
MICROFORMATS BASED NAVIGATION ASSISTANT
A Non-intrusive Recommender Agent: Design and Implementation

Anca-Paula Luca and Sabin C. Buraga
Department of Computer Science, “A.I. Cuza” University of Iasi – 16, Berthelot, 700483 Iasi, Romania

Keywords: Recommender system, prediction, microformats, semantic markup, web interaction.

Abstract: The multiple ways in which we rely on the information available on the web to solve increasingly more
tasks encountered in day-to-day life has led to the question whether machines can help us parse the amounts
of data and bring the interesting closer to us. This kind of activity, most often, requires machines to
understand human defined semantics which, fortunately, can be easily done in today’s web through
semantic markup. The purpose of the proposed project is to build a flexible tool that understands the
behaviour of a user on the web and filters out the irrelevant data, presenting to the user only the information
he/she is most interested in, while being as discreet as possible: the user is required no preference settings,
no explicit feedback.

1 PREAMBLE

Navigating the web each day, accessing numerous
websites containing information from various
domains can be overwhelming sometimes, making
the obvious or the interesting hard to get, due to the
huge amount of useless data surrounding it. The
explosion of the amount of information on the web
from the past few years has satisfied our need of
information, but also invaded our web lives with
considerable amounts of unnecessary data we must
surf through in order to get to the things we really
want.

In the actual stage of the web, some patterns in
published information and users’ requests have
emerged: there are numerous sites for blogs, social
groups, collaborative bookmarks, collaborative
knowledge, products/companies presentations, news
portals – all aligned to the social web (O’Reilly,
2005; Shadbolt, Hall & Berners-Lee, 2006). There
also are a lot of users taking advantage of this
information: relying on the web for communicating
with friends and family, researching different topics,
staying up-to-date with most recent news and events.

In this context, semantics tend to repeat on the
web: either it is the semantic of the published
information (a publisher’s point of view); either it is
the semantic of the needed information – a user’s
point of view. The patterns are reflected in the
markup of the information as well: resembling

elements, attribute names and values, and
imbrications can be noticed (Celik & Marks, 2004).

In the actual circumstances, the microformats
initiative (Microformats, 2008) tries to specify a
frame for this kind of patterns: standards of
publishing information with these most frequent
semantics (thus semantically marking the data) and
push the web to the new stage where information is
equally accessible for humans as well as for
machines. With more and more websites adapting
their markup to follow these standards to produce
semantic markup, the idea of a tool that
comprehends and simulates a user’s behavior on the
web becomes a need, it gets consistent and closer to
implementation. Such an instrument can increase the
efficiency of a user’s sessions on the internet,
measured as a proportion of the information gained
per time spent on internet.

The existing tools focus either on microformats
processing – detection, presentation and storage –
without trying to assimilate them from a semantic
point of view, either on the detection of semantics
using the “classical” semantic web methods (such as
RDF description of metadata and/or ontology
specifications), or parsing hypertext as ordinary text,
using standard text classification methods. Most of
the tools require as well configurations, training data
or explicit feedback from the user.

The innovations of our approach are in using
microformats as semantic sources in the task of

54
Luca A. and Buraga S. (2008).
MICROFORMATS BASED NAVIGATION ASSISTANT - A Non-intrusive Recommender Agent: Design and Implementation.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - HCI, pages 54-61
DOI: 10.5220/0001696600540061
Copyright c© SciTePress

“understanding” the web – for the arguments
sustaining this decision see also (Celik & Marks,
2004). The purpose is to achieve our goal without
human effort: the user is not requested to change
his/her navigation behavior to adapt to the new tool
or to provide it training data.

This paper is structured as follows: first, in
section 2, we will define the microformat term and
we will describe it’s possible usage in the context.
Then, in the next section, we will present the model
used for data and the recommending system
(Adomavicius & Tuzhilin, 2005) that constitute the
foundation of the project. Section 4 focuses on the
presentation of the application to the user: the user
interface – design and, most important, interaction.
After enumerating different related approaches, the
paper ends with an outline of the discussed topics
and presents the further research ideas.

2 MICROFORMATS

According to the microformats.org website, the
microformats definition is: Designed for humans
first and machines second, microformats are a set of
simple, open data formats built upon existing and
widely adopted standards.

A more accessible definition is the following:
Microformats are simple conventions for embedding
semantics in HTML to enable decentralized
development.

Even more precise than this, microformats are
conventions for XHTML (Extensible HyperText
Markup Language) elements names, attribute names
and associated values, with precise semantics – see
also (Allsopp, 2007), (Haine, 2006) and (Suda,
2006).

2.1 Important Features

The key principles in designing microformats are the
simplicity – they are designed to solve a specific
problem – and the loose connectivity – they
represent small pieces loosely joined together to
form larger blocks and to express increasingly
complex semantics, without decreasing their
semantic expressivity through connections.

Microformats achieve their goal either by adding
to the (X)HTML markup (elemental microformats),
either by specifying a set of attribute values for
XHTML existing elements and imbrications of such
elements to be the frame for a piece of content
(compound microformats). Certain microformats are

definitively specified, while others are in work in
progress.

Regardless of this, microformats are widely
spread – either explicit or through the semantic of
content and similar structure of markup, with the
possibility of actually being explicited.

2.2 Representative Microformats

The list of the current official microformats is:
hCalendar, hCard, rel-license, rel-nofollow, rel-tag,
VoteLinks, XFN, XMDP, XOXO, adr, geo, hAtom,
hResume, hReview, rel-directory, rel-enclosure, rel-
home, rel-payment, Robots Exclusion, xFolk.

The microformats useful for a navigation assistant
are the ones that encapsulate the content as well as
properties of the specific content:
 rel-tag specifies that the current page or a

portion of is marked with a tag. The tag for a
piece of content is, usually, a single word that
expresses a keyword for the content, or the topic
of the content. It is a frequent practice to use
multiple tags for a piece of content.

 geo allows the description of a location using
geographic coordinates (latitude and longitude).
This microformat can be embedded into other
microformats such as hCard or hCalendar, to
mark the location of an entity or an event.

 adr specifies an address, properly marked with
fields for country, city, street and so on. This
microformat is also embeddable into other
microformats such as hCard or hCalendar,
either joined or not by a geo microformat.

 hCard denotes a full description of an entity: a
person (most often), an organization, a
company, etc. It specifies fields for the name of
the entity, the nickname, an address, a website
and other information.

 hCalendar encapsulates a calendar entry (an
event): date, description, address, etc.

 hReview is defined to be used in publishing
reviews for different items. It contains fields for
title, description, hCard of reviewer, hCard of
reviewed, date of review, etc.

 hAtom mirrors the Atom syndication method,
enabling the embedding of an Atom feed in
(X)HTML.

Other details are provided by (Allsopp, 2007)
and (Suda, 2006).

2.3 Example

The following is an example of using hCalendar to
mark the ICEIS 2008 conference:

MICROFORMATS BASED NAVIGATION ASSISTANT - A Non-intrusive Recommender Agent: Design and
Implementation

55

<div class="vevent">
 <!-- event description -->
 <a class="url"

 href="http://www.iceis.org/">

 ICEIS '08

 –

 <div class="description">
 10th International Conference on

 Enterprise Information Systems
 </div>
 takes place between
 <!-- event date -->
 <abbr class="dtstart"
 title="20080612">12</abbr> and
 <abbr class="dtend"
 title="20080616">16</abbr>

 June 2008 in
 <!-- event location -->
 <div class="location adr">

 Barcelona

 Spain

 </div>
</div>

Note that it is easy to extract the information of

the event by both a human user (who will actually
see the result of the browser processing of the
HTML) and an automated tool (that can process
markup to extract the URL of the event, a
description, a summary and the dates for the event).

3 PROPOSED RECOMMENDING
SYSTEM

In this section, we will present the models used for
determining the users’ preferences and the
prediction algorithms.

We start with a presentation of the collected data
and the associated data model and then we describe
the definition the program associates with the notion
of preferred content and the methods used to
determine which piece of content is of interest and
which is not.

3.1 Data Model

Although there are multiple sources for content
information in a web page, our purpose is to build a
tool that will only use content semantics provided by

microformats markup. Because of this, the following
discussion will refer to microformatted web pages –
documents that have associated various
microformats.

A web page is assumed to be composed by one or
more blocks of data: pieces of content that belong
each to certain categories of topics (one topic or
more) and, most important, which are separable
from the rest of the blocks – a program can identify
and extract such a block from the web page.

Consider, for example, a web page that contains
news and each piece of news is properly marked (by
using hAtom or hCalendar) – see also Figure 1. All
the pieces of news represent blocks of data in the
model described above.

Such a block of content is considered to be the
unit of content: from a web page, the algorithm will
recommend one or more such blocks of content (in
the presented example it seems natural to
recommend a piece of news, as the unit of
information). Naturally, a block will be considered
to be the piece of content encapsulated by a
microformat (e.g., hCalendar, hAtom, hReview, and
hCard).

Given a web page, the flow of the recommending
program is the following: first, the blocks are
identified in the web page. Then, for each block, a
preference score is computed (the algorithms are
described in section 3.2) and then the
recommendation algorithm is updated to take into
account the new blocks as well.

Figure 1: Detecting blocks of data.

3.2 Algorithms

Certain assumptions have been used in order to build
the preference model – partially elaborated from
(Chakrabarti, 2003):
 The entire semantic markup is semantically

correct: any value assigned, through markup, to

ICEIS 2008 - International Conference on Enterprise Information Systems

56

an attribute of the content is the real value of
that attribute, for the specific content. This
assumption might not always hold (it depends
on the quality of the markup) but there is no
general way to detect or correct such errors in
an automated manner.

 In the context of liking or disliking content, a
user operates with blocks, as defined in the
subsection above. The validity of this
assumption is highly correlated with the way the
blocks are built, which in turn depends as well
on the quality of the markup.

 The user’s preferences are expressed in terms of
attributes values rather than items and the user
tends to associate a greater importance to some
attributes.

 A user accesses more often items he/she likes
and ignores items he/she does not like.

In consequence, we propose a solution inspired
from machine learning methods (Mitchell, 1997)
that estimates the degree of interest for a given item
by combining two components: the preference for an
attribute and the preference for the particular value
of that attribute, for the current item:

1. For each property of each type of block, an
associated weight is computed as follows:
initially, all weights are set equal for all
attributes and then they are adjusted using
the following assumption: the more the user
“trusts” an attribute, the more liked items
specify a value for that attribute (the user
looks for the items that specify values for
the properties he/she trusts more).

2. For each attribute and a given value, we can
compute the user preference for that value as
the probability that the value is among the
values of that attribute for all preferred
items.

3. The final estimation of the interest for an
item is the weighted sum of values described
at 2, by using the weights explained at 1.

We have opted for a memory-based approach:
items are stored and then the needed values are
computed when a new estimation is required –
instead of transforming data into hypotheses of
preference and then testing the items against them –
for flexibility and data reusability reasons.

This algorithm is able to handle a set of issues
that might appear in the recommendation process:
 It can efficiently learn the preferences

incrementally, without the necessity of
providing “training data”. Of course, the results
in the first stages will be poor but, as data is
collected, they will improve;

 The assumption made about the user behavior
regarding liked and disliked items allows the
algorithm to work, even if no explicit feedback
is provided by the user. As we have mentioned
before, this is a key feature of the designed tool;

 By simply setting an expiring date for the stored
items (after a period of time they no longer
influence the recommending process), the
algorithm can deal with dynamic preferences: a
user’s preferences can change and the agent
must change its recommendations accordingly.

3.3 User Interaction

One of the first requirements regarding this aspect is
the fact that the application must present its
suggestions in real time (when a new web page is
accessed) and this must not be done in a master
manner: the agent only suggests the content to be
accessed, not dictates.

Related to these aspects we will discuss two
options for the application: a standalone application
and a browser extension.

The interaction model for this application is the
observable-observer one: first the agent (the
observer) must be notified that the user (the
observable) has accessed a new web page and then
the user (observer this time) has to be notified about
the agent’s recommendations (the observable). Two
types of observing can be used: push (the observable
notifies the observer when the state changes) and
pull (the observer reads the observable’s state from
time to time). We can assume that, in both cases, a
push paradigm can be used for obtaining the current
web page (the user must not notify the agent that a
new page was accessed) and this is the method to be
used in any of the cases since the agent would not
require pointless user assistance.

As a standalone application, the agent exists
outside the navigation process, in a browser external
application. If the agent is built as a push observable
then it will have to notify the user, from time to
time, that its state has changed (using a dialog
window or any other method), which can disturb the
user from his/her navigation activity. If the agent is
designed using a pull paradigm, thus eliminating the
disturbing factor, then the user would be required to
switch from one application to another to check the
state of the agent, which would causes an overhead
big enough to eliminate this option.

The most important note to be made in the case of
a browser extension is that the agent can act like a
component of the navigation process itself,
transparent to the user, whose behavior is not

MICROFORMATS BASED NAVIGATION ASSISTANT - A Non-intrusive Recommender Agent: Design and
Implementation

57

required to change to manage the new application
he/she is using.

Clearly, the best option is the implementation as
a browser extension, but there are a few other
choices to be made, regarding the way the
application presents its results to the user. We have
chosen to highlight the interesting blocks (using
background colours, tool-tips and combinations of
the two), in the web page, in the exact place where
they appear, for a sum of reasons:
 The model of this interaction corresponds to a

push-pull combination: the agent is a push
observable that allows a pull behavior from the
user: it will alter the web page highlighting the
interesting items, but will still provide the whole
page to the user so he/she can access any piece
of content he/she feels to;

 It does not use page space as a side panel would
(frequently used by many applications);

 It does not require a change of focus from the
page itself to another area of the screen;

 The recommended items can be observed as the
page is scrolled down, it does not require
permanently referring a recommendations list;

 Though somehow discrete, the results returned
by the application still stand out from the rest of
the web page, thus allowing one to easily notice
them if this is the desired goal.

Optionally, the recommendations list can be also
displayed in a side bar list, for faster access of the
user to the recommendations and a greater freedom
of choosing the manner he/she browses the
recommendations: either as a pull or as a push
observer.

4 ASPECTS REGARDING THE
IMPLEMENTATION

We will describe our approach to design and
implement a “smart” navigation assistant, using the
new web technologies and aiming the largest
possible public. The goals are the platform
independence and the wide spread standards.

Two main modules of the application can be
distinguished: a module that interacts with the
navigation process (data collecting and results
display) and the module that encapsulates the
recommendation engine (storage and prediction).

The implementation of the two as loosely
connected components is a key feature, thus
enabling independent testing and improvement, and
also facilitating reusability in similar contexts. Loose

connectivity has been achieved in this situation
through a moderator component (a “data manager”)
that enables bidirectional communication between
the two modules.

An illustration of the architecture presented
above is depicted in Figure 2.

Figure 2: Modules and data flow.

4.1 Data Collecting and Display
Module

This component must be analyzed in the context of
the extension development interface available from
the browser.

As a platform at this level, we have chosen the
Firefox web browser, whose advantages are in the
direction of wide platform availability, extended
support for current web standards and the
encouragement of extension development through
the clear structure imposed for the sub-application,
the large development community and
documentation and the possibilities of
communicating with external modules (native
libraries, Java programs).

The implementation of the collecting and display
module takes some advantages from a browser
embedded approach. Data collecting is done using
the web documents downloaded by the browser; no
new Internet connection and distinct request to the
server are required for this activity. Extracting the

ICEIS 2008 - International Conference on Enterprise Information Systems

58

data from HTML documents takes place at the DOM
(Document Object Model) tree level, built by the
browser for its internal use but made available to the
extensions developers. Displaying the results takes
place in the same context of preprocessed data, thus
decreasing the running time and the complexity of
the programs.

We can now summarize the activity of the agent
as follows: when a new web page is accessed, the
DOM tree is processed in search of microformatted
content and a list of blocks is built. This list is then
sent to the data storage and prediction module.
When the response from this module arrives (which
represents a list of preference scores associated with
the blocks), the display module is being called to
modify the properties of the DOM tree associated
with the page to highlight the recommended blocks.

4.2 Data Storage and Prediction
Module

The data storage module relies on the physical
storage engine which is, in our case, a native XML
database engine, chosen for the management of
concurrent access, the advantages in storing
unstructured data and the programming interface
based on actual XML technologies. Our choice was
Berkeley DB XML (Brian, 2006) which is a fully
embeddable database engine, available on multiple
platforms and which provides programming
interfaces in a large variety of languages.

The prediction sub-module implements the
algorithm presented in the section 3.2, as a
standalone module – most liable to future
improvement –, in a platform independent language
to increase portability. A solution for this
implementation is the Java language that offers
platform independency, compatibility with the XML
documents management libraries (the native XML
database, Saxon XML processing library), and
moderate requirements for installed interpreters on
the client machine.

Thus the activity of this module can be
summarized as follows: when the data manager
receives – from the collecting module – a list of
blocks, it sends it to the recommending module
whose results are stored in order to be sent to the
display module. Then, the blocks are sent to the
update module and finally, the response for the
browser is elaborated from the recommending
module’s results and sent.

4.3 Scenario

A usage scenario for such an application is as
follows: when the user accesses a new webpage, the
tool analyzes the content of the page and discovers
the blocks of data the user might be interested in.

Then, it highlights these blocks, and attaches
tool-tips containing related preferred data – see
Figure 3.

The blocks are marked in the place where they
appear on the webpage, thus minimizing the
interference of the agent in the navigation process.

Figure 3: Highlighting the information of interest.

The results of such an activity are a decrease in
the user effort to parse large documents in search of
the interesting content, an increased efficiency in
discovering preferred content (blocks that would
have been missed otherwise can be emphasized
through the use of such a tool), and better semantic
comprehension in the process of discovering new
data on the web, provided by the permanent
connections between current data and previously
accessed information.

5 RELATED APPROACHES

5.1 Tools

We will briefly describe in the following some of the
tools that serve purposes related to this application:

MICROFORMATS BASED NAVIGATION ASSISTANT - A Non-intrusive Recommender Agent: Design and
Implementation

59

 Tails is a Firefox extension that collects
microformats from the web page and allows
users to execute miscellaneous actions through
the Tails scripts.

 Operator is a Firefox extension as well, that
brings as improvement the combination of the
microformats with other services aligned to the
social web: Del.icio.us, Flickr, Google Maps,
Google Calendar or Upcoming.org.

 Greasemonkey is a Firefox extension that allows
the execution of user scripts, offering – via
JavaScript programs like microformat-find-gm5
and XFN Viewer – support for microformats
extracting and processing.

 The Firefox browser considers, for future
versions, the detection and parsing of
microformats.

 Magpie (Domingue, Dzbor & Motta, 2004) is a
tool that proposes a semantic navigation by
detecting, from a web page, all the items
(words) that correspond to a user specified
ontology.

 WebIC represents a recommender system
which, using the words from the visited
documents, determines the user preferences and
helps the user achieve his goal by retrieving
similar documents containing similar content.

5.2 Websites

There are various websites that use microformats in
the generated markup, and their number is
continuously rising (the expansion of microformats
is facilitated by their fast assimilation by all web
developers with basic XHTML knowledge), thus
contributing to the success of microformats a source
of semantics for the web. A list of implementations
is online available – for example, Upcoming.org and
Last.fm which use hCalendar to mark events,
Yahoo! Tech and Cork’d use hReview for products
and services review, many social websites (including
Last.fm, LinkedIn, Flickr) use hCard to mark the
profiles of the users.

In this context we must also mention that there
are various tools dedicated to the microformats
authoring and publishing – from editors to content
management systems of blogs (for example,
WordPress) and wikis like XWiki (Dumitriu, Girdea
& Buraga, 2007; XWiki, 2008) –, thus widening the
set of possible microformatted content authors.

6 CONCLUSIONS

6.1 Contributions

One of the main goals of the microformats initiative
is to facilitate the machine access to the information
published by humans, to enable them to assist
humans in the web browsing process.

Although tools that use microformats have been
developed with the emergence of microformats, the
attempts have settled in extracting – manually or
semi-automated – the (meta)data marked through
microformats, leaving the comprehension and
semantic parsing to the human users. Our paper
takes a step further and tries to emphasize automated
semantic detection as the first usage of the semantic
markup, in the context of human computer
interaction.

Such an approach has real applicability in better
web browsing experience (by increasing efficacy),
information retrieval, products or services
recommendation, social networks recognition, user
assistance for various tasks and others.

6.2 Further Development

An important direction to follow is towards
collaborative recommending: the application can
automatically correlate two users based on the
detected browsing preferences, and can use these
correlations to improve its recommendations – using
collaborative filtering (Chakrabarti, 2003) or
association rules.

Also, the recommending principles presented in
this paper can be improved by elaborating superior
category building techniques (by taking into account
new properties or new similarity measures).

Since microformats are in continuous evolution
and new microformats proposal is open to the web
community, the specification of new structures that
would encapsulate new semantics represent a
possibility of improvement for the dedicated tools,
by offering access to data which is presently
“hidden” by the lack of appropriate markup.

By combining this type of instrument – that uses
exclusively microformats – with the applications
focused on the “classical” semantic web methods
and with standard text classification methods, we
can go further in the direction of processing all kind
of information on the web: practically, any page on
the web could be understood by the navigation
assistant, thus achieving one of the goals of the “new
web” – according to (Khare & Celik, 2006) and

ICEIS 2008 - International Conference on Enterprise Information Systems

60

(Shadbolt, Hall & Berners-Lee, 2006): the equality of
humans and machines as information consumers.

REFERENCES

Adomavicius, G., Tuzhilin, A., 2005. Toward the Next
Generation of Recommender Systems: A Survey of
the State-of-the-Art and Possible Extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6).

Allsopp, J., 2007. Microformats: Empowering Your
Markup for Web 2.0, Friends of ED.

Brian, D., 2006. The Definitive Guide to Berkeley DB
XML, APress.

Celik, T., Marks, K., 2004. Real World Semantics. ETech
Conference, O’Reilly.

Chakrabarti, S., 2003. Mining the Web – Discovering
Knowledge from Hypertext Data. Morgan Kaufmann.

Domingue, J.B., Dzbor, M., Motta, E, 2004. Collaborative
Semantic Web Browsing With Magpie. In
Proceedings of the First European Semantic Web
Symposium (ESWS), Lecture Notes in Computer
Science – LNCS 3053, Springer.

Dumitriu, S., Girdea, M., Buraga, S., 2007. Knowledge
Management in a Wiki Platform via Microformats. In
FLAIRS 2007 Conference Proceedings, AAAI Press.

Haine, P., 2006. HTML Mastery. Semantics, Standards,
and Styling. Apress.

Khare, R., Celik, T., 2006. Microformats: a Pragmatic
Path to Semantic Web. Proceedings of the 15th
International Conference on World Wide Web, ACM
Press.

Mitchell, T., 1997. Machine Learning, McGraw-Hill.
O’Reilly, T., 2005. What is Web 2.0 – Design Patterns

and Business Models for the Next Generation of
Software. O’Reilly.

Shadbolt, N., Hall, W., Berners-Lee, T., 2006. The
Semantic Web Revisited. IEEE Intelligent Systems,
3(21).

Suda, B., 2006. Using Microformats. O’Reilly Short Cuts.
Atom Specifications, 2008. http://www.atomenabled.org/.
Berkeley DB XML, 2008.

http://www.oracle.com/database/berkeleydb/xml.
Firefox Extensions, 2008. https://addons.mozilla.org/

firefox/extensions/.
Magpie, 2006.

http://kmi.open.ac.uk/projects/magpie/main.html.
Microformats Support in Firefox.

http://wiki.mozilla.org/Firefox/Feature
Brainstorming:Microformat Handling.

Saxon, 2008. http://saxon.sourceforge.net/.
Microformats Initiative, 2008. http://microformats.org/.
WebIC, 2007. http://www.web-ic.com/.
WordPress, 2008. http://www.wordpress.org/.
XWiki, 2008. http://www.xwiki.org/.

MICROFORMATS BASED NAVIGATION ASSISTANT - A Non-intrusive Recommender Agent: Design and
Implementation

61

