
A WEIGHTED APPROACH FOR OPTIMISED REASONING FOR
PERVASIVE SERVICE DISCOVERY USING SEMANTICS AND

CONTEXT

Luke Steller, Shonali Krishnaswamy, Simon Cuce, Jan Newmarch
Faculty of Information Technology, Monash University, 900 Dandenong Rd, Melbourne, Australia

Seng Loke
Computer Science & Computer Engineering, La Trobe University, Bundoora, Melbourne, Australia

Keywords: Scalable semantic reasoning, context-aware discovery, service-oriented pervasive discovery architecture.

Abstract: There is an increased imperative for pervasive service discovery architectures, to aid mobile users for time
critical tasks in service rich ad-hoc environments. As such, there is a need for an innovative technology for
semantically-driven pervasive service discovery by enabling semantic reasoning engines to function in an
effective and efficient manner on resource-constrained mobile devices and by incorporating context-
awareness to provide relevant services to the user. We outline several optimisation and branch ranking
strategies for pervasive reasoning to meet this goal and provide a performance evaluation of our approach.

1 INTRODUCTION

Studies such as (Roto & Oulasvirta, 2005) have
established that mobile users typically have a
tolerance threshold of about 5 to 15 seconds in terms
of response time, before their attention shifts
elsewhere, depending on their environment. Thus,
service discovery architectures that operate in
mobile environments must cope with the very
significant challenges of not merely finding relevant
services, but being able to do so rapidly in a highly
dynamic and varying context.

The limitations of syntactic, string-based
matching for web service discovery coupled with the
emergence of the semantic web implies that next
generation web services will be matched based on
semantically equivalent meaning, even when they
are described differently (Broens, 2004), using
OWL-DL which is based on Description Logic
(DL) (Baader, Calvanese, McGuinness, Nardi &
Patel-Schneider, 2003). While current service
discovery architectures such as Jini (Arnold,
O'Sullivan, Scheifler, Waldo & Woolrath, 1999) and
UPnP (UPnP, 2007) use either interface or string
based syntactic matching, there is a growing
emergence of OWL-S semantic matchmakers such
as CMU Matchmaker (Srinivasan, Paolucci &

Sycara, 2005), LARKS (Sycara, Widoff, Klusch &
Lu, 2002), IRS-III (Cabral, Domingue, Galizia,
Gugliotta, Tanasescu et al., 2006) and DIANE
(Küster, König-Ries & Klein, 2006) which support
varying levels of semantic reasoning and
approximate matching. However, they all operate on
the basis of a centralised high-end node to perform
reasoning. There are in addition, architectures
developed specifically for the pervasive service
discovery domain which are driven by context, such
as MobiShare (Doulkeridis, Loutas & Vazirgiannis,
2005), COSS (Broens, 2004) and CASE (Sycara et
al., 2002) which are either syntactic or require the
presence of a centralised high-end node.

This reliance on a high-end, centralised node for
performing semantically driven pervasive service
discovery can clearly be attributed to the fact that
semantic reasoners used by these architectures (such
as FaCT++ (FaCT++, 2007), RacerPro (RacerPro,
2007) and KAON2 (KAON2, 2007)) are all resource
intensive. Therefore, they are unsuitable for
deployment on small resource constrained devices,
such as PDAs and mobile phones. These small
devices which are typical in the context of mobile
service discovery are quickly overwhelmed when
the search space in terms of ontology size and
reasoning complexity increases. Alternatively,

113
Steller L., Krishnaswamy S., Cuce S., Newmarch J. and Loke S. (2008).
A WEIGHTED APPROACH FOR OPTIMISED REASONING FOR PERVASIVE SERVICE DISCOVERY USING SEMANTICS AND CONTEXT.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 113-118
DOI: 10.5220/0001694401130118
Copyright c© SciTePress

KRHyper (Kleemann, 2006) is a First Order Logic
(FOL) reasoner which implements FOL counterparts
of standard DL optimisations (Horrocks & Patel-
Schneider, 1999) and functions on a small device.
However, it too, suffers from out of memory
exceptions when the reasoning task is too large and
no response is given. Clearly, this shows that
existing reasoning approaches cannot be directly
ported to a mobile device in their current form.

The reality of mobile environments is a world
characterised by ad-hoc an intermittent connectivity
where such reliance on remote/centralised
processing (and continuous interaction) may not
always be possible or desirable given the need for
rapid processing and dynamically changing context.
Pervasive service discovery has to necessarily be
under-pinned by the current context to meet the all-
important criteria of relevance in constantly
changing situations. The communication overhead
(not to mention the infeasibility/impracticability) of
constantly relaying contextual and situational
changes of the user/device to a central server will
lead to inevitable delays. Furthermore, reasoning on
a central server about sensitive historical user
profiling data, used to select the best service for the
user, raises privacy concerns (Kleemann, 2006).

Thus there is a clear imperative that for
semantically driven pervasive service discovery to
meet the very real response-time challenges of a
mobile environment, the capacity to perform
matching and reasoning must occur on the resource
limited device itself. Therefore, there is a need for a
pervasive service discovery architecture, which
more flexibly manages the trade-off between
computation time and precision of results, depending
on the available resources on the device.

The remainder of the paper is structured as
follows. In section 2 we outline our strategies for
optimised reasoning and formally describe these in
section 3. Section 4 provides an implementation and
performance evaluation and conclude in section 5.

2 APPROACH – REASONING
FOR PERVASIVE SERVICE
DISCOVERY

In this section we discuss current Tableaux semantic
reasoners and present our optimisations and ranking
algorithms, for the Tableaux algorithm.

2.1 Semantic Reasoners

The effective employment of semantic languages
such as OWL requires the use of semantic reasoners
such as Pellet (Pellet, 2007), FaCT++ (FaCT++,
2007), RacerPro (RacerPro, 2007) and KAON2
(KAON2, 2007). Most of these reasoners utilise the
Tableaux (Horrocks & Sattler, 2005) algorithm with
standard DL optimisations (Horrocks et al., 1999),
due to its efficiency. Tableaux reasoners reduce all
reasoning tasks to a consistency check, in which
disjunctions form combinations of branches in the
reasoner. If all branches contain a clash, where a fact
and its negation are both asserted, then clash is
proven for all models of the knowledge base.
Tableaux can be used to check whether an individual
I representing a service, matches a request RQ (ie.
I∈RQ), by negating RQ. If the clash is proven for
all models then I∈RQ membership, is proven. In
the next section we provide a case study to motivate
the need for reasoning in pervasive discovery.

2.2 Case Study – Searching for a
Printer

Bob wishes to print a document from his PDA and
issues a service request to find a black and white,
laser printer which supports a wireless network
protocol such as Bluetooth, WiFi or IrDA. This is an
extension of (Steller, Krishnaswamy & Newmarch,
2006). Equations 2-3 show Bob’s request in DL
form, while equation 4 presents a matching printer.

Request ≡ WNet ∩ ∃ hasColour.{Black}
∩ LaserPrinterOperational

(1)

WNet ≡ ∃ hasComm.{BT} ∪
∃ hasComm.{WiFi} ∪

∃ hasComm.{IrDA}

(2)

LaserPrinterOperational ≡ Printer ∩
∃ hasCartridge. {Toner} ∩
≥ 1 hasOperationContext

(3)

Printer(LaserPrinter1),
hasColour (LaserPrinter1, Black),

hasCartridge(LaserPrinter1, Toner),
hasComm(LaserPrinter1, BT),

hasOperationContext(LaserPrinter1, Ready)

(4)

Equation 1 defines three attributes in the request,

the first is unfolded into equation 2, requiring
support for either Bluetooth, WiFi or IrDA, the

ICEIS 2008 - International Conference on Enterprise Information Systems

114

second attribute specifies a black and white
requirement and the third is unfolded into equation
3, specifying a printer which has a toner cartridge
and at least one operational context. Equation 4
fragment defines the LaserPrinter1 individual as
meeting the service request. A DL Tableaux excerpt
proving the truth of LaserPrinter1 ∈ Request, shows
a clash for all branches, as follows (only two request
attributes included for briefity):

Add: ⌐Request to Individual:

LaserPrinter1
⌐Request ≡ ⌐WNet ∪

⌐∃ hasColour.{Black}
Apply Disjunction Element:

⌐WNet ≡ ∀ hasComm.{⌐BT} ∩

∀ hasComm.{⌐WiFi} ∩

∀ hasComm.{⌐IrDA}
 Add: ⌐BT to Nominal: BT, CLASH
Apply Disjunction Element:

∀ hasColour.⌐{Black}
Add: ⌐{Black} to Nominal:

Black, CLASH

2.3 Optimisation Strategies

We observed that DL Tableaux reasoners leave
scope for further optimisation to enable reasoning on
small/resource constrained devices with a significant
improvement to response time and avoiding
situations such as “Out of Memory” errors
encountered in (Kleemann, 2006). Our algorithm
involves a range of optimisation strategies such as:
1. associating weight values with individuals and
disjunctions, 2. selective application of consistency
rules, 3. ranking disjunctions, 4. ranking individuals,
and 5. skipping disjunctions.

Weighted individuals and disjunctions can be
established using a weighted queue. Disjunctions
with the highest weight are branched on first.

Application of consistency rules to only a subset
CX of individuals, and only branching on
disjunctions related to those individuals, reduces the
size of the consistency problem. This subset can be
established using the universal quantifier construct
of the form ∀ R.C = { ∀ b.(a, b)∈R →b∈C}
(Baader et al., 2003), where R denotes a role relation
and C denotes a class concept. It implies that all
object fillers of role R, are of type C, resulting in
adding the role filler type C to all objects for the
given role R. Since this can give rise to an
inconsistency, we define the subset CX as limited to
the original individual I being checked for
membership to the request RQ and all those

individuals which relate to this individual I, via roles
R specified in universal quantifiers.

Disjunctions and individuals in weighted queues,
can be ranked by recursively checking an unapplied
disjunction or element for a potential future clash. If
a pathway to a clash is found, the weighted values of
all individuals and disjunctions involved in this path
are increased. Disjunctions can also be applied or
skipped, according to whether they relate to the
request type RQ, or not, respectively.

3 TABLEAUX OPTIMISATION
AND RANKING ALGORITHMS

In this section we formally describe each
optimisation strategy from the previous section.

3.1 Weighted Queue

A queue contains a weighted object and weight
value object value pair. Let WOi and WVi denote
these objects, where i denotes the current object. Let
Q denote the queue where Q = {WO1, WO2.. WOn}.
Let WOnext denote the next WO to be returned by the
queue. Each WV object is associated with an integer
weight value representing the current weight of the
object, let IVi denote this value. Let MV denote the
highest IV in the queue. MV = max(IV[1..n]) and IV
has the range 0 ≤ IV[1..n] ≤ MV. Let NW denote a
normalised decimal weight value where 0 ≤ NW ≤ 1,
calculated on the fly, with: NWi = IVi / MV.

Let Qind denote the individual queue and let Qdisj
denote the disjunction queue. Let WOind and WOdisj
denote individuals and disjunctions, respectively, as
weighted objects, such that Qind = {WOind

1, WOind
2..

WOind
n} and Qdisj

 = {WOdisj
1, WOdisj

2 .. WOdisj
n}

where n may be different for each queue Q. Each
WOind

i contains a separate Qdisj. Weighted objects
WOi in any queue Q are ordered by their NWi in
descending order [1..0] and several WOi objects can
have the same NWi. When a WOdisj

 is applied it is
removed from the queue and there are no more
disjunctions to apply when Qdisj ≡ {}. In a Qdisj the
next disjunction is WOdisj

next = WOdisj
1.

The individual queue Qind has a floating weight
threshold value, let WT denote this value. WT is
initially set to the highest weight in the queue, WT =
max(NW[1..n]). Let WTS denote the set of individuals
WOind

i, with NWi ≥ WT. The next individual
WOind

next is the next element in WTS, which is
repeatedly iterated over. When all WOind

i elements
in WTS contain a Qdisj

i ≡ {}, WT is set to the next

A WEIGHTED APPROACH FOR OPTIMISED REASONING FOR PERVASIVE SERVICE DISCOVERY USING
SEMANTICS AND CONTEXT

115

highest weight NW, in Qind, NW = max(NW[1..n]) <
WT.

3.2 Selectively Apply Consistency
Rules

Individuals are iteratively added to the weighted
individual queue Qind, as follows. Let CX denote the
set of individuals which were last added to Qind.
Originally, CX = {X}. Loop individuals in set CX.
Let Y denote the current individual from the CX. Let
AV denote a universal quantifier expression and let
AVS denote the set of all universal quantifiers for
individual Y such that AVS = {AV1, AV2...AVm}.
Let Ri denote the relation to which AVi relates to
and let RS denote a set of all distinct R relations to
which any AVi in the set AVS, relates. Let OS
denote the a set containing those individuals which
are objects O of any role Rj in RS, for the individual
Y, such that OS = {O1, O2..Omn}. Add all of the
elements in OS to the weighted individual queue
Qind and increment the weight value WV of these
individuals by 1. Set CX = OS.

3.3 Rank Individuals and Disjunctions

The following algorithm is used by both the rank
individual and rank disjunction strategies to
establish a path of individuals and disjunctions to a
potential clash. Let CS denote this path. The path
may be via conjunction/disjunction elements and
role fillers of universal quantifiers. When ranking
individuals let C denote the last applied non-clashing
disjunction element, let WOind denote the individual
to which the disjunction relates, let CS = {} and
execute ClashDetect once. When ranking
disjunctions, execute ClashDetect once, for each
disjunction WOdisj

i in the disjunction queue Qdisj
ii, of

each individual WOind
ii in the individual queue Qind

and let WOind = WOind
ii, C = WOdisj

i and CS = {}. If
the algorithm returns a non-empty clash path set CS
≠ {}, increment the weight value WV for all the
elements (individuals and disjunctions) within CS by
1. The pseudo code for ClashDetect is given below:

ClashDetect:
Inputs(WOind, C, CS), Outputs(Set).
If C is primitive, negation, normal or
value, then:

If WOind has type negation of C,
then:
CS = WOind + CS. return CS.

Else:
UCS{} = unfold(C).
for each UC in UCS:

CS = ClashDetect(WOind,
UC, CS).

If CS is not null,
then: return CS.

If C is a disjunction, then:
For each disjunction element E

in C:
CSNEW{} = ClashDetect(WOind,

E, CS).
If CSNEW is null,

then: return null.
CS = CS + CSNEW.

If C is a conjunction, then:
Create CSS (a set).
For each conjunction element E in C:

CSNEW{} = ClashDetect(WOind,
E, CS).

CSS = CSS + CSNEW.
CS = SelectBestCS(CSS).
Return CS.

If C is a universal quantifier,
then:
AVR = Role of C.
AVC = Role filler type of C.
OS{} = all the objects of

WOind for role AVR. CSS = {}.
For each individual O in OS:

CSNEW{} = ClashDetect(O,
AVC, CS).

CSS = CSS + CSNEW.
CS = SelectBestCS(CSS).
Return CS + WOind.

Note SelectBaseCS selects the best clash

pathway which has fewest disjunctions and depends
on types which were added by the earliest branches.

3.4 Disjunction Skipping

The following strategy determines whether
disjunctions are applied to create a new branch or
skipped. Let C denote the service request type
definition, which is a conjunction. Let DC = {T1,
T2.. Tn} denote a set of valid class types. Let DI
denote any disjunction being added to the
disjunction queue Qdisj, by the reasoner or other
optimisation strategy. DI is of the form DI = {D1,
D2..Dm}, where Di is a disjunction element. Let
NNDi denote Di in non-negated form (as a positive
term). If DC contains any NND[1..m] from the
disjunction DI, then DI is added to Qdisj with a
weighting of 1, otherwise it is skipped.

The set DC is filled using the following
population algorithm. Where C (service request) is a
conjunction or disjunction list of the form C = {E1,
E2..Eo}, let Ej denote an element of the list. Let
NNEj denote Ej in non-negated form. Add all
elements NNE[1..o] to DC, set DC = DC + NNEj

ICEIS 2008 - International Conference on Enterprise Information Systems

116

Table 1: Optimisation strategies enabled in each test.

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Selective Consistency × × × × × × × ×
Rank Disjunctions × × × × × × ×
Rank Individuals × × × × × × × ×
Skip Disjunctions × × × × × × ×

Recursively reapply this DC population

algorithm on each E[1..o] by setting C = Ej. If Ej is a
primitive or nominal type, unfold each Ej and NNEj
into a new set UCS, such that UCS = {UC1,
UC2..UCp}, and then also recursively reapply this
population algorithm on each unfolded type UCk by
setting C = UCk.

4 PERFORMANCE EVALUATION

We implemented the optimisation strategies defined
in section 3, in the Pellet v1.5 reasoner. We selected
Pellet because it is open source while the other
reasoners were not, allowing us to provide a proof of
concept and compare performance with and without
the strategies enabled.

The evaluation was performed on a HP iPAQ
hx2700 PDA, with Intel PXA270 624Mhz
processor, 64MB RAM, running Windows Mobile
5.0 with Mysaifu Java Virtual Machine (JVM), J2SE
allocated 15mb of memory.

We implemented the scenario outlined in section
2.3 to create ontologies containing 141 classes, 126
roles and 337 individuals. Due to the resource
intensive nature of XML parsing, we pre-parsed
OWL XML files into text files of triples and
postpone XML parsing to future work.

We executed a single consistency check to
compare matching individual LaserPrinter1, against
the service request, 15 times using various randomly
selected combinations of our strategies, as shown in
table 1, where test 11 represents normal Tableaux
execution (no optimisations). Tests 1-11 provided
the expected positive matching result and 12-15 did
not complete due to lack of memory.

Figure 1 illustrates the performance of each
successful test in terms of time (seconds).
Consistency time involves application of consistency
rules and branching, to perform the Tableaux
consistency check for LaserPrinter1 ∈ Request.
This also encompasses the overhead cost for
performing the optimisations, which is also shown
separately. The total includes consistency time as
well as the time required for preparing the reasoner
(eg loading triple text files into the reasoner).

As observed in Figure 1, the our optimisation
strategies considerably reduce the consistency time
required to find a clash for all models of the query
compared to test 11 which represents normal
execution of Tableaux. We found that consistency
time was influenced by the number of branches and
rules applied.

Figure 2 presents a breakdown of how much time
each strategy contributed to the overhead cost. Tests
8, 9 and 10 suffered particularly costly optimisation
overhead, due to ranking disjunctions. This was
because either selective consistency or skip
disjunctions, or both, were disabled, resulting in
more disjunctions to rank.

Test 5, 7 and 2 show that selective consistency
and skip disjunctions are the most effective
optimisations, especially when used together, and
have low overheads. Rank disjunction and individual
strategies were found to reduce the number of
branches applied, but did not provide any
performance improvement due to the high overhead.

Our performance tests show that some of our
optimisations and ranking algorithms are very
effective in improving Tableaux reasoning
performance on resource limited devices, compared
with no optimisations. This makes mobile reasoning
feasible on resource constrained devices.

5 CONCLUSION AND FUTURE
WORK

Our optimisation strategies were shown to
significantly improve the performance of reasoning
tasks on small resource constrained devices, making
deployment on these devices feasible. Some
strategies performed well, while others require
future work and we implementing a greater number
of scenarios to test our strategies more thoroughly.
We will also leverage our weighted approach, to
adaptively skip branches which have a lower weight,
when resources are low. This will provide a result
with a level of uncertainty rather than “Out Of
Memory” errors, to better manage the trade-off
between resource availability and result precision. In
addition, although we demonstrated the use of

A WEIGHTED APPROACH FOR OPTIMISED REASONING FOR PERVASIVE SERVICE DISCOVERY USING
SEMANTICS AND CONTEXT

117

0

50
100

150

200

250
300

350

1 2 3 4 5 6 7 8 9 10 11

Test Number

Ti
m

e
(s

ec
on

ds
) Total

Consistency

Optimisation Overhead

Figure 1: Processing time taken to perform each test.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
Test Number

Ti
m

e
(s

ec
on

ds
) Selective Consistency

Rank Disjunctions

Rank Individuals

Skip Disjunctions

Figure 2: Optimisation strategy overhead breakdown.

context-aware attributes in our scenario, we will use
context to pre-emptively rank the pool of
discoverable services based on user preferences and
current user context, before a request takes place.
These services will be matched first as they are more
likely to meet the user’s needs.

REFERENCES

Web Ontology Language (OWL). from
http://www.w3.org/2004/OWL.

Arnold, K., B. O'Sullivan, R. W. Scheifler, J. Waldo & A.
Woolrath (1999). The Jini Specification, Addison-
Wesley.

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi &
P. F. Patel-Schneider (2003). The Description Logic
Handbook: Theory, Implementation, and Applications,
Cambridge University Press.

Broens, T. (2004). Context-aware, Ontology based,
Semantic Service Discovery. Enschede, The
Netherlands, University of Twente: 87.

Cabral, L., J. Domingue, S. Galizia, A. Gugliotta, V.
Tanasescu, C. Pedrinaci, et al. (2006). IRS-III: A
Broker for Semantic Web Services based
Applications. 5th International Semantic Web
Conference (ISWC 2006), Athens, GA, USA.

Doulkeridis, C., N. Loutas & M. Vazirgiannis (2005). A
System Architecture for Context-Aware Service
Discovery.

FaCT++. (2007). Retrieved May 1, 2007, from
http://owl.man.ac.uk/factplusplus/.

Horrocks, I. & P. F. Patel-Schneider (1999). Optimising
Description Logic Subsumption. Journal of Logic and
Computation 9(3), 267 - 293.

Horrocks, I. & U. Sattler (2005). A Tableaux Decision
Proceedure for SHOIQ. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), Morgan Kaufman.

KAON2. (2007). Retrieved June 21, 2007, from
http://kaon2.semanticweb.org.

Kleemann, T. (2006). Towards Mobile Reasoning.
International Workshop on Description Logics
(DL2006), Windermere, Lake District, UK.

Küster, U., B. König-Ries & M. Klein (2006). Discovery
and Mediation using DIANE Service Descriptions.
Second Semantic Web Service Challenge 2006
Workshop, Budva, Montenegro.

Pellet. (2007). Retrieved October, 2007, from
http://pellet.owldl.com.

RacerPro. (2007). Retrieved May 23, 2007, from
http://www.racer-systems.com.

Roto, V. & A. Oulasvirta (2005). Need for Non-Visual
Feedback with Long Response Times in Mobile HCI.
International World Wide Web Conference Committee
(IW3C2), Chiba, Japan.

Srinivasan, N., M. Paolucci & K. Sycara (2005). Semantic
Web Service Discovery in the OWL-S IDE. 39th
Hawaii International Conference on System Sciences,
Hawaii.

Steller, L., S. Krishnaswamy & J. Newmarch (2006).
Discovering Relevant Services in Pervasive
Environments Using Semantics and Context. 3rd
International Workshop on Ubiquitous Computing
(IWUC-2006). In conjunction with ICEIS 2006.,
Paphos, Cyprus, INSTICC Press.

Sycara, K., S. Widoff, M. Klusch & J. Lu (2002). LARKS:
Dynamic Matchmaking Among Heterogeneous
Software Agents in Cyberspace. Autonomous Agents
and Multi-Agent Systems 5, 173-203.

Universal Plug and Play (UPnP). (2007). Retrieved
March 12, 2007, from http://www.upnp.org.

ICEIS 2008 - International Conference on Enterprise Information Systems

118

