
A NOVEL APPROACH TO SUPPORT CHANGE IMPACT ANALYSIS
IN THE MAINTENANCE OF SOFTWARE SYSTEMS

Guenter Pirklbauer
Software Competence Center Hagenberg, Softwarepark 21, A-4232 Hagenberg, Austria

Michael Rappl
Oberoesterreichische Gebietskrankenkasse, Gruberstrae 77, A-4020 Linz, Austria

Keywords: Change Coupling Analysis, Change Impact Analysis, Data Warehouse, Dynamic Dependency Analysis, Soft-
ware Maintenance.

Abstract: The costs for enhancing and maintaining software systems are up to 75% of the total development costs. It
is therefore important to provide appropriate methods, techniques and tools for supporting the maintenance
phase of the software life cycle. One major maintenance task is the analysis and validation of change impacts.
Existing approaches address change impact analysis, but using them in practice raises specific problems. Tools
for change impact analysis must be able to deal with analysis- and design-models which are not compliant
with the released software system. These models are not a good basis to perform change impact analysis.
The proposed approach combines methods of dynamic dependency analysis and change coupling analysis
to detect physical and logical dependencies between software components. The goal is to detect low-level
artefacts and dependencies based on only up-to-date and system-conform data, including logfiles, the service
repository, the versioning system database and the change management system database. The implementation
of the approach supports both the management and developers.

1 INTRODUCTION

The necessity to support the maintenance team with
change impact analysis approaches rises, if the soft-
ware system gets larger, gets connected to web-
services via interfaces and is subject to permanent
changes - thus: the software system gets more and
more complex. To keep complexity within manage-
able scope, the team can observe the evolution of
the software system (Gall and Lanza, 2006) and can
continuously check architecture guidelines to coun-
tersteer architectural erosion (Lehman et al., 1997).
Nevertheless, service support centers that maintain
complex software systems need a powerful environ-
ment consisting of methods, techniques and tools for
change impact analysis. Many approaches and tools
try to support change impact analysis in a more or less
automatic manner, but the results are not as satisfying
as expected (INCOSE, 2005). Most of the approaches
require well defined artefacts, established dependen-
cies and at best all stored in a database. This is hardly
achievable in real life projects. In practice, the need to

perform change impact analysis arises after the soft-
ware system was made available to customers and
the analysis- and design models are not compliant
with the released software system anymore. So, im-
plementing change impact approaches or finding and
introducing standard tools is often very complex, if
not unfeasible. An ideal approach for change impact
analysis is required to be fully automatic, cheap to
implement and/or introduce, provides a safe and ex-
act range of dependencies and ideally, supplements
dependencies with additional metrics to calculate the
“strength” or “probability” of relations between arte-
facts.

2 RELATED WORK

Dynamic Dependency Analysis aims at detection
dependencies based on runtime data (Goradia, 1993;
Zhao, 1998). The quality level of dynamically de-
tected dependencies is better, because the amount of
dependencies are less and as a consequence more pre-

453
Pirklbauer G. and Rappl M. (2008).
A NOVEL APPROACH TO SUPPORT CHANGE IMPACT ANALYSIS IN THE MAINTENANCE OF SOFTWARE SYSTEMS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 453-456
DOI: 10.5220/0001692004530456
Copyright c© SciTePress



cise than in static analysis. Static analysis techniques
determine all possible dependencies based on static
data, e.g. source code. As a result, the range of stati-
cally determined dependencies therefore can be enor-
mous and cope little with dependencies which are rel-
evant for change impact analysis. But the major ad-
vantage is the fact, that implementing dynamic analy-
sis techniques is cheap due to low software instrumen-
tation effort. A disadvantage is that a lot of runtime
data needs to be stored and managed.

Moe et al. developed a method to improve the un-
derstanding and development of distributed systems
(Moe and Sandahl, 2002). The method is based on op-
erational data and includes three steps: 1. Collecting
remote procedure-call during operation, 2. Extracting
trace data for statistics and reconstructing call graphs,
3. Visualizing the data.

Law presents a dynamic slicing technique named
“Program Path Profiling” to identify dependencies
between program units (Law, 2005). Here, the soft-
ware needs to be instrumented to store calls on proce-
dure level.

These approaches are what we interpret as
“cheap”, because dependencies will be examined
by instrumenting the software system. Nevertheless
these approaches only concentrate on the determi-
nation of dependencies without considering their
strength. Moe et al. and Goradia address this issue
(Moe and Sandahl, 2002; Goradia, 1993).

Change Coupling Analysis is a subdiscipline
in the field of MSR (Mining Software Repositories)
and aims at identifying logical couplings between
modules, classes and methods. In the research field
of software evolution, these logical change couplings
are used to identify shortcomings in the architecture
of the software system (Gall et al., 2003). In the
context of software change prediction and impact
analysis, logical change couplings can be used
to supplement physical dependencies (Kagdi and
Maletic, 2007).

The QCR-approach (Quantitative Analysis,
Change Sequence Analysis, Relation Analysis) has
been already applied in various case studies (Gall
et al., 2003; Gall and Lanza, 2006). The approach
was used to learn about the evolution of a software
system based on its (change) history.

Kagdi et al. combine single-version and evolu-
tionary dependencies for estimating software changes
(Kagdi and Maletic, 2007). This approach is particu-
lar interesting, because we also want to combine de-
pendency analysis and MSR-analysis. They hypothe-
size, that combining dependencies out of classical im-
pact analysis approaches (e.g. dependency analysis)

and out of mining software repositories will improve
the support of software change prediction.

3 APPROACH

3.1 Approach Overview

The approach assumes, that the combination of both
dynamic dependency analysis and change coupling
analysis methods result in an overall improvement of
change impact analysis. Kagdi et al. investigated a
combined approach to support software change pre-
diction (Kagdi and Maletic, 2007). Change predic-
tion is one of the tasks you can do with the results of
impact analysis (others will be estimating timetables,
estimating trends of failures, etc). But the proposed
approach and the approach from Kagdi et al. dif-
fers in one main point: Kagdi pursues the paradigm,
that fine-grained analysis on the level of source code
(i.e. analysing source at syntactic level) is necessary
to support change prediction. We strive at increasing
the basic set of dependencies (physical and evolution-
ary) and the precision of these dependencies to avoid
analysing software artefacts on source code level.

Figure 1 on page 3 describes the principal ap-
proach on a coarse level. As a starting point vari-
ous data sources have to be examined using dynamic
dependency analysis and change coupling analysis.
Based on a data warehouse, the framework provides
information on two abstraction levels to support both
groups of users of change impact analysis - develop-
ers and managers.

Based on the text-formulated change requests,
developershave to identify primary affected arte-
facts (initial set). This artefacts are components
and classes. Then the framework proposes artefacts,
which have dependencies to artefacts of the initial set.
These artefacts are the impact set. To consider the
importance and relevance (impact) of dependencies,
the framework calculates the strength of them based
on metrics. These metrics are described in subsection
3.2. Thendevelopersconfirm or reject artefacts of the
proposed impact set. This process of proposing and
confirming or rejecting will take place in several iter-
ations.

Project managershave to be supported in creating
timetables, allocating human resources and estimat-
ing the risk exposure. Based on the risk exposure, the
framework can supportquality managersin allocat-
ing quality assurance activities, e.g. on which com-
ponents to concentrate testing resources. The frame-
work has to determine the quality level of the next

ICEIS 2008 - International Conference on Enterprise Information Systems

454



release of the software system, or - at least - be able
to recognize trends.

Figure 1: Framework Architecture.

3.2 Data Sources

The determination of artefacts and dependencies has
to be based on up-to-date and system-conform data.
Following data sources have to be exploited:

� Logfiles: Footprints in logfiles enable the doc-
umentation of calls on the level of components,
classes and methods. This footprint can be used
to determine physical dependencies between arte-
facts just mentioned. Data to exploit: Artefacts,
physical dependencies. Metrics: Number of calls
on different levels, number of warnings and errors
at runtime in the live-system, duration of calls in
milliseconds.

� Service Repository: Often, service repositories
are in use to administrate services including re-
lated definitions of request-, response-messages
and data-records. These kind of data structures are
important center points between services and in-
dicators for dependencies. Data to exploit: Arte-
facts, physical dependencies - especially data-
based dependencies. Metrics: Lines-of-Code
(LOC)

� Versioning System: Entries in the versioning sys-
tem are a good basis to determine logical cou-
plings. With the utilization of various association-
rules, the framework will be able to find depen-
dencies between files which are not based on
the source code. These rules comprise associ-
ation by transaction-matching (all files checked-
in by a developer at once), bug-ID-matching,

comment-matching and special time-frame-based
algorithm. Additionally, the number of changed
files due to these association rules can be deter-
mined to calculate the strength of dependencies.
Further, the error- and change-rate can be calcu-
lated on the basis of classes, but also can be ag-
gregated to package or subsystem level. Data to
exploit: Logical dependencies, Metrics: Strength
of dependencies, error- and change-rate of arte-
facts.

� Change Management System: Change requests in
the change management system should be corre-
lated to entries in the versioning system. At best,
the developer who is about to do the check-in,
will be caused to insert the unique number of the
change request. If not, techniques are necessary
to correlate these entries automatically, e.g. using
techniques as proposed by (Canfora and Cerulo,
2005; Zimmermann and Weigerber, 2004). Data
to exploit: All relevant data from change requests
(priority, severity, efforts, detailed description,
etc.). Metrics: Error- and change-rate.

3.3 Dependency Types

The framework must be able to detect and manage
low-level-artefacts and -dependencies, e.g. compo-
nents, classes and methods. Therefore, two types
of dependencies have to be considered: (1)Physi-
cal dependencieswhich result from relations based on
the source code. The implementation of dependency
analysis and detection techniques should be based on
dynamic dependency analysis techniques with an em-
phasis on logfile analysis. (2)Logical dependencies
which result from transitive relations. If dependen-
cies are not based on physical relations via the source
code, two possible reasons have to be considered:
Transitive dependencies across business process ob-
jects, and transitive dependencies across database ob-
jects. Here, dependencies have to be examined with
heuristics (association-rules) and data mining tech-
niques.

4 RESEARCH DESIGN

The principal idea of this work is to use a combina-
tion of dynamic dependency analysis and change cou-
pling analysis methods in order to improve change
impact analysis. The research hypothesis underly-
ing this project is, that the combination of methods
will improve the support of change impact analysis.
To verify the research hypothesis, research questions

A NOVEL APPROACH TO SUPPORT CHANGE IMPACT ANALYSIS IN THE MAINTENANCE OF SOFTWARE
SYSTEMS

455



Table 1: Project Phases and Research Methods

Project Phase Research Method

Identification and
Analysis of

State-of-the-Art

Literature Analysis

Definition of
Approach

Conceptual Construction

Analysis of Change
Impact Analysis

Process

Empirical Case Study

Definition and
Implementation of

Methods, Techniques
and Tools

Construction, Prototyping,
Empirical Evaluation
(Experiment, Test)

Validation of
Framework

Empirical Validation
(Experiment, Test,

Survey)

have to be established and answered. To validate re-
sults in practice, empirical research methods will be
used in the research project. But also constructive
and conceptual methods will take place. To see which
methods will be used in which project phase, see Ta-
ble 1 on page 4.

Especially in order to verify the research hypothe-
sis, well established quality parametersprecisionand
recall will be used. The central point is the com-
bination of methods, this means we have to com-
pare and analyse dependencies determined via dy-
namic dependency analysis or change coupling analy-
sis techniques. We have to conduct several empirical
experiments to show, how the combination of tech-
niques can help project managers, quality managers
and developers to perform change impact analysis.

5 CONCLUSIONS AND
OUTLOOK

In this paper we have outlined some facts of our ap-
proach to support change impact analysis. Currently
we are implementing first prototypes to examine log-
files and detect logical change couplings in the ver-
sioning system. Especially we investigate causes and
types of logical couplings. In order to explore the
change impact analysis process in detail, empirical
case studies within our industrial partners will be car-
ried out.

REFERENCES

Canfora, G. and Cerulo, L. (2005). Impact analysis by
mining software and change request repositories. In
METRICS ’05: Proceedings of the 11th IEEE Interna-
tional Software Metrics Symposium (METRICS’05),
page 29, Washington, DC, USA. IEEE Computer So-
ciety.

Gall, H. C., Jazayeri, M., and Krajewski, J. (2003). CVS
release history data for detecting logical couplings. In
Proceedings of the International Workshop on Prin-
ciples of Software Evolution, pages 13–23, Helsinki,
Finland. IEEE Computer Society Press.

Gall, H. C. and Lanza, M. (2006). Software Evolution:
Analysis and Visualization. InICSE ’06: Proceed-
ing of the 28th international conference on Software
engineering, pages 1055–1056, New York, NY, USA.
ACM Press.

Goradia, T. (1993). Dynamic impact analysis: A cost-
effective technique to enforce error-propagation. In
ISSTA ’93: Proceedings of the 1993 ACM SIG-
SOFT international symposium on Software testing
and analysis, pages 171–181, New York, NY, USA.
ACM Press.

INCOSE (2005). Incose requirements man-
agement tool survey, http://www.paper-
review.com/tools/rms/read.php.

Kagdi, H. and Maletic, J. I. (2007). Combining single-
version and evolutionary dependencies for software-
change prediction. InMSR ’07: Proceedings of the
Fourth International Workshop on Mining Software
Repositories, page 17, Washington, DC, USA. IEEE
Computer Society.

Law, J. (2005).Path-Based Dynamic Impact Analysis. Phd-
thesis, Oregon State University - School of Electrical
Engineering and Computer Science.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E.,
and Turski, W. M. (1997). Metrics and laws of soft-
ware evolution - the nineties view. InMETRICS ’97:
Proceedings of the 4th International Symposium on
Software Metrics, page 20, Washington, DC, USA.
IEEE Computer Society.

Moe, J. and Sandahl, K. (2002). Using execution trace data
to improve distributed systems. InICSM ’02: Inter-
national Conference on Software Maintenance, pages
640–648.

Zhao, J. (1998). Dynamic slicing of object-oriented pro-
grams. Technical report.

Zimmermann, T. and Weigerber, P. (2004). Preprocessing
cvs data for fine-grained analysis. InProceedings of
the First International Workshop on Mining Software
Repositories, pages 2–6.

ICEIS 2008 - International Conference on Enterprise Information Systems

456


