2001) Indexing and Querying XML
data for regular path expressions, in: Proc. VLDB,
Sept. 2001, pp. 361-370.

J. Lu, T.W. Ling, C.Y. Chan, and T. Chan (2005). From
Region Encoding to Extended Dewey: on Efficient
Processing of XML Twig Pattern Matching, in: Proc.
VLDB, pp. 193 - 204, 2005.

G. Miklau and D. Suciu (2004) Containment and
Equivalence of a Fragment of XPath, J. ACM, 51(1):2-
45, 2004.

H. Wang, S. Park, W. Fan, and P.S. Yu (2003) ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures, SIGMOD Int. Conf. on Management
of Data, San Diego, CA., June 2003.

H. Wang and X. Meng (2005), On the Sequencing of Tree
Structures for XML Indexing, in Proc. Conf. Data En-
gineering, Tokyo, Japan, April, 2005, pp. 372-385.

R. Kaushik, P. Bohannon, J. Naughton, and H. Korth
(2002) Covering indexes for branching path queries,
in: ACM SIGMOD, June 2002.

ICEIS 2008 - International Conference on Enterprise Information Systems

178

