ON CHECKING TEMPORAL-OBSERVATION SUBSUMPTION IN
SIMILARITY-BASED DIAGNOSIS OF ACTIVE SYSTEMS

Gianfranco Lamperti, Federica Vivenzi and Marina Zanella
Dipartimento di Elettronica per I'’Automazione, Via Branze 38, 25123 Brescia, Italy

Keywords:  Similarity-based diagnosis, discrete-event systems, temporal observations, subsumption.

Abstract: Similarity-based diagnosis of large active systems is supported by reuse of knowledge generated for solving

previous diagnostic problems. Such knowledge is cumulatively stored in a knowledge-base, when the diag-
nostic session is over. When a new diagnostic problem is to be faced, the knowledge-base is queried in order
to possibly find a similar, reusable problem. Checking problem-similarity requires, among other constraints,
that the observation relevant to the new problem be subsumed by the observation relevant to the problem in
the knowledge-base. However, checking observation-subsumption, following its formal definition, is time and
space consuming. The bottleneck lies in the generation of a nondeterministic automaton, its subsequent trans-
formation into a deterministic one (the index space of the observation), and a regular-language containment-
checking. In order to speed up the diagnostic process, an alternative technique is proposed, based on the
notion of coverage. Besides being effective, subsumption-checking via coverage is also efficient because no

index-space generation or comparison is required. Experimental evidence supports this claim.

1 INTRODUCTION base the data structures generated for solving each di-
agnostic problem. When a new problemis to be faced,
instead of solving it from scratch, the knowledge-base

Discrete-event systems (DESs) (Cassandras ands first browsed in order to find a previously-solved

Lafortune, 1999) are dynamic systems, typically diagnostic problem that is ‘compatible’ with the new

modeled as networks of components. Each com- one. If so, the knowledge relevant to the old problem

ponent is a communicating automaton (Brand and can be exploited to solve the new problem, thereby

Zafiropulo, 1983) that reacts to input events by state- speeding up the diagnostic process. Among other

transitions which possibly generate new events to- constraints, such compatibility requires that the obser-

wards other components. Diagnosis of DESs is a vation relevant to the problem in the knowledge-base
challenging task that has been tackled since a decadgubsume the observation relevant to the new prob-
via different approaches, either based on artificial in- lem. Such an observation is temporal in nature, and
telligence (Pencolé, 2000; Rozé and Cordier, 2002; is represented by a DAG. The problem lies on the

Console et al., 2002; Pencolé and Cordier, 2005) or mode in which subsumption is checked, which, ac-

automatic control techniques (Sampath et al., 1995; cording to the definition of subsumption, is based on

Sampath et al., 1996; Chen and Provan, 1997, Sam-a containment relationship between the regular lan-

path et al., 1998; Zad et al., 1999; Cassandras andguages of théndex spacesf the observations. The

Lafortune, 1999; Lunze, 2000; Debouk et al., 2000; index space is a deterministic automaton whose gen-

Schullerus and Krebs, 2001). Within the domain of eration (and comparison) may require considerable

a class of asynchronous DESs (Baroni et al., 1999; computational resources. So, this paper proposes

Lamperti and Zanella, 2003; Lamperti and Zanella, an alternative, more efficient, approach for checking

2004; Lamperti and Zanella, 2006b), calladtive observation-subsumption that avoids index-space ma-

systems a diagnosis approach has been proposednipulation, by reasoning on the specific properties of

that is based on similarity techniques (Lamperti and the observations.

Zanella, 2006a; Cerutti et al., 2007) with the aim of

pursuing reuse of knowledge when solving a diagnos-

tic problem. The idea is to store into a knowledge-
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2 BACKGROUND

When an active system reacts, it generates a sequenc
of observable labels, called tsgnatureof the reac-
tion. However, what is actually perceived by the ex-
ternal observer is gelaxationof the signatur&. Such

a relaxation is called gemporal observation For-
mally, let £ be the finite domain of all the observable
labels the active system can generate, possibly includ-
ing thenull labele. A temporal observation is a (not
necessarily connected) DAG

0=(n,£,4) 1)

wherea( is the set of nodes, with eadhe A’ being
marked with a non-empty subset of anda : A/ —

2% is the set of arcs. A<’ temporal precedence re-
lationship among nodes of the graph is defined as fol-
lows:

o If N+— N € 4 thenN < N’;
o If N <N andN’ < N” thenN < N”;
o If N— N €4 thendN” € a0 (N < N” < N/).

The set of labels marking a notieis theextensiorof
N, written |[N||. Thus, the relaxation of the signature
S into o involves three kinds of uncertainty:

e Logical uncertainty each single observable label
in the signaturé is instead perceived as a set of
candidate labels, possibly including the null label
€. All labels in||N|| but one arespurious with just
one being thectual label*

Temporal uncertaintythe absolute temporal or-
dering of the signatur® is relaxed to partial tem-
poral ordering. IfN < N’ in 0, wherel and?’ are
the actual labels ilN andN’, respectively, then
¢ preceded’ in S. However, not all precedence
relationships between nodesdn are known.

Node uncertaintyadditionalspurious nodethat
involve € (among other labels), are possibly in-
serted.

As such,o implicitly incorporates severalandidate
signatureswhere each candidate is determined by se-
lecting one label from each node fg without vio-
lating the temporal constraints imposed by the prece-
dence relationships. The set of all the candidate sig-
natures ob is called theextensiorof o, written||0||.
Among such candidates is the actual signafureike

for nodes, all candidate signatures but one are spu-
rious. The mode in which the signatuSedemeans

Lif the actual label ig, it means that no label was actu-
ally generated by the system. Note how the extension of a
node ina¢ cannot be the singletofe}.

2In a spurious node, the actual labeleiswith all the
other labels being spurious.
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Figure 1: Observations; (left) and o, (right).

to observationo is assumed to be unknown.As
explained i,n (Lamperti and Zanella, 2002), such a
degradation may be caused by the multiplicity of the
communication channels that convey observable la-
bels from the system to the observer (temporal un-
certainty), and to noise (logical uncertainty). How-
ever, although unknowf, is assumed to be preserved
within 0.

Example 1. Shown in Fig. 1 are the graphs of two
(both logically and temporally uncertain) observa-
tions, namely, from left to righto; = (A4, £1,41)
andoz = (N2, L2,42), whereas = {Ng,...,Ns}, A2
={Nj,....N;}, 1 ={ab,c,d, f,e}, andLy = {a,b,
c,d,e}. In 02, Nj incorporates the first observable la-
bel, namelya. Then, eitheN; or N; follows, each
of which involves two candidate labels, wheris the
null label. The last generated nodeN§, with a and

€ being the final candidate labels. The extension of
the observation, nameljo;||, includes the candidate
signaturesc, ad, abg abd, aca ada ach, adb, abcg
abda acba adbg each of which is obtained by se-
lecting one label for each node without violating the
temporal constraints, where the null lalsdias been
removed.

Within the diagnostic process it is inconvenient
to reason on the observatiam as is, mostly be-
cause the explanation-oriented diagnostic reasoning
requires some sort of observation-indexing. Such
an indexing is more naturally performed based on a
surrogate of the observation, called iheex space
namelyIsp(o). This is a deterministic automaton
with the property that its regular language is the ex-
tension ofo,

Lang(Isp(0)) = [[o]. )
In other words, the set of strings generated by each
path inIsp(0), from the initial state to a final state,
equals the set of candidate signatures relevamt.to
As detailed in (Cerutti et al., 2007), the generation of
the index space ab requires two steps, namely:
e Yielding the nondeterministic automaton, called

the prefix spaceof 0, where each node identifies
the set of consumed nodesdn up to now;

30therwise, in principle, we might distils from o,

thereby disregarding in the diagnostic process.
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This means that subsume®’ iff the set of candidate
signatures ob includes all the candidate signatures
of 0.

The reason why observation subsumption sup-
ports reuse can be roughly explained as follows. The
solution ofJ yields an automatop, a sort of diag-
noser, where each state is marked by a set of diag-
noses and each transition is marked by a label .in
The language off is the subset of the signatures rel-
evant too that comply with the model of the system,
namely,Lang(p) C ||o]||. The same applies to a new
problemd’ relevant too’. However, ifo 3 o', that
is, |[o]l 2 ||o’||, thenLangu) 2 Lang(). In other
words, contains all the signatures pf. This allows
the diagnostic engine to reugen order to generate
[ based ono’. The advantage stems from the fact
that such an operation is far more efficient than gen-
eratingll from scratch, which would require heavy
model-based reasoning.

Example 3. With reference to observationg and

Furthermore, as explained shortly, the role of the in- ¢, outlined in Fig. 1, and the relevant index spaces in
dex space comes into view for checking observation- Fig. 2, itis easy to check that 5 0,, that is,||01] 2

Figure 2: Index spacdsp(01) (left) andlsp(02) (right) .

e Generating the deterministic automaton equiva-
lent to the prefix space, in fact the index spéce.

subsumption too. |02]|. In other words, each string lrang(Isp(02)) is
Example 2. Shown in Fig. 2 are the index spaces alS0 astring inang(Isp(01)).
of observations1 (left) and 0, (right) displayed in The problem with observation-subsumption

Fig. 1. It is easy to check that the regular language of checking lies on the fact that, establishing whether
each index space equals the extension of the relevantve can exploit the knowledge for solving, in
observation (the set of candidate signatures), whereorder to solvell’, requires a considerable amount
each string of the language corresponds to a path inof computational resources. Specifically, we need
the index space, from the initial state to one of the fi- first generatelsp(o’) and, subsequently, compare
nal states (with the latter being double circled in the LangIsp(o’)) with each Lang(lsp(0o)) in the
figure). In particular, Example 1 offers evidence that knowledge-base, in the hope of finding a subsuming
Lang(Isp(02)) = | 02]|. observatioro. Such an approach, based on the gen-
eration of the index space and on regular-language
containment-checking, may be prohibitive in real
applications. In order to cope with this complexity,
we need some alternative checking-techniques.

In similarity-based diagnosis of DESs (Lamperti
and Zanella, 2006a), it is essential to understand
whether the solution of the diagnostic problém
at hand can be supported by the knowledge yielded
for solving a previous (different) diagnostic problem
O, with the latter being stored in a knowledge-base.
Among other constraints, reuselofcan be exploited 3 CHECKING SUBSUMPTION
only if the observation®’ and o relevant ta’ and
0, respectively, are linked by a subsumption relation- The systematic nature of checking based on the for-
ship, mal definition of subsumption stems primarily on its

030 (3) lack of prospection (short-sightedness). As a mat-

. i ter of fact, such aystematidechnique does not per-
namely, only ifo subsumes’. The subsumptionre-  ¢5m any kind of reasoning on the given observations.
Ia§|onsh|p is defined in terms of regulgr-lqnguage con- assume the problem of testing o', namely the
tainment, relevant to the corresponding index spaces,checking problemThe idea is to find out some condi-
precisely: tions that either imply or are implied by such a re-

/ lationship. If these conditions can be checked us-
Langllsp(0)) 2 Lang(Isp(o7)). “) ing a reasonable amount of computational (space and
4Being equivalent, both the prefix space and the index fime) resources, then chances are that we can give an

space share the same regular language (Hopcroft et al.,@answer to the checking problem efficiently. Specif-
2006). ically, if a necessary conditioM is violated, then
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the answer to the checking problem will he. Du- of occurrences of. Thus,||Isp(0)]|| 2 ||Isp(0”)]|, that
ally, if a sufficient condition; holds, then the an- is, 0 3 0/, a contradiction. [J
swer will beyes However, if eithem\. holds orS; Corollary 1.1. 0 subsumes’ only if
is violated, then the checking problem remains unan-
swered. Necessary conditions and sufficient condi- L2 9)

tions relevant to the checking problem are given in
Theorem 1 and Theorem 2, respectively. As shown
shortly, these conditions are eventually incorporated
within Algorithm 1 (see below).

Proof. Condition (9) is entailed by condition (7) of

Theorem 1, with the latter being necessary fop

o’ to hold. Hence, condition (9) too is a necessary
condition for observation subsumptiori.]

Th?ortlam/ 1 Let o = («,£,4) an(_j o' = Example 4. In Example 3 we have shown thay

(A ’é ’hﬂg bf] two tgmpo;al (()jbser_vanonds. ,Let subsume®,, where such observations are displayed
n and n be the number of nodes N and 2, in Fig. 1. Hence, the conditions relevant to The-
respectively. Letnand rf be the number of nodes .o 1 are expected to hold far, and 0,. We
that include the null labet in ¢ and a¢’, respec- haven; = 5, Ny — 4, nye — 3, Ny — 2. As a mat-
tively. Let:a and 2/ be the multisets of observable o of fact, both conditions (5) and (6) hold. More-
labels occurring ino and o’, respectively. Them over, sincesr; = [a,a,a,b,b,b,b,c,d, f,&,e,¢ and
subsumes®’ only if the following conditions hold: 9 _ la.ab,cde g]’ contlitiah (77)’h<’3ld’s’to,o.

n>n (5) The conditions necessary for subsumption stated
ne—n,>n—n (6) in Theorem 1 can be gasily checked. Thus, they cor-
, respond to the first actions of the checking algorithm.

M 29 (") if one of them is violated, the check terminates im-

mediately with a negative answer. Otherwise, the
check continues by testing a sufficient condition of

subsumption based on the notion of coverage given
in Definition 1 below. Roughlyp coverso’ wheno

is a relaxation ob’, inasmuch as an observation is a

relaxation of a system signature.

Proof. The proof is by contradiction. To prove con-
dition (5), we have to show that 0’ = n>n.
Assume the contrary, namely > n. SinceVN’
A (JIN']] # {€}), we can make up a temporal se-
quenceT by selecting a labéel # € for eachN’ € a(”,
where|T| = n'. Clearly,T ¢ |/Isp(0)|| because tem-

poral sequences relevant to are long at mosh. Definition 1. (Coverage)Let 0 = (A(,£,4) and

Hence,||Isp(0)|| 2 ||lIsp(0”)||, thatis,0 3 0’, a con- o' = (n’,.',a’) be two temporal observations,

tradiction. whereal = {Ny,...,Na}anda’’ = {N,...,N/ }. We
To prove condition (6), we have to show thab say thato coverso’, written o0 > 0, iff there ex-

0’ = ng—n, > n—n'. Assume the contrary, namely ists a subset of &', with a¢ = {Ny,...,Ny} hav-

n—n' > ng —ng or, in other terms, ing the same cardinality as(’, such that, denoting

N—ne>n —n. @) NEZ(N—N),wehave:

Leta/ = {N'|N' € a¢’,e € [N'||}. Now, considera (1) (e-coverage):vN € A* (e € [IN|);_

sequencé.’ of labels selected from all nodes of,  (2) (logical coverage)¥i € [1..n] (|[Ni[| 2 [IN{|]);

in such a way that is chosen for all nodes ing . (3) (temporal coverage): For each patfj ~ Nj =

Let T’ be the temporal sequence correspondingy’to (l\_li,Nf, B ,7N§7|\_|j> in 0, whereN; € a(, |\_|J e,

Clearly,|T'| = n —n¢. In consequenc’ ¢ [[Isp(o)| s>0,vke[1..9 (N € ac¥), the following holds

because each temporal sequefiiceslevant too is in o’ N/ <N/,

such thaiT| > n— ng, that is, based on equation (8), ) . .
IT| > ' —n, hence,[T| > |T'|. Thus,]||Isp(0)] 2 Example 5. With reference to the observations dis-

l1sp(0”)]|, that is,0 3 0’, a contradiction. played in Fig. 1, itis easy to show thag > 0. As-

To prove condition (7), we have to show that SUM€ thessubset ofa being A\ = {N1,N2,Ng,Ns}.
020 = af Dar’. Assume the contrary, namely Hence A = {Nz}. Clearly,e-coverage holds, a/se
M 2 ', thatis, v’ O o . This means thatr ' will INs||. Logical coverage holds too, a&b|| 2 [|Ny],
containk’ > 1 occurrences of a labé| with a7 in- [IN2]l 2 [IN3[l, [[Nal] 2 [INg[|, and [[Ns|| 2 [|Ng]|. It
cludingk > 0 occurrences of the same label, where 'S €3Sy to check that temporal coverage occurs. For
K > k. Choosel' so as to include ak’ occurrences ~ INstance, for(N1,Ns, Ns), whereNs € A, we have
of ¢ in o’. Hence,T’ will contain exactlyk’ occur- Ny <Nz In 0.
rences of. On the other hand, no temporal sequence  Theorem 2 and Note 1 offer evidence that cover-
L can be composed in to include the same number age is only sufficient for subsumption, not necessary.
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However, in practice, if coverage does not hold, it is
unlikely for subsumption to hold. Note that, since
coverage entails subsumption, the conditions in The-
orem 1 are necessary for coverage too.
Theorem 2. Coverage entails subsumption:

oro = 030 (10)
Proof. The proof is based on Definition 1 and Defi-
nition 2 (the latter given below).

Definition 2. (Sterile sequence) Let 9~\[ =
(Ng,...,Ny) be an ordering of nodes in .
Thesterile sequencef A’ ,

<N085N187' . aan/>

is a sequence of subsetsgf, calledsterile setsin-
ductively defined as follows:

(11)

e (Basis)A( is defined by the following two rules:
(1) IfN et Nisaroot ofo, then Ne A,
(2) If N € ac%, all parents of N are i, then
N € A
e (Induction)Givena;, i € [0..(n' —1)], the suc-
cessive sterile set;% , is defined by the following
two rules:
() If N € %, all parents of N are
(2" U{R1}), then Ne e,
(4) If N € a %, all parents of N are in
(%" U {41} UAGS,), then Ne S,
wherea;*, i € [0..n'], is recursively defined as fol-
lows:
€

{2

Ay U{R UG
To prove the theorem, it suffices to show that each

candidate signatur@in the index space o’ is also
a candidate signature in the index space piamely:

VS € [lIsp(0)]| (S € [lIsp(0)1]). (13)

According to Theorem 1 in (Lamperti and Zanella,

2002),S is the sequence of labels obtained by select-
ing, without violating the precedence constraints of
', one label from each node i/, and by removing

all the null labels. Let

N = (N;,...,N) (14)

be the ordering of\’ relevant to the choices of such
labels. Accordingly, the sequenié of the chosen
labels can be written as

L'=|te|N,iec[l.n))

in

ifi=0
otherwise.

(12)

(15)

5An ordering of a set s a sequence involving all and only
the elements in the set, without duplicates.
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while the candidate signatu$es in fact
S=({|tel (+¢). (16)

We need to show that there exists an ordefihof
Al fulfilling the precedence constraints imposed by
4, from which it is possible to select a sequeficef
labels,

L= <£l;£2a"'a€n> (17)

such that the subsequence of non-null labeld.in
equalss:

(L] el lt+£¢€)=S. (18)
Note howN (as well as any other ordering af) can
be represented as a sequence of nodgs,iwith each
node being interspersed with (possibly empty) subse-
quences\f of nodes in ¢, specifically

N = N§U (Np) UN§ U (Rp) UNS... (Ny ) UNE, (19)

where
n r - n "
U=a, UN=a’ [N=0 (20)
i=1 i=0 i=0

The proof is by induction ofil.’. Let L{ denote the
subsequence dt’ up to thei-th label,i € [1..n].

Let I; denote the subsequencelofrelevant to the
choices of labels performed in correspondence of
the labels inL{. LetS; andS| denote the candidate
signatures correspondingltg andL/, respectively’

(Basi9 No label is chosen im’, that is,Ly = (). We
choose a sequence of empty labels for all the nodes
in a5, which is clearly possible according to the
property thatn;§ is a sterile set composed of nodes
having ancestors in® only. In other wordsN§ is

an ordering ofa;, while Lo = (g,¢,...,€), hence,

So =55 = ().

(Induction We assume thatL; and L

i €[0..(n" —1)], are such tha$; = S{._We also as-
sume that, given the sequen@é,...,N/) of chosen
nodes ino’, the corresponding sequence of chosen
nodes ino is NGU (N1) UN§ U (N2) UN5... (N;) UNF,
where,Vk € [1..i], if Ny is the nodeN/ in a(’, then

Nk is the nodeN;, in a¢, and eachN} is an ordering

of A(f. We have to show that, once chosen the next
label ¢ € ||N/_4||, thereby determiningL!,; and

S/, 4, it is possible to choose a nodie,1 € a( that
includes/, andNf,, as an ordering of\;%, from
which € is chosen, thereby determinirfig; such

thatSi+1 = Si,Jrl.

5Note howL{ includes exactly labels, while, owing to
thee selected for nodes in, the number of labels ih; is
possibly greater than
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Let Nj be the node im(" = {Ng,...,N} cor- which subsumption holds while coverage does not.
respondlng toN/.;. According to logical cover- Co?siqer/two observations, = (9\[7L,/ﬂ) 3”90//2
age in Definition 1, there exists a nod@ in A = (A’ £7,2"), wherenr = {Ni,No}, A" = {Ng, No},

_ ! _ ! __ —
{Np,...,Ny} such that|Nj|| 2 [N/, in other words, ~ ~ = £"={a} 4 = {Nir— Ne}, 4" = 0, and[|\u | =
l\__lj includes€ We consideN 1 = N;j. In order for IN2[| = [Ny} = [[No|| = {a}, as displayed in Fig. 3.
N; to be actually chosen, we have to show that each
parent nod& of N; in 0 was already considered, that N, a @N'1

is, N belongs to the prefix o& relevant tolj. Two

cases are possible for. N, e C-DN‘2

(a) N is a nodeNy € A(. _On the one hand, owing _ _ L
to temporal coveragé — N;j in 0 entailsN; < Figure 3: Observations (left) ando’ (right).
N’ in 0’. On the other, sincN’ was chosen in
o', allits parent nodes must rlave been conS|deredc|ear|y,N 9\[ anda; = 0. Note how, unlikeo,
already, that isN € (N,...,N/). Since, based  sincea’ — 0, 0o’ does not force any temporal con-
on the assumption dhduction we always choose  straint betweeil; andN,. Incidentally, both observa-
for each node ity € A" the corresponding node  tions involve just one candidate signature, nanely

Nm € 2( , it is possible to claim | thatl, was already  (a,a). Thus, sincg|Isp(o)| = |/Isp(o’)|| = {(a,a)},

considered irp, that is,Ny € (Ny, .. N.) both observations subsume each other, in particular
(b) N € A. We consider each pad ~ N in 0 such 0 3 0'. However, it is easy to realize th@doesnot

thatN, is the first ancestor df (possiblyN itself), covero’, namelyo i o'. In fact, due to the sym-

metry of 0/, we can choose any of the two possible

where eithelN, is a root ofo or Ny € A(. Let Ay gy : Y
be the set of such ancestors. We show that each2SSociations between nodesdrand nodes iro”, for

nodeN, € %, has been considered already. Two nStance’ = {Ni,No}. Based on Definition 1, on
S - the one hand, botb-coverage and logical coverage
cases are possible: eithdy € Az or Ng € AC. In

the first caseN, is a node in the sterile se{; ? Oork,j\i 'o_)nI:Ih?noghevr\}(;[ehrg\?g\rléli?\l\l/er?%z Samlssrzgg’_ as
and, hence, it has been consideredfpalready - S AN 9

(seeBasig. In the second casdlf € A(), letN, be gtlveortasult occurs fon, = {Nz,N1}. In other terms,
the node im( corresponding tdl;. We consider a 20

pathNp ~ N — N;j. Since betweeil, andN; are

only nodes im\[,2 temporal coverage implies that

N}, < N/ in o', whereN}, is the node iy’ corre- 4 TESTING COVERAGE

spondmg toNy. Thus N/, was already considered
in 0’. As, based on the assumptionlirduction In this section we give an abstract, pseudo-coded
we always choose io the corresponding node of  implementation of subsumption-checking via cover-
that chosen i’, this implies that\,, was already ~ age. Specifically, Algorithm 1 tests both the neces-
considered iro too. We conclude that all nodes sary conditions of Theorem 1 and the coverage rela-
in Az have been considered. Now, it is clear that tionship. A tracing of the algorithm on observations
N is either ina;; or N is a node belonging to the in Fig. 1 is provided in Example 6.

sterile set of some node ia. In either case, ow-  Ajgorithm 1. (CoveRS) The Coversfunction (lines
ing to the assumption dhduction N musthave 1 41y takes as input two observationsando’, and

been considered already. In other words, all par- o115 a Boolean value indicating whether or oot
ents ofN; have been chosen already, thereby al- ¢ouerso’. The body ofCoversis outlined in lines
lowing N; itself, al|asN.+l, to be chosen. Further-

more, based on the definition of sterile sequence,
we may also consider an orderity, ; of ;%
and choose labelfor each of such nodes, thereby
leading to the conclusion thdf,; =S ;. O

o ando’ are set. Then, at line 33, conditions (5) and
(6) of Theorem 1, along with condition (9) of Corol-
lary 1.1, are checked. In lines 36-38, the multisets
o and s’ of instances of labels are created, with
the former decremented ly= (n— ') instances of
label e, which is the cardinality ofaA¢ —a¢’). This

, , allows the algorithm to retain a sufficient number of

030 # obko. (21)  gpare nodes in¢ that contaire, namelya( € in Def-
To be convinced, it suffices to show an example in inition 1. At line 39, condition (7) of Theorem 1 is

Note 1. Coverage is stronger than subsumption,
namely:

49
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checked. The algorithm yields , the subset of\’
that is associated with/’ in Definition 1, by build-
ing the setg of associations through the call to the
auxiliary functionCovSteat line 40. The specifica-
tion of CovStepis given in lines 3-29. Besides,

o', v, andar’, it takes as input andc¢’, the set of
nodes already considered inand o’, respectively,
along withd, the number of nodes in € not yet con-
sidered, andg , the set of associations made up so
far. The body ofCovStepstarts at line 10, where the
cardinality of % is tested: if® containsn’ pairs, it
means that all nodes v’ have been considered and
Al is completed, thereby, coverage holds. Otherwise,

1. function Covergo,0’): Bool
2 0=(,£,4),0" =(«’,',a’): observations;
3. function CovStepo,o’,c,c’,m , o', d, % ): Bool
4 0=(N,£,4),0" =(«’,L',a’): observations,
5 ¢, ¢’ the set of consumed nodes forando’,
6. o, ": the multisets of labels i ando’,
7 d: the number of nodes in that can still be im( £,
8 R C A x A ': arelation o anda(’;
9 begin {CovStep
10 if |® | = n’ then return true end-if ;
11.  Pickup anod®&’ € (a'’' — ¢’) with parents inc’;
12. 7 :={N|Ne(n —), all parents oN are inc };
13. foreachN e # do

4. N[ 2N A (3 — [N])) 2 (¢’ — [N']]) then

Ala := the set of nearest ancestora\bin % (A );

anew nodé\’ in 0’ is considered at line 11, such that 16. if VNa € 2(a, (Na,NJ) € & (N} < N') then

all its parent nodes have been considered already. At17. if CovStepo,0’,c U{N},c’U{N'}, a1 —||NJ,
line 12, the setr of nodes ino is created, which in- ! —||N'||,d, & U{(N,N")}) then
cludes the unconsidered nodesmfwith all parents  18. return true

already inc. A loop for each nod&l in 7 is iterated %g- eigdi;‘if

in lines 13-27. First, logical coverage and contain-

ment relationship of labels are tested (line 14). Then, 2L egga.

22. if e [N Ad>0A (a —(|IN]|—{e})) D a’ then

the setax of the nearest ancestdrsf N which have 23, if CovStepo, 0’,c U{N}, ¢,

been already involved in the associationsgofs in- af — (IN|—{e}).%",d—1,% ) then
stantiated (line 15). This allows temporal-coverage 24. return true

checking (line 16). If the latter succeed®)vSteds 25. end-if

recursively called at line 17, with new actual param- 26.  end-if

eters: the sets and ¢’ of considered nodes are ex- 2/- e”d'fog? |

tended withN andN’, respectively, the multisets Sg' efr]eélj[r(r:]ossstip-

andas’ are decremented by the labelsNhandN',  3q. pegin{Covery

respectively, whiler is extended with the new pair 31 n:=|a|;ne:={N|Nea,ec|N|}

(N,N’). If such a call succeeds, the current activation 32. n':=|a’’|;n,:={N'|N ea’,ee|N};

of CovStepucceeds too (line 18). If not, or eitherlog- 33. ifn<nvng—ng<n—n'v .z 2.’'then

ical or temporal coverage fails, a chance still remains 34.  return false

by assumindN € & &: this is viable only on condition ~ 3. end-if: _ , _ .
thatN includee, there exists at least one spare node 37 g_riarfitg,? multiseter’ anda " of labels ino, o°;

in A€ (d > 0), and the multisets containsy ' once " Removal instances of labe from a

decremented by the labels Nf € aside (line 22, If 39. if ar 2 ac' then return false end-if;

so, a different recursive call t8ovStegs performed 40. return CovStepo,0’,0,0,91 ,ac’,d,0)

at line 23, with the changed parameters being the (ex-41. end{Covers.

tended) setr of consumed nodes in, the (decre- ) ) )
mented) multises , and the decremented valuecbf E_xample 6._ With reference to the observatlons in
If such a call succeeds, the current activatioCof-  F19: 1, consider the run @overgoy, 02). Since, ac-
Stepsucceeds too. If not, the loop is iterated and a €0rding to Example 4, all the necessary conditions of
new node ins is tried. If the computation exits the Theorem 1 hold, we focus our attention on the first

loop in a natural way, it means that no node can be all to CovStemt line 40.

associated witiN’ within this computational context, ~ Depicted in Fig. 4 is the tree of the recursive ac-
thereby causing the current activation ®bvStepto tivations toCovStepwhere each nodecorresponds
fail (line 28). to thei-th call (dashed nodes correspond to calls at

line 23, with the others corresponding to line 17).

"The nearest ancestors of a node are not necessarily its
parents, since a parent node may not belong ta( ), as it
is included inNE&.

8When a spare node is consumeds retained inac
because. at line 38, all instancesatlevant to spare nodes Figure 4: Activation tree fo€ovStegin Example 6.
were removed fronms already.
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Table 1: Tracing ofCovergos, 02) in Example 6.
Id c c’ M o’ d 3
1 0 0 {a,a,a,b,b,b,b,c,d, f,e,e} | {aab,cdee} | 1 0
2 {1} 0 {a,a,b,b,b,c.d, f,e,e} {a,a,b,c,d,e,e} | O 0
3 {1,2} {1} {a,b,b,c,d, f,& e} {a,b,c,d,¢ €} 0 {(2,1)}
4 {2} {1} {a,a,b,b,b,c,d, f g€} {a,b,c,d,¢, €} 1 {(2,1)}
5 {1,2} {1,2'} {a,b,b,c.d, f,&} {a,c,d,e} 1 {(2,1),(1,2)}
6 {1,2,3} {1,2'} {a,b,b,c,d,e} {a,c,d,e} 0 {(2,1),(1,2)}
7 | {1,234} (1,23} {a,b,e} {a e} 0 {(2,1),(1,2),(4,3)}
8 | {1,2,345} | {1,2,3,4} 0 0 0| {(21),(1,2),(4,3),(54)}

Relevant details are given in Table 1, with being
the identifier of the call, while the other columns in-

dicate the actual parameters of the call (observation

Proof (sketch). To prove equivalence (22), we first
show

Covergo,0’) = o> 0. (23)

nodes are identified by the corresponding SUbSC”ptS)-AssumingCovers(o,o’) succeeding means that the

The computation is described by the following steps,
where item numbers stand for activation identifiers,
namelyld.

1. N' =1, 7 ={1,2}. Within the loop (line 13),
choosingN = 1 makes the multiset containment
false (line 14). However, since condition at line 22
holds forN, a recursive call tadCovStepis per-
formed at line 23 (seld = 2 in Table 1).

. N =1, ={23}. With N =2, arecursive call
is performed at line 171d = 3 in Table 1).

3. N'=2, 7 ={3,4}. With N = 3, logical coverage
fails, as||NJ|| 2 |IN’||. Besides, althoughe ||N||,
condition at line 22 is false becaude- 0 (no fur-
ther spare nodes to assumeyjii). Thus, a new it-
eration of loop at line 13 is performed with= 4:
logical coverage fails, while condition at line 22 is
false (sinced = 0 ande ¢ ||N||). This causes the
control to return to the second call, where condi-
tion at line 22 is false. Therefore, a new iteration
of loop at line 13 is performed, now with = 3.
Since both checks at lines 14 and 22 fail, the con-
trol returns to the first call, wherd = 2 is cho-
sen: this allows the fourth recursive call at line 17
(Id=4).

4. N' =2, ={1,4}. WithN =1, arecursive call
is performed at line 1714 = 5).

5. N'=3, 7 ={3,4}. With N = 3, logical coverage
fails. However, since condition at line 22 holds, a
recursive call is performed at line 2Ri(= 6).

. N'=3, 7 ={4}. With N =4, arecursive call is

performed at line 171 = 7).

N =4, = {5}. With N =5, a recursive call is

performed at line 171¢ = 8).

At line 10, sincg® | = 4, CovStepsucceeds.

7.

8.

Proposition 1. Algorithm 1 is a sound and complete
implementation of coverage:

Covergo,0’) < o> 0. (22)

call to CovStemt line 40 returngrue. FunctionCov-
Steprecursively instantiates the setof associations
of nodegN, N’), for which both logical coverage (line
14) and temporal coverage (line 16), required by Def-
inition 1, hold. Moreoverg-coverage is supported by
conditions at line 22 and the initialization at lines 36—
38, which allow for retaining thén—n’) nodes ofy( ©
oncegr is completed (line 10). In other words, entail-
ment (23) holds. Then, we have to show

o> 0’ = Covergo,0’). (24)

The proof is by contradiction. Assume that> o',
while Covergo,0’) = false Based on Definition 1,
let® * ={(N1,N7),...,(Ny,N/,)} denote the relation
betweenn’ anda(’. Based on a run o€overs we
show thatCoversnecessarily makes up = % *. The
proof is by induction org . Note how we can restrict
our analysis to the recursive call @ovStepas lines
31-39 simply check the necessary conditions of
subsumption stated by Theorem 1 and Corollary 1.1.
In fact, since coverage entails subsumption (Theo-
rem 2), such conditions are necessary for coverage
too, in other words, the computation surely reaches
the call toCovStepat line 40. Moreover, such call

is supposed to returfalse (owing to the assumption
Covergo,0’) = false).

(Basi9 Focus on the first call t€ovStepwherec,
¢’, andg are empty, and consider the (first) nade
chosen at line 11. LeY’ correspond to thg-th node
ina’, namerNJf. LetN; be the node im¢ associated
with Nj in ®*, namely(Nj,Nj) € ®*. Based on
Definition 1, temporal coverage requires that, for
each pathN; ~ N; in 0, where all intermediate
nodes in the path are in ¢, we havel/ < NJf in o’.
However, none of such paths exists, s= Nj is
chosen withc’ = 0, that is,N’ has no parent nodes.
Consequently, all ancestors bl in o (if any) are
in A%, that is, they contain labal. SinceCovStep
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is supposed to fail, it will try all choices afl in ¥ .
Two cases are possible: eitiéy is a root ofo or all
ancestors oN; are ina®. In the first caseN = N;

observations for which subsumption hold, so that the
necessary conditions in Theorem 1 always Hold.

is associated ik with N’ = N/ within the recursive 4000 -

call to CovStepat line 17. In the second case, the  3s00f = 3F q
same association will be created after a number of £, [ Pl ) ]
recursive calls ofCovStepat line 23, as all calls = [ ]
to CovStepare assumed to fail (including the one ™[ N i
creating such association). Thus, in any case, the first ~ o————=—, 0/ 10‘20
choice ofN" will led to an associatioiiN,N’) which Observation nodes Observation nodes

isin % * too. Figure 5: Checking subsumption: time response.

(Induction) Assume, in the current call t€ovStep

R = {(Ney, N, ) -+, (No, NG, )}, whereg. C £ %, that

is, all associations yielded yovStepre in® * too.
Let A and A¢{ denote the projections af. on A
anda’’, respectively. Now, consider the next choice
of N" atline 11. LetN’ correspond to th¢-th node in
A, namerNJf. LetN; be the node im( associated
with N/ in % *, namely (Nj,Nf) € ® . Based on
Definition_1, temporal coverage requires that, for
each patlN; ~ N;j in 0, where all intermediate nodes
in the path are im(%, N/ < NJf holds in o’. This
implies that allN/ are ina/ and, in consequence of
the inductive assumption, am_li are ina,. Hence, L !
following the same argumentation outlinedBasis
N; can be considered and associated Wfh Thus,
(Nj,Nj) is inserted into . This leads to the claim I ,
that (& U {(Nj,Nj)}) € &*, which concludes the ,

proof of Induction Thus, equation (24) is proved. 0 ‘ 10
O Observation nodes

Shown in Fig. 5 is the response time for the two
algorithms, with thex-axis marked by the number of
nodes in the involved observations. Precisely,yhe
axis indicates the time fd8ubsumegashed line, on
the left) andCovers(plain line, on the right) to emit
the relevant verdict. Considering the different scale
of the y-axis, the comparison is striking in favor of
Covers Displayed in Fig. 6 is the maximum space
allocation for the two algorithms, which shows how
no considerable difference exists between them.

3

Space[MB]
[N}
\
!

20

Figure 6: Checking subsumption: space allocation.

5 EXPERIMENTAL RESULTS 6 CONCLUSIONS

A number of experimcigvore gigicd @n order to A technique for checking observation-subsumptionin
assess the coverage approach to subsumption check- q g P

ing based on different classes of observations. We ran?éa%?rzzstgf Eriﬁ: 2|ar§ ”k;?i?n_ggggscﬁg' r-:—:slfsd\:\?hc:rles
subsumption checking using two different algorithms q P Y 9 '

: . the solution of a diagnostic problem is possibly sup-
rototyped in Haskell functional language (Thomp- : .
FsJon 1y9p99) namelBubsumeand Covgers gTh(e for- P ported by the solution of a previously-solved prob-

mer is strictly based on the definition of subsumption lem stored in a knowledge-base. The solution to such

. - i . checking-problem can be provided strictly based on
and ragiuiires testiggandex-space (automaton) contain the definition of observation-subsumption, which re-

ment. We considered three classes of observations, Uires the qeneration and comparison of the index
namelydisconnectedconnectedandlinear. In dis- q 9 P

- . spaces of the two observations, where an index space
connected observations, no temporal constraints are P P

) e is an acyclic automaton. Since index-space genera-
given among nodes, thereby maximizing temporal un- tion andy rocessing are computationall pcom gI]ex an
certainty. Instead, in connected observations, each b 9 P y plex,

node is temporally linked with other nodes. Linear alternative technique has been envisaged and formally

. : efined in this paper, which exploits a number of nec-
observations are a subclass of connected observatlongSsar conditi(fnsp as well as apsufficient condition. for
where no temporal uncertainty occurs. The experi- Y ' '

mental results in this paper refer to connected obser-  9n fact, when one of such conditions is violat@hvers
vations. In order to stress the computation, we choseis increasingly more efficient thaubsumes
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