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Abstract: Similarity-based diagnosis of large active systems is supported by reuse of knowledge generated for solving
previous diagnostic problems. Such knowledge is cumulatively stored in a knowledge-base, when the diag-
nostic session is over. When a new diagnostic problem is to be faced, the knowledge-base is queried in order
to possibly find a similar, reusable problem. Checking problem-similarity requires, among other constraints,
that the observation relevant to the new problem be subsumed by the observation relevant to the problem in
the knowledge-base. However, checking observation-subsumption, following its formal definition, is time and
space consuming. The bottleneck lies in the generation of a nondeterministic automaton, its subsequent trans-
formation into a deterministic one (the index space of the observation), and a regular-language containment-
checking. In order to speed up the diagnostic process, an alternative technique is proposed, based on the
notion of coverage. Besides being effective, subsumption-checking via coverage is also efficient because no
index-space generation or comparison is required. Experimental evidence supports this claim.

1 INTRODUCTION

Discrete-event systems (DESs) (Cassandras and
Lafortune, 1999) are dynamic systems, typically
modeled as networks of components. Each com-
ponent is a communicating automaton (Brand and
Zafiropulo, 1983) that reacts to input events by state-
transitions which possibly generate new events to-
wards other components. Diagnosis of DESs is a
challenging task that has been tackled since a decade
via different approaches, either based on artificial in-
telligence (Pencolé, 2000; Rozé and Cordier, 2002;
Console et al., 2002; Pencolé and Cordier, 2005) or
automatic control techniques (Sampath et al., 1995;
Sampath et al., 1996; Chen and Provan, 1997; Sam-
path et al., 1998; Zad et al., 1999; Cassandras and
Lafortune, 1999; Lunze, 2000; Debouk et al., 2000;
Schullerus and Krebs, 2001). Within the domain of
a class of asynchronous DESs (Baroni et al., 1999;
Lamperti and Zanella, 2003; Lamperti and Zanella,
2004; Lamperti and Zanella, 2006b), calledactive
systems, a diagnosis approach has been proposed
that is based on similarity techniques (Lamperti and
Zanella, 2006a; Cerutti et al., 2007) with the aim of
pursuing reuse of knowledge when solving a diagnos-
tic problem. The idea is to store into a knowledge-

base the data structures generated for solving each di-
agnostic problem. When a new problem is to be faced,
instead of solving it from scratch, the knowledge-base
is first browsed in order to find a previously-solved
diagnostic problem that is ‘compatible’ with the new
one. If so, the knowledge relevant to the old problem
can be exploited to solve the new problem, thereby
speeding up the diagnostic process. Among other
constraints, such compatibility requires that the obser-
vation relevant to the problem in the knowledge-base
subsume the observation relevant to the new prob-
lem. Such an observation is temporal in nature, and
is represented by a DAG. The problem lies on the
mode in which subsumption is checked, which, ac-
cording to the definition of subsumption, is based on
a containment relationship between the regular lan-
guages of theindex spacesof the observations. The
index space is a deterministic automaton whose gen-
eration (and comparison) may require considerable
computational resources. So, this paper proposes
an alternative, more efficient, approach for checking
observation-subsumption that avoids index-space ma-
nipulation, by reasoning on the specific properties of
the observations.

44
Lamperti G., Vivenzi F. and Zanella M. (2008).
ON CHECKING TEMPORAL-OBSERVATION SUBSUMPTION IN SIMILARITY-BASED DIAGNOSIS OF ACTIVE SYSTEMS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 44-53
DOI: 10.5220/0001696200440053
Copyright c© SciTePress



2 BACKGROUND

When an active system reacts, it generates a sequence
of observable labels, called thesignatureof the reac-
tion. However, what is actually perceived by the ex-
ternal observer is arelaxationof the signatureS. Such
a relaxation is called atemporal observation. For-
mally, letL be the finite domain of all the observable
labels the active system can generate, possibly includ-
ing thenull labelε. A temporal observation is a (not
necessarily connected) DAG

O = (N ,L ,A ) (1)

whereN is the set of nodes, with eachN ∈ N being
marked with a non-empty subset ofL , andA : N 7→

2N is the set of arcs. A ‘≺’ temporal precedence re-
lationship among nodes of the graph is defined as fol-
lows:

• If N 7→ N′ ∈ A thenN ≺ N′;

• If N ≺ N′ andN′ ≺ N′′ thenN ≺ N′′;

• If N 7→ N′ ∈ A then∄N′′ ∈ N (N ≺ N′′ ≺ N′).

The set of labels marking a nodeN is theextensionof
N, written‖N‖. Thus, the relaxation of the signature
S into O involves three kinds of uncertainty:

• Logical uncertainty: each single observable label
in the signatureS is instead perceived as a set of
candidate labels, possibly including the null label
ε. All labels in‖N‖ but one arespurious, with just
one being theactual label.1

• Temporal uncertainty: the absolute temporal or-
dering of the signatureS is relaxed to partial tem-
poral ordering. IfN ≺ N′ in O , whereℓ andℓ′ are
the actual labels inN andN′, respectively, then
ℓ precedesℓ′ in S. However, not all precedence
relationships between nodes inN are known.

• Node uncertainty: additionalspurious nodesthat
involve ε (among other labels), are possibly in-
serted2.

As such,O implicitly incorporates severalcandidate
signatures, where each candidate is determined by se-
lecting one label from each node inN without vio-
lating the temporal constraints imposed by the prece-
dence relationships. The set of all the candidate sig-
natures ofO is called theextensionof O , written‖O ‖.
Among such candidates is the actual signatureS. Like
for nodes, all candidate signatures but one are spu-
rious. The mode in which the signatureS demeans

1If the actual label isε, it means that no label was actu-
ally generated by the system. Note how the extension of a
node inN cannot be the singleton{ε}.

2In a spurious node, the actual label isε, with all the
other labels being spurious.

Figure 1: ObservationsO1 (left) andO2 (right).

to observationO is assumed to be unknown.3 As
explained i,n (Lamperti and Zanella, 2002), such a
degradation may be caused by the multiplicity of the
communication channels that convey observable la-
bels from the system to the observer (temporal un-
certainty), and to noise (logical uncertainty). How-
ever, although unknown,S is assumed to be preserved
within O .

Example 1. Shown in Fig. 1 are the graphs of two
(both logically and temporally uncertain) observa-
tions, namely, from left to right,O1 = (N 1,L1,A1)
andO2 = (N 2,L2,A2), whereN 1 = {N1, . . . ,N5}, N 2
= {N′

1, . . . ,N
′
4}, L1 = {a,b,c,d, f ,ε}, andL2 = {a,b,

c,d,ε}. In O2, N′
1 incorporates the first observable la-

bel, namelya. Then, eitherN′
2 or N′

3 follows, each
of which involves two candidate labels, whereε is the
null label. The last generated node isN′

4, with a and
ε being the final candidate labels. The extension of
the observation, namely‖O2‖, includes the candidate
signaturesac, ad, abc, abd, aca, ada, acb, adb, abca,
abda, acba, adba, each of which is obtained by se-
lecting one label for each node without violating the
temporal constraints, where the null labelε has been
removed.

Within the diagnostic process it is inconvenient
to reason on the observationO as is, mostly be-
cause the explanation-oriented diagnostic reasoning
requires some sort of observation-indexing. Such
an indexing is more naturally performed based on a
surrogate of the observation, called theindex space,
namely Isp(O ). This is a deterministic automaton
with the property that its regular language is the ex-
tension ofO ,

Lang(Isp(O )) = ‖O ‖. (2)

In other words, the set of strings generated by each
path in Isp(O ), from the initial state to a final state,
equals the set of candidate signatures relevant toO .
As detailed in (Cerutti et al., 2007), the generation of
the index space ofO requires two steps, namely:

• Yielding the nondeterministic automaton, called
theprefix spaceof O , where each node identifies
the set of consumed nodes inN up to now;

3Otherwise, in principle, we might distillS from O ,
thereby disregardingO in the diagnostic process.
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Figure 2: Index spacesIsp(O1) (left) andIsp(O2) (right) .

• Generating the deterministic automaton equiva-
lent to the prefix space, in fact the index space.4

Furthermore, as explained shortly, the role of the in-
dex space comes into view for checking observation-
subsumption too.

Example 2. Shown in Fig. 2 are the index spaces
of observationsO1 (left) andO2 (right) displayed in
Fig. 1. It is easy to check that the regular language of
each index space equals the extension of the relevant
observation (the set of candidate signatures), where
each string of the language corresponds to a path in
the index space, from the initial state to one of the fi-
nal states (with the latter being double circled in the
figure). In particular, Example 1 offers evidence that
Lang(Isp(O2)) = ‖O2‖.

In similarity-based diagnosis of DESs (Lamperti
and Zanella, 2006a), it is essential to understand
whether the solution of the diagnostic problem℘′

at hand can be supported by the knowledge yielded
for solving a previous (different) diagnostic problem
℘, with the latter being stored in a knowledge-base.
Among other constraints, reuse of℘can be exploited
only if the observationsO ′ andO relevant to℘′ and
℘, respectively, are linked by a subsumption relation-
ship,

O ⋑ O ′ (3)

namely, only ifO subsumesO ′. The subsumption re-
lationship is defined in terms of regular-language con-
tainment, relevant to the corresponding index spaces,
precisely:

Lang(Isp(O )) ⊇ Lang(Isp(O ′)). (4)

4Being equivalent, both the prefix space and the index
space share the same regular language (Hopcroft et al.,
2006).

This means thatO subsumesO ′ iff the set of candidate
signatures ofO includes all the candidate signatures
of O ′.

The reason why observation subsumption sup-
ports reuse can be roughly explained as follows. The
solution of℘ yields an automatonµ, a sort of diag-
noser, where each state is marked by a set of diag-
noses and each transition is marked by a label inL .
The language ofµ is the subset of the signatures rel-
evant toO that comply with the model of the system,
namely,Lang(µ) ⊆ ‖O ‖. The same applies to a new
problem℘′ relevant toO ′. However, ifO ⋑ O ′, that
is, ‖O ‖ ⊇ ‖O ′‖, thenLang(µ) ⊇ Lang(µ′). In other
words,µ contains all the signatures ofµ′. This allows
the diagnostic engine to reuseµ in order to generate
µ′ based onO ′. The advantage stems from the fact
that such an operation is far more efficient than gen-
eratingµ′ from scratch, which would require heavy
model-based reasoning.

Example 3. With reference to observationsO1 and
O2 outlined in Fig. 1, and the relevant index spaces in
Fig. 2, it is easy to check thatO1⋑ O2, that is,‖O1‖⊇
‖O2‖. In other words, each string inLang(Isp(O2)) is
also a string inLang(Isp(O1)).

The problem with observation-subsumption
checking lies on the fact that, establishing whether
we can exploit the knowledge for solving℘, in
order to solve℘′, requires a considerable amount
of computational resources. Specifically, we need
first generateIsp(O ′) and, subsequently, compare
Lang(Isp(O ′)) with each Lang(Isp(O )) in the
knowledge-base, in the hope of finding a subsuming
observationO . Such an approach, based on the gen-
eration of the index space and on regular-language
containment-checking, may be prohibitive in real
applications. In order to cope with this complexity,
we need some alternative checking-techniques.

3 CHECKING SUBSUMPTION

The systematic nature of checking based on the for-
mal definition of subsumption stems primarily on its
lack of prospection (short-sightedness). As a mat-
ter of fact, such asystematictechnique does not per-
form any kind of reasoning on the given observations.
Assume the problem of testingO ⋑ O ′, namely the
checking problem. The idea is to find out some condi-
tions that either imply or are implied by such a re-
lationship. If these conditions can be checked us-
ing a reasonable amount of computational (space and
time) resources, then chances are that we can give an
answer to the checking problem efficiently. Specif-
ically, if a necessary conditionNc is violated, then
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the answer to the checking problem will beno. Du-
ally, if a sufficient conditionSc holds, then the an-
swer will beyes. However, if eitherNc holds orSc
is violated, then the checking problem remains unan-
swered. Necessary conditions and sufficient condi-
tions relevant to the checking problem are given in
Theorem 1 and Theorem 2, respectively. As shown
shortly, these conditions are eventually incorporated
within Algorithm 1 (see below).

Theorem 1. Let O = (N ,L ,A ) and O ′ =
(N ′,L ′,A ′) be two temporal observations. Let
n and n′ be the number of nodes inN and N ′,
respectively. Let nε and n′ε be the number of nodes
that include the null labelε in N and N ′, respec-
tively. LetM andM ′ be the multisets of observable
labels occurring inO andO ′, respectively. Then,O
subsumesO ′ only if the following conditions hold:

n≥ n′ (5)

nε −n′ε ≥ n−n′ (6)

M ⊇M ′. (7)

Proof. The proof is by contradiction. To prove con-
dition (5), we have to show thatO ⋑ O ′ ⇒ n ≥ n′.
Assume the contrary, namelyn′ > n. Since∀N′ ∈
N ′ (‖N′‖ 6= {ε}), we can make up a temporal se-
quenceT by selecting a labelℓ 6= ε for eachN′ ∈ N ′,
where|T| = n′. Clearly,T /∈ ‖Isp(O )‖ because tem-
poral sequences relevant toO are long at mostn.
Hence,‖Isp(O )‖ 6⊇ ‖Isp(O ′)‖, that is,O 6⋑ O ′, a con-
tradiction.

To prove condition (6), we have to show thatO ⋑
O ′ ⇒ nε −n′ε ≥ n−n′. Assume the contrary, namely
n−n′ > nε −n′ε or, in other terms,

n−nε > n′−n′ε. (8)

Let N ′
ε = {N′ | N′ ∈ N ′,ε ∈ ‖N′‖}. Now, consider a

sequenceL′ of labels selected from all nodes ofN ′,
in such a way thatε is chosen for all nodes inN ′

ε .
Let T′ be the temporal sequence corresponding toL′.
Clearly,|T′|= n′−n′ε. In consequence,T′ /∈ ‖Isp(O )‖
because each temporal sequenceT relevant toO is
such that|T| ≥ n−nε, that is, based on equation (8),
|T| > n′ − n′ε, hence,|T| > |T′|. Thus,‖Isp(O )‖ 6⊇
‖Isp(O ′)‖, that is,O 6⋑ O ′, a contradiction.

To prove condition (7), we have to show that
O ⋑ O ′ ⇒ M ⊇ M ′. Assume the contrary, namely
M 6⊇M ′, that is,M ′ ⊃M . This means thatM ′ will
containk′ ≥ 1 occurrences of a labelℓ, with M in-
cluding k ≥ 0 occurrences of the same label, where
k′ > k. ChooseL′ so as to include allk′ occurrences
of ℓ in O ′. Hence,T′ will contain exactlyk′ occur-
rences ofℓ. On the other hand, no temporal sequence
L can be composed inO to include the same number

of occurrences ofℓ. Thus,‖Isp(O )‖ 6⊇ ‖Isp(O ′)‖, that
is, O 6⋑ O ′, a contradiction.�

Corollary 1.1. O subsumesO ′ only if

L ⊇ L ′. (9)

Proof. Condition (9) is entailed by condition (7) of
Theorem 1, with the latter being necessary forO ⋑
O ′ to hold. Hence, condition (9) too is a necessary
condition for observation subsumption.�

Example 4. In Example 3 we have shown thatO1
subsumesO2, where such observations are displayed
in Fig. 1. Hence, the conditions relevant to The-
orem 1 are expected to hold forO1 and O2. We
haven1 = 5, n2 = 4, n1ε = 3, n2ε = 2. As a mat-
ter of fact, both conditions (5) and (6) hold. More-
over, sinceM 1 = [a,a,a,b,b,b,b,c,d, f ,ε,ε,ε] and
M 2 = [a,a,b,c,d,ε,ε], condition (7) holds too.

The conditions necessary for subsumption stated
in Theorem 1 can be easily checked. Thus, they cor-
respond to the first actions of the checking algorithm.
If one of them is violated, the check terminates im-
mediately with a negative answer. Otherwise, the
check continues by testing a sufficient condition of
subsumption based on the notion of coverage given
in Definition 1 below. Roughly,O coversO ′ whenO
is a relaxation ofO ′, inasmuch as an observation is a
relaxation of a system signature.

Definition 1. (Coverage)Let O = (N ,L ,A ) and
O ′ = (N ′,L ′,A ′) be two temporal observations,
whereN = {N1, . . . ,Nn} andN ′ = {N′

1, . . . ,N
′
n′}. We

say thatO coversO ′, written O D O ′, iff there ex-
ists a subsetN̄ of N , with N̄ = {N̄1, . . . ,N̄n′} hav-
ing the same cardinality asN ′, such that, denoting

N ε =
(

N − N̄
)

, we have:

(1) (ε-coverage):∀N ∈ N ε (ε ∈ ‖N‖);
(2) (logical coverage):∀i ∈ [1..n′] (‖N̄i‖ ⊇ ‖N′

i ‖);
(3) (temporal coverage): For each path̄Ni  N̄j =

〈N̄i ,Nε
1, . . . ,Nε

s ,N̄j〉 in O , whereN̄i ∈ N̄ , N̄j ∈ N̄ ,
s≥ 0, ∀k ∈ [1..s]

(

Nε
k ∈ N

ε), the following holds
in O ′: N′

i ≺ N′
j .

Example 5. With reference to the observations dis-
played in Fig. 1, it is easy to show thatO1 D O2. As-
sume the subset ofN 1 being N̄ 1 = {N1,N2,N4,N5}.
Hence,N ε

1 = {N3}. Clearly,ε-coverage holds, asε ∈
‖N3‖. Logical coverage holds too, as‖N2‖ ⊇ ‖N′

1‖,
‖N1‖ ⊇ ‖N′

2‖, ‖N4‖ ⊇ ‖N′
3‖, and‖N5‖ ⊇ ‖N′

4‖. It
is easy to check that temporal coverage occurs. For
instance, for〈N1,N3,N5〉, whereN3 ∈ N ε

1 , we have
N′

2 ≺ N′
4 in O2.

Theorem 2 and Note 1 offer evidence that cover-
age is only sufficient for subsumption, not necessary.
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However, in practice, if coverage does not hold, it is
unlikely for subsumption to hold. Note that, since
coverage entails subsumption, the conditions in The-
orem 1 are necessary for coverage too.

Theorem 2. Coverage entails subsumption:

O D O ′ =⇒ O ⋑ O ′. (10)

Proof. The proof is based on Definition 1 and Defi-
nition 2 (the latter given below).

Definition 2. (Sterile sequence) Let Ñ =

〈Ñ1, . . . ,Ñn′〉 be an ordering5 of nodes in N̄ .
Thesterile sequenceof Ñ ,

〈

N ε
0 ,N ε

1 , . . . ,N ε
n′
〉

(11)

is a sequence of subsets ofN ε, calledsterile sets, in-
ductively defined as follows:

• (Basis)N ε
0 is defined by the following two rules:

(1) If N ∈ N ε, N is a root ofO , then N∈ N ε
0 ,

(2) If N ∈ N ε, all parents of N are inN ε
0 , then

N ∈ N ε
0 ;

• (Induction)GivenN ε
i , i ∈ [0..(n′−1)], the suc-

cessive sterile setN ε
i+1 is defined by the following

two rules:
(3) If N ∈ N ε, all parents of N are in

(

N ∗
i ∪

{

Ñi+1
})

, then N∈ N ε
i+1,

(4) If N ∈ N ε, all parents of N are in
(

N ∗
i ∪

{

Ñi+1
}

∪N ε
i+1

)

, then N∈ N ε
i+1,

whereN ∗
i , i ∈ [0..n′], is recursively defined as fol-

lows:

N ∗
i =

{

N ε
0 if i = 0
N ∗

i−1∪
{

Ñi
}

∪N ε
i otherwise.

(12)

To prove the theorem, it suffices to show that each
candidate signatureS in the index space ofO ′ is also
a candidate signature in the index space ofO , namely:

∀S ∈ ‖Isp(O ′)‖ (S ∈ ‖Isp(O )‖). (13)

According to Theorem 1 in (Lamperti and Zanella,
2002),S is the sequence of labels obtained by select-
ing, without violating the precedence constraints of
A ′, one label from each node inN ′, and by removing
all the null labelsε. Let

N′ = 〈Ñ′
1, . . . ,Ñ

′
n′〉 (14)

be the ordering ofN ′ relevant to the choices of such
labels. Accordingly, the sequenceL′ of the chosen
labels can be written as

L′ = 〈ℓ | ℓ ∈ ‖Ñ′
i ‖, i ∈ [1..n′]〉 (15)

5An ordering of a set is a sequence involving all and only
the elements in the set, without duplicates.

while the candidate signatureS is in fact

S = 〈ℓ | ℓ ∈ L′, ℓ 6= ε〉. (16)

We need to show that there exists an orderingN of
N fulfilling the precedence constraints imposed by
A , from which it is possible to select a sequenceL of
labels,

L = 〈ℓ1, ℓ2, . . . , ℓn〉 (17)

such that the subsequence of non-null labels inL
equalsS:

〈ℓ | ℓ ∈ L, ℓ 6= ε〉 = S. (18)

Note howN (as well as any other ordering ofN ) can
be represented as a sequence of nodes inN̄ , with each
node being interspersed with (possibly empty) subse-
quencesNε

i of nodes inN ε, specifically

N = Nε
0∪〈Ñ1〉∪Nε

1∪〈Ñ2〉∪Nε
2 . . . 〈Ñn′〉∪Nε

n′ (19)

where

n′
⋃

i=1

{Ñi} = N̄ ,
n′
⋃

i=0

Nε
i = N ε,

n′
⋂

i=0

Nε
i = /0. (20)

The proof is by induction onL′. Let L′
i denote the

subsequence ofL′ up to the i-th label, i ∈ [1..n′].
Let Li denote the subsequence ofL relevant to the
choices of labels performed in correspondence of
the labels inL′

i . Let Si andS′
i denote the candidate

signatures corresponding toLi andL′
i , respectively.6

(Basis) No label is chosen inO ′, that is,L′
0 = 〈〉. We

choose a sequence of empty labels for all the nodes
in N ε

0 , which is clearly possible according to the
property thatN ε

0 is a sterile set composed of nodes
having ancestors inN ε only. In other words,Nε

0 is
an ordering ofN ε

0 , while L0 = 〈ε,ε, . . . ,ε〉, hence,
S0 = S′

0 = 〈〉.

(Induction) We assume that Li and L′
i ,

i ∈ [0..(n′−1)], are such thatSi = S′
i . We also as-

sume that, given the sequence〈Ñ′
1, . . . ,Ñ

′
i 〉 of chosen

nodes inO ′, the corresponding sequence of chosen
nodes inO is Nε

0∪〈Ñ1〉∪Nε
1∪〈Ñ2〉∪Nε

2 . . . 〈Ñi〉∪Nε
i ,

where,∀k ∈ [1.. i], if Ñ′
k is the nodeN′

h in N ′, then
Ñk is the nodeN̄h in N̄ , and eachNε

k is an ordering
of N ε

k . We have to show that, once chosen the next
label ℓ ∈ ‖Ñ′

i+1‖, thereby determiningL′
i+1 and

S′
i+1, it is possible to choose a nodẽNi+1 ∈ N̄ that

includesℓ, and Nε
i+1 as an ordering ofN ε

i+1 from
which ε is chosen, thereby determiningLi+1 such
thatSi+1 = S′

i+1.

6Note howL′
i includes exactlyi labels, while, owing to

theε selected for nodes inN ε, the number of labels inLi is
possibly greater thani.
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Let N′
j be the node inN ′ = {N′

1, . . . ,N
′
n′} cor-

responding toÑ′
i+1. According to logical cover-

age in Definition 1, there exists a nodēNj in N̄ =
{N̄1, . . . ,N̄n′} such that‖N̄j‖ ⊇ ‖N̄′

j‖, in other words,
N̄j includesℓ. We considerÑi+1 = Nj . In order for
N̄j to be actually chosen, we have to show that each
parent nodeN of N̄j in O was already considered, that

is, N belongs to the prefix of̃N relevant toLi . Two
cases are possible forN:

(a) N is a nodeN̄k ∈ N̄ . On the one hand, owing
to temporal coverage,̄Nk 7→ N̄j in O entailsN′

k ≺
N′

j in O ′. On the other, sinceN′
j was chosen in

O ′, all its parent nodes must have been considered
already, that is,N′

k ∈ 〈Ñ′
1, . . . ,Ñ

′
i 〉. Since, based

on the assumption ofInduction, we always choose
for each node inN′

m ∈ N ′ the corresponding node
N̄m∈ N̄ , it is possible to claim that̄Nk was already
considered inO , that is,N̄k ∈ 〈Ñ1, . . . ,Ñi〉.

(b) N ∈ N ε. We consider each pathNa N in O such
thatNa is the first ancestor ofN (possiblyN itself),
where eitherNa is a root ofO or Na ∈ N̄ . LetN a
be the set of such ancestors. We show that each
nodeNa ∈ N a has been considered already. Two
cases are possible: eitherNa ∈ N ε or Na ∈ N̄ . In
the first case,Na is a node in the sterile setN ε

0
and, hence, it has been considered inNε

0 already
(seeBasis). In the second case (Na∈ N̄ ), let N̄h be
the node inN̄ corresponding toNa. We consider a
pathN̄h N 7→ N̄j . Since between̄Nh andN̄j are
only nodes inN ε, temporal coverage implies that
N′

h ≺ N′
j in O ′, whereN′

h is the node inN ′ corre-
sponding toN̄h. Thus,N′

h was already considered
in O ′. As, based on the assumption inInduction,
we always choose inO the corresponding node of
that chosen inO ′, this implies thatN̄h was already
considered inO too. We conclude that all nodes
in N a have been considered. Now, it is clear that
N is either inN a or N is a node belonging to the
sterile set of some node inN a. In either case, ow-
ing to the assumption ofInduction, N must have
been considered already. In other words, all par-
ents ofN̄j have been chosen already, thereby al-
lowing N̄j itself, aliasÑi+1, to be chosen. Further-
more, based on the definition of sterile sequence,
we may also consider an orderingNε

i+1 of N ε
i+1

and choose labelε for each of such nodes, thereby
leading to the conclusion thatSi+1 = S′

i+1. �

Note 1. Coverage is stronger than subsumption,
namely:

O ⋑ O ′ 6⇒ O D O ′. (21)

To be convinced, it suffices to show an example in

which subsumption holds while coverage does not.
Consider two observations,O = (N ,L ,A ) andO ′ =
(N ′,L ′,A ′), whereN = {N1,N2}, N ′ = {N′

1,N
′
2},

L = L ′ = {a}, A = {N1 7→ N2}, A ′ = /0, and‖N1‖ =
‖N2‖ = ‖N′

1‖ = ‖N′
2‖ = {a}, as displayed in Fig. 3.

Figure 3: ObservationsO (left) andO ′ (right).

Clearly, N̄ = N andN ε = /0. Note how, unlikeO ,
sinceA ′ = /0, O ′ does not force any temporal con-
straint betweenN1 andN2. Incidentally, both observa-
tions involve just one candidate signature, namelyS =
〈a,a〉. Thus, since‖Isp(O )‖ = ‖Isp(O ′)‖ = {〈a,a〉},
both observations subsume each other, in particular
O ⋑ O ′. However, it is easy to realize thatO doesnot
coverO ′, namelyO 6D O ′. In fact, due to the sym-
metry ofO ′, we can choose any of the two possible
associations between nodes inO and nodes inO ′, for
instance,N̄ = {N1,N2}. Based on Definition 1, on
the one hand, bothε-coverage and logical coverage
hold. On the other, temporal coverage is missing, as
for N1 7→ N2 in O , we haveN′

1 6≺ N′
2. The same neg-

ative result occurs for̄N = {N2,N1}. In other terms,
O 6D O ′.

4 TESTING COVERAGE

In this section we give an abstract, pseudo-coded
implementation of subsumption-checking via cover-
age. Specifically, Algorithm 1 tests both the neces-
sary conditions of Theorem 1 and the coverage rela-
tionship. A tracing of the algorithm on observations
in Fig. 1 is provided in Example 6.

Algorithm 1. (COVERS) TheCoversfunction (lines
1–41) takes as input two observations,O andO ′, and
outputs a Boolean value indicating whether or notO
coversO ′. The body ofCoversis outlined in lines
30–41. In lines 31–32, the observation parameters for
O andO ′ are set. Then, at line 33, conditions (5) and
(6) of Theorem 1, along with condition (9) of Corol-
lary 1.1, are checked. In lines 36–38, the multisets
M andM ′ of instances of labels are created, with
the former decremented byd = (n−n′) instances of
label ε, which is the cardinality of(N −N ′). This
allows the algorithm to retain a sufficient number of
spare nodes inN that containε, namelyN ε in Def-
inition 1. At line 39, condition (7) of Theorem 1 is
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checked. The algorithm yields̄N , the subset ofN
that is associated withN ′ in Definition 1, by build-
ing the setR of associations through the call to the
auxiliary functionCovStepat line 40. The specifica-
tion of CovStepis given in lines 3–29. BesidesO ,
O ′, M , andM ′, it takes as inputC andC ′, the set of
nodes already considered inO andO ′, respectively,
along withd, the number of nodes inN ε not yet con-
sidered, andR , the set of associations made up so
far. The body ofCovStepstarts at line 10, where the
cardinality ofR is tested: ifR containsn′ pairs, it
means that all nodes inN ′ have been considered and
N̄ is completed, thereby, coverage holds. Otherwise,
a new nodeN′ in O ′ is considered at line 11, such that
all its parent nodes have been considered already. At
line 12, the setF of nodes inO is created, which in-
cludes the unconsidered nodes ofO with all parents
already inC . A loop for each nodeN in F is iterated
in lines 13–27. First, logical coverage and contain-
ment relationship of labels are tested (line 14). Then,
the setN a of the nearest ancestors7 of N which have
been already involved in the associations ofR is in-
stantiated (line 15). This allows temporal-coverage
checking (line 16). If the latter succeeds,CovStepis
recursively called at line 17, with new actual param-
eters: the setsC andC ′ of considered nodes are ex-
tended withN andN′, respectively, the multisetsM
andM ′ are decremented by the labels inN andN′,
respectively, whileR is extended with the new pair
(N,N′). If such a call succeeds, the current activation
of CovStepsucceeds too (line 18). If not, or either log-
ical or temporal coverage fails, a chance still remains
by assumingN ∈ N ε: this is viable only on condition
that N includeε, there exists at least one spare node
in N ε (d > 0), and the multisetM containsM ′ once
decremented by the labels ofN, ε aside (line 22)8. If
so, a different recursive call toCovStepis performed
at line 23, with the changed parameters being the (ex-
tended) setC of consumed nodes inO , the (decre-
mented) multisetM , and the decremented value ofd.
If such a call succeeds, the current activation ofCov-
Stepsucceeds too. If not, the loop is iterated and a
new node inF is tried. If the computation exits the
loop in a natural way, it means that no node can be
associated withN′ within this computational context,
thereby causing the current activation ofCovStepto
fail (line 28).

7The nearest ancestors of a node are not necessarily its
parents, since a parent node may not belong toR (N ), as it
is included inNε.

8When a spare node is consumed,ε is retained inM
because. at line 38, all instances ofε relevant to spare nodes
were removed fromM already.

1. function Covers(O ,O ′): Bool
2. O = (N ,L ,A ), O ′ = (N ′,L ′,A ′): observations;
3. function CovStep(O ,O ′,C ,C ′,M ,M ′,d,R ): Bool
4. O = (N ,L ,A ), O ′ = (N ′,L ′,A ′): observations,
5. C ,C ′: the set of consumed nodes forO andO ′,
6. M ,M ′: the multisets of labels inO andO ′,
7. d: the number of nodes inN that can still be inN ε,
8. R ⊆ N ×N ′: a relation onN andN ′;
9. begin{CovStep}
10. if |R | = n′ then return true end-if ;
11. Pick up a nodeN′ ∈ (N ′−C ′) with parents inC ′;
12. F := {N | N ∈ (N −C ), all parents ofN are inC };
13. for each N ∈ F do
14. if ‖N‖ ⊇ ‖N′‖ ∧ (M −‖N‖) ⊇ (M ′−‖N′‖) then
15. N a := the set of nearest ancestors ofN in R (N );
16. if ∀Na ∈ N a,(Na,N′

a) ∈ R (N′
a ≺ N′) then

17. if CovStep(O ,O ′,C ∪{N},C ′ ∪{N′},M −‖N‖,
M ′−‖N′‖,d,R ∪{(N,N′)}) then

18. return true
19. end-if
20. end-if
21. end-if;
22. if ε ∈ ‖N‖ ∧ d > 0∧ (M − (‖N‖−{ε})) ⊇M ′ then
23. if CovStep(O ,O ′,C ∪{N},C ′,

M − (‖N‖−{ε}),M ′,d−1,R ) then
24. return true
25. end-if
26. end-if
27. end-for;
28. return false
29. end{CovStep};
30. begin{Covers}
31. n := |N |; nε := {N | N ∈ N ,ε ∈ ‖N‖};
32. n′ := |N ′|; n′ε := {N′ | N′ ∈ N ′,ε ∈ ‖N′‖};
33. if n < n′ ∨ nε −n′ε < n−n′ ∨ L 6⊇ L ′ then
34. return false
35. end-if:
36. Create the multisetsM andM ′ of labels inO , O ′;
37. d := n−n′;
38. Removed instances of labelε fromM ;
39. if M 6⊇M ′ then return false end-if;
40. return CovStep(O ,O ′, /0, /0,M ,M ′,d, /0)
41. end{Covers}.

Example 6. With reference to the observations in
Fig. 1, consider the run ofCovers(O1,O2). Since, ac-
cording to Example 4, all the necessary conditions of
Theorem 1 hold, we focus our attention on the first
call toCovStepat line 40.

Depicted in Fig. 4 is the tree of the recursive ac-
tivations toCovStep, where each nodei corresponds
to the i-th call (dashed nodes correspond to calls at
line 23, with the others corresponding to line 17).

Figure 4: Activation tree forCovStepin Example 6.
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Table 1: Tracing ofCovers(O1,O2) in Example 6.

Id C C ′ M M ′ d R

1 /0 /0 {a,a,a,b,b,b,b,c,d, f ,ε,ε} {a,a,b,c,d,ε,ε} 1 /0
2 {1} /0 {a,a,b,b,b,c,d, f ,ε,ε} {a,a,b,c,d,ε,ε} 0 /0
3 {1,2} {1′} {a,b,b,c,d, f ,ε,ε} {a,b,c,d,ε,ε} 0 {(2,1′)}
4 {2} {1′} {a,a,b,b,b,c,d, f ,ε,ε} {a,b,c,d,ε,ε} 1 {(2,1′)}
5 {1,2} {1′,2′} {a,b,b,c,d, f ,ε} {a,c,d,ε} 1 {(2,1′),(1,2′)}
6 {1,2,3} {1′,2′} {a,b,b,c,d,ε} {a,c,d,ε} 0 {(2,1′),(1,2′)}
7 {1,2,3,4} {1′,2′,3′} {a,b,ε} {a,ε} 0 {(2,1′),(1,2′),(4,3′)}
8 {1,2,3,4,5} {1′,2′,3′,4′} /0 /0 0 {(2,1′),(1,2′),(4,3′),(5,4′)}

Relevant details are given in Table 1, withId being
the identifier of the call, while the other columns in-
dicate the actual parameters of the call (observation
nodes are identified by the corresponding subscripts).
The computation is described by the following steps,
where item numbers stand for activation identifiers,
namelyId.

1. N′ = 1′, F = {1,2}. Within the loop (line 13),
choosingN = 1 makes the multiset containment
false (line 14). However, since condition at line 22
holds for N, a recursive call toCovStepis per-
formed at line 23 (seeId = 2 in Table 1).

2. N′ = 1′, F = {2,3}. With N = 2, a recursive call
is performed at line 17 (Id = 3 in Table 1).

3. N′ = 2′, F = {3,4}. With N = 3, logical coverage
fails, as‖N‖ 6⊇ ‖N′‖. Besides, althoughε ∈ ‖N‖,
condition at line 22 is false becaused = 0 (no fur-
ther spare nodes to assume inN ε). Thus, a new it-
eration of loop at line 13 is performed withN = 4:
logical coverage fails, while condition at line 22 is
false (sinced = 0 andε /∈ ‖N‖). This causes the
control to return to the second call, where condi-
tion at line 22 is false. Therefore, a new iteration
of loop at line 13 is performed, now withN = 3.
Since both checks at lines 14 and 22 fail, the con-
trol returns to the first call, whereN = 2 is cho-
sen: this allows the fourth recursive call at line 17
(Id = 4).

4. N′ = 2′, F = {1,4}. With N = 1, a recursive call
is performed at line 17 (Id = 5).

5. N′ = 3′, F = {3,4}. With N = 3, logical coverage
fails. However, since condition at line 22 holds, a
recursive call is performed at line 23 (Id = 6).

6. N′ = 3′, F = {4}. With N = 4, a recursive call is
performed at line 17 (Id = 7).

7. N′ = 4′, F = {5}. With N = 5, a recursive call is
performed at line 17 (Id = 8).

8. At line 10, since|R | = 4, CovStepsucceeds.

Proposition 1. Algorithm 1 is a sound and complete
implementation of coverage:

Covers(O ,O ′) ⇐⇒ O D O ′. (22)

Proof (sketch). To prove equivalence (22), we first
show

Covers(O ,O ′) =⇒ O D O ′. (23)

AssumingCovers(O ,O ′) succeeding means that the
call toCovStepat line 40 returnstrue. FunctionCov-
Steprecursively instantiates the setR of associations
of nodes(N,N′), for which both logical coverage (line
14) and temporal coverage (line 16), required by Def-
inition 1, hold. Moreover,ε-coverage is supported by
conditions at line 22 and the initialization at lines 36–
38, which allow for retaining the(n−n′) nodes ofN ε

onceR is completed (line 10). In other words, entail-
ment (23) holds. Then, we have to show

O D O ′ =⇒ Covers(O ,O ′). (24)

The proof is by contradiction. Assume thatO D O ′,
while Covers(O ,O ′) = false. Based on Definition 1,
let R ∗ = {(N̄1,N′

1), . . . ,(N̄n′ ,N
′
n′)} denote the relation

betweenN̄ andN ′. Based on a run ofCovers, we
show thatCoversnecessarily makes upR = R ∗. The
proof is by induction onR . Note how we can restrict
our analysis to the recursive call toCovStep, as lines
31–39 simply check the necessary conditions of
subsumption stated by Theorem 1 and Corollary 1.1.
In fact, since coverage entails subsumption (Theo-
rem 2), such conditions are necessary for coverage
too, in other words, the computation surely reaches
the call toCovStepat line 40. Moreover, such call
is supposed to returnfalse (owing to the assumption
Covers(O ,O ′) = false).

(Basis) Focus on the first call toCovStep, whereC ,
C ′, andR are empty, and consider the (first) nodeN′

chosen at line 11. LetN′ correspond to thej-th node
in N ′, namelyN′

j . Let N̄j be the node inN̄ associated
with N′

j in R ∗, namely (N̄j ,N′
j ) ∈ R ∗. Based on

Definition 1, temporal coverage requires that, for
each pathN̄i  N̄j in O , where all intermediate
nodes in the path are inN ε, we haveN′

i ≺ N′
j in O ′.

However, none of such paths exists, asN′ = N′
j is

chosen withC ′ = /0, that is,N′ has no parent nodes.
Consequently, all ancestors of̄Nj in O (if any) are
in N ε, that is, they contain labelε. SinceCovStep
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is supposed to fail, it will try all choices ofN in F .
Two cases are possible: eitherN̄j is a root ofO or all
ancestors of̄Nj are inN ε. In the first case,N = N̄j
is associated inR with N′ = N′

j within the recursive
call to CovStepat line 17. In the second case, the
same association will be created after a number of
recursive calls ofCovStepat line 23, as all calls
to CovStepare assumed to fail (including the one
creating such association). Thus, in any case, the first
choice ofN′ will led to an association(N,N′) which
is in R ∗ too.

(Induction) Assume, in the current call toCovStep,
R = {(N̄c1,N

′
c1

), . . . ,(N̄ck ,N
′
ck

)}, whereR ⊂ R ∗, that
is, all associations yielded byCovStepare inR ∗ too.
Let N̄ c andN ′

c denote the projections ofR on N
andN ′, respectively. Now, consider the next choice
of N′ at line 11. LetN′ correspond to thej-th node in
N ′, namelyN′

j . Let N̄j be the node inN̄ associated
with N′

j in R ∗, namely (N̄j ,N′
j) ∈ R ∗. Based on

Definition 1, temporal coverage requires that, for
each path̄Ni  N̄j in O , where all intermediate nodes
in the path are inN ε, N′

i ≺ N′
j holds in O ′. This

implies that allN′
i are inN ′

c and, in consequence of
the inductive assumption, all̄Ni are in N̄ c. Hence,
following the same argumentation outlined inBasis,
N̄j can be considered and associated withN′

j . Thus,
(N̄j ,N′

j) is inserted intoR . This leads to the claim
that (R ∪ {(N̄j ,N′

j)}) ⊆ R ∗, which concludes the
proof of Induction. Thus, equation (24) is proved.
�

5 EXPERIMENTAL RESULTS

A number of experiments were carried out in order to
assess the coverage approach to subsumption check-
ing based on different classes of observations. We ran
subsumption checking using two different algorithms
prototyped in Haskell functional language (Thomp-
son, 1999), namelySubsumesandCovers. The for-
mer is strictly based on the definition of subsumption
and requires testing index-space (automaton) contain-
ment. We considered three classes of observations,
namelydisconnected, connected, and linear. In dis-
connected observations, no temporal constraints are
given among nodes, thereby maximizing temporal un-
certainty. Instead, in connected observations, each
node is temporally linked with other nodes. Linear
observations are a subclass of connected observations
where no temporal uncertainty occurs. The experi-
mental results in this paper refer to connected obser-
vations. In order to stress the computation, we chose

observations for which subsumption hold, so that the
necessary conditions in Theorem 1 always hold.9
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Figure 5: Checking subsumption: time response.

Shown in Fig. 5 is the response time for the two
algorithms, with thex-axis marked by the number of
nodes in the involved observations. Precisely, they-
axis indicates the time forSubsumes(dashed line, on
the left) andCovers(plain line, on the right) to emit
the relevant verdict. Considering the different scale
of the y-axis, the comparison is striking in favor of
Covers. Displayed in Fig. 6 is the maximum space
allocation for the two algorithms, which shows how
no considerable difference exists between them.
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Figure 6: Checking subsumption: space allocation.

6 CONCLUSIONS

A technique for checking observation-subsumption in
diagnosis of DESs has been proposed. This check is
required to pursue similarity-based diagnosis, where
the solution of a diagnostic problem is possibly sup-
ported by the solution of a previously-solved prob-
lem stored in a knowledge-base. The solution to such
checking-problem can be provided strictly based on
the definition of observation-subsumption, which re-
quires the generation and comparison of the index
spaces of the two observations, where an index space
is an acyclic automaton. Since index-space genera-
tion and processing are computationally complex, an
alternative technique has been envisaged and formally
defined in this paper, which exploits a number of nec-
essary conditions, as well as a sufficient condition, for

9In fact, when one of such conditions is violated,Covers
is increasingly more efficient thanSubsumes.
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subsumption to hold. The latter is based on the notion
of coverage, which allows the direct comparison of
the two observations without any index-space gener-
ation or manipulation. The new approach has been
tested and compared with the previous (systematic)
approach. Experimental results indicate that the tech-
nique is considerably worthwhile as to time complex-
ity. However, since the implementation is based on
a pure functional language, chances are that imple-
menting it through a more efficient general-purpose
language is bound to still better figures.
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Pencolé, Y. and Cordier, M. (2005). A formal framework
for the decentralized diagnosis of large scale discrete
event systems and its application to telecommunica-
tion networks.Artificial Intelligence, 164:121–170.
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