
LANGUAGE EXTENSIONS FOR THE AUTOMATION
OF DATABASE SCHEMA EVOLUTION

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3,
Konstantinos Aggistalis2, Fotini Pechlivani2 and Yannis Vassiliou1

1Department of Electr. and Comp. Eng., National Technical University of Athens, Athens, Greece

2Department of Computer Science, University of Ioannina, Ioannina, Greece

3IBM Almaden Research Center, San Jose, California, U.S.A.

Keywords: Database schema evolution, SQL extension.

Abstract: The administrators and designers of modern Information Systems face the problem of maintaining their
systems in the presence of frequently occurring changes in any counterpart of it. In other words, when a
change occurs in any point of the system –e.g., source, schema, view, software construct– they should
propagate the change in all the involved parts of the system. Hence, it is imperative that the whole process
should be done correctly, i.e., the change should be propagated to all the appropriate points of the system,
with a limited overhead imposed on both the system and the humans, who design and maintain it. In this
paper, we are dealing with the problem of evolution in the context of databases. First, we present a coherent,
graph-based framework for capturing the effect of potential changes in the database software of an
Information System. Next, we describe a generic annotation policy for database evolution and we propose a
feasible and powerful extension to the SQL language specifically tailored for the management of evolution.
Finally, we demonstrate the efficiency and feasibility of our approach through a case study based on a real-
world situation occurred in the Greek public sector.

1 INTRODUCTION

In typical organizational Information Systems, the
designer/administrator is frequently faced with the
necessity to predict the impact of a small change or a
more sophisticated reorganization in the overall da-
tabase configuration. For instance, consider the sim-
plest configuration of a company’s database which
holds information about the employees and the pro-
jects they work for, shown in Figure 1. A view se-
lects the employees who work for a project along
with the project name. A query accesses this view,
selecting all employees who work for the Olympic
Games. Suppose the administrator decides that em-
ployees’ name should be split into last and first
name, by adding two new attributes in the underly-
ing relation and deleting the existing attribute name.
Should these changes be also reflected to the view
and the query, then these constructs must be rewrit-
ten. Even a small change like this, usually impacts a
large variety of applications and data stores related
to the system: queries and data entry forms can be

invalidated, application programs might crash (re-
sulting in the overall failure of more complex work-
flows), and several pages in the corporate Web
server may become invisible; i.e., they cannot be
generated any more. It is imperative that such
changes should be resolved and propagated to the
involved counterparts of the system.

Syntactic as well as semantic adaptation of
workload –mainly queries and views– to changes
occurring in the database schema is a time-consum-
ing task, treated in most situations manually by the
administrators or the application developers. Current
DBMS languages do not incorporate evolution se-
mantics, so that administrators / developers could
prescribe the behavior of the system when database
schema evolution changes occur. On the contrary,
to deal with the problems occurred by the evolution
in databases, several practical techniques are usually
used for this reason, like the use of variable names as
placeholders for the real names of constructs like
attributes and tables. For example, Oracle’s PL/SQL
uses the %TYPE and %ROWTYPE constructs to define

74
Papastefanatos G., Vassiliadis P., Simitsis A., Aggistalis K., Pechlivani F. and Vassiliou Y. (2008).
LANGUAGE EXTENSIONS FOR THE AUTOMATION OF DATABASE SCHEMA EVOLUTION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 74-81
DOI: 10.5220/0001716400740081
Copyright c© SciTePress

Figure 1: A simple configuration of a query over a view,
defined over three relations.

variables as they are defined within the database. If
the datatype or precision of a column changes, the
program automatically picks up the new definition
from the database without having to make any code
changes. Hence, the appropriate enrichment of the
procedural code with such constructs provides data
independence, reduces maintenance costs, and
allows programs to adapt as the database changes to
meet novel business requirements. However, such
techniques partially confront the problem, as they
are dealing with the simplest cases of evolution.

Database evolution is a more complicated issue;
we mention here an experience described by
(Sjoberg, 1993). In his report, a quantification of the
database schema evolution problem in large long-
lived application systems is presented. Over a period
of 18 months, which included both the development
and the operational phase of the examined system,
they recorded 140% increase in the number of
relations and over 200% increase in the number of
attributes, as well as several evolution changes in all
existing relations of the system.

Due to its great significance and practical im-
portance, the database evolution has already gained
research attention. Several works have identified this
problem as a great challenge for database research-
ers (Roddick, 2000) and various efforts have been
proposed so far (Bellahsene, 2002), (Gupta, 2001),
(Nica, 1998), (Velegrakis, 2004). In our work, we
extend previous results (Nica, 1998) by incorporat-
ing the addition of attributes and by appropriately
treating conditions. Also, we allow the restructuring
of the database, which is considered as a graph in
our framework, towards either the retention of the
original query semantics – a similar but quite re-
strictive approach has been proposed by (Velegrakis,
2004) – or their appropriate readjustment to the new
semantics. In addition, we complement our approach
by proposing an elegant extension to the SQL lan-
guage for the management of database evolution.
Compared with previous efforts (Roddick, 1992),
our work does not require either schema versioning
or integration of time within database schema evo-

lution. In fact, we provide rules for the transforma-
tion and adaptation of queries and views to the last
valid database schema without the assumption that
the transformed queries retain the same semantics.

Contributions. Briefly, the main contributions
of this work are as follows.
− We describe a graph-based model that uni-

formly covers database constructs, such as re-
lational tables, views, database constraints and
SQL queries, as first class citizens (Section 2.)

− We present a mechanism for the annotation of
the graph’s constructs with elements that fa-
cilitate what-if analysis and predetermine the
reaction to evolution events occurring in the
database schema (Section 3.)

− We propose feasible and powerful SQL exten-
sions that enable the implementation of our ap-
proach for evolution management (Section 4.)

− We demonstrate the efficiency and feasibility
of our approach through a real-world case study
occurred in the Greek public sector (Section 5.)

2 GRAPH-BASED MODELING
OF DATABASE SCHEMA
EVOLUTION

This section proposes a graph modeling technique
that uniformly covers relational tables, views, data-
base constraints, and SQL queries as first class citi-
zens. Our technique provides an overall picture not
only for the actual source database schema but also
for views and queries accessing the database, since
these constructs are incorporated in the model.

Formally, an evolving database schema along
with its workload (i.e., queries and views) is repre-
sented as a directed graph G=(V,E). The nodes of
the graph represent the entities of our model, where
the edges represent the relationships among these
entities. Moreover, we distinguish the following
essential components, which are included in our
model: relations, conditions (covering database con-
straints and query conditions), queries and views.

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) in
the database schema, is represented as a directed
graph, which comprises: (a) a relation node, R,
representing the relation schema; (b) n attribute
nodes, Ωi∈Ω, i=1..n, one for each of the attributes;
and (c) n schema relationships, ES, directing from
the relation node towards the attribute nodes,
indicating that the attribute belongs to the relation.

LANGUAGE EXTENSIONS FOR THE AUTOMATION OF DATABASE SCHEMA EVOLUTION

75

Conditions, C. Conditions refer both to selection
conditions, of queries and views and constraints, of
the database schema. We consider three classes of
atomic conditions that are composed through the
appropriate usage of an operator op belonging to the
set Op, containing the usual binary operators, (e.g.,
<, >, =, ≤, ≥, !=, IN, EXISTS, ANY): (a) Ω op
constant; (b) Ω op Ω’; and (c) Ω op Q. (Ω, Ω’
are attributes of the underlying relations and Q is a
query). A condition node is used for the
representation of the condition. The node is tagged
with the respective operator and it is connected to
the operand nodes of the conjunct clause through the
respective operand relationships, O. Composite
conditions are easily constructed by tagging the
condition node with a Boolean operator (e.g., AND
or OR) and the respective edges, to the conditions
composing the composite condition.

Queries, Q. The graph representation of a Select
- Project - Join - Group By (SPJG) query involves a
new node representing the query, namely query
node, and attribute nodes corresponding to the
schema of the query. Thus, the query graph is a
directed graph connecting the query node with all its
schema attributes, through schema relationships. In
order to represent the relationship between the query
graph and the underlying relations, the query is
resolved into its essential parts: SELECT, FROM,
WHERE, GROUP BY, HAVING, and ORDER BY, each
of which is eventually mapped to a subgraph.

Select part. Each query is assumed to own a
schema that comprises the attributes, either with
their original or alias names, appearing in the
SELECT clause. In this context, the SELECT part of
the query maps the respective attributes of the in-
volved relations to the attributes of the query schema
through map-select relationships, EM, directing from
the query attributes towards the relation attributes.

From part. The FROM clause of a query is con-
sidered as the relationship between the query and the
relations involved in this query. Thus, the relations
included in the FROM part are combined with the
query node through from relationships, EF, directing
from the query node towards the relation nodes.

Where and Having parts. We assume the WHERE
and/or HAVING clauses of a query in conjunctive
normal form. Thus, we introduce two directed edges,
namely where relationships, Ew, and having
relationships, EH, both starting from a query node
towards an operator node corresponding to the
conjunction of the highest level.

Group and Order By part. For the representation
of aggregate queries, two special purpose nodes are
employed: (a) a new node denoted as GB∈GB, to
capture the set of attributes acting as the aggrega-
tors; and (b) one node per aggregate function labeled
with the name of the employed aggregate function;
e.g., COUNT, SUM, MIN. For the aggregators, we use
edges directing from the query node towards the GB
node that are labeled <group-by>, indicating
group-by relationships, EG. The GB node is con-
nected with each of the aggregators through an edge
tagged also as <group-by>, directing from the GB
node towards the respective attributes. These edges
are additionally tagged according to the order of the
aggregators; we use an identifier i to represent the i-
th aggregator. Moreover, for every aggregated at-
tribute in the query schema, there exists an edge
directing from this attribute towards the aggregate
function node as well as an edge from the function
node towards the respective relation attribute. Both
edges are labeled <map-select> and belong to
EM, as these relationships indicate the mapping of the
query attribute to the corresponding relation attribute
through the aggregate function node. The represen-
tation of the ORDER BY clause is performed
similarly, whereas nested queries and functions used
in queries are also incorporated in our model.

Views, V. Views are considered either as queries
or relations (materialized views), thus, V ⊆ R∪Q.

3 CONSTRUCTS ANNOTATION
WITH EVOLUTION POLICIES

Evolution changes may affect the software around
the database (mainly views and queries) in two
ways: (a) syntactically, a change may evoke a com-
pilation or execution failure during the execution of
a piece of code; and (b) semantically, a change may
have an effect on the semantics of the software used.
In the context of the proposed graph, changes in the
database schema are events, which transform spe-
cific parts of the graph (e.g., a relation graph sus-
taining a change) and eventually affect other de-
pendent graph constructs (e.g., a view graph de-
pending on the specific relation). The latter may
raise, in turn, new evolution changes, which have
impact on other graph constructs (such as a query
graph depending on the specific view.)

To handle schema evolution, the constructs of
the graph are annotated with elements that facilitate
what-if analysis and predetermine the reaction to
evolution events that may occur. Each construct is

ICEIS 2008 - International Conference on Enterprise Information Systems

76

enriched with policies that allow the designer to
specify the behavior of the annotated construct
whenever events occur. The combination of an event
with a policy determined by the designer triggers the
execution of the appropriate action that either blocks
the event or reshapes the graph to adapt to the pro-
posed change. The annotated graph is stored in a
metadata repository and it is accessed from a what-if
analysis module. This module notifies the designer
on the effect of a potential change and the extent to
which the modification to the existing code can be
fully automated for adapting to the change.

Figure 2: Annotating relation PROJ.

The space of potential events comprises the
Cartesian product of two subspaces. The space of
hypothetical actions (addition, deletion, and modifi-
cation) over graph constructs sustaining evolution
changes (e.g., relations, views, attributes, and condi-
tions). For each of the above events, the administra-
tor annotates graph constructs affected by the event
with policies that dictate the way they will regulate
the change. Three kinds of policies exist, as follows.

(a) Propagate the change, meaning that the
graph must be reshaped to adjust to the new
semantics incurred by the event.

(b) Block the change, meaning that we want to
retain the old semantics of the graph and the
hypothetical event must be blocked or, at least,
constrained, through some rewriting that preserves
the old semantics (Nica, 1998), (Velegrakis, 2004).
In this case, the specific method that may be used is
orthogonal to our approach.

(c) Prompt the administrator to interactively
decide what will eventually happen.

Consider the graph of the query SELECT Name,
StartDate FROM PROJ (Figure 2), which projects the
name and the start date of all projects stored in the
database. The annotation of relation PROJ with policy
for propagating addition indicates that the addition
of a new attribute, namely DURATION, to the PROJ
relation will be propagated to the query and will be
included in the SELECT clause of the query.
The graph annotation of the database ecosystem with
policies for events occurs in a principled fashion:

1. First, we prescribe the default policies for all
kinds of constructs, in a database-wide context.

2. Next, we prescribe defaults policies for specific
relations, queries and views of the system, with
respect to any combination of the following: the
deletion of the construct per se, as well as the
addition, deletion or modification of a con-
struct’s descendants. The descendants can be ap-
propriately specified by their type, as applicable
(i.e., attributes, constraints or conditions).

3. Lastly, we annotate specific low-granularity con-
structs, i.e., attributes, constraints or conditions,
with policies for their deletion or modification.

The above arrangement is order-dependent and
exploits the fact that there is a partial order of policy
overriding. The order is straightforward: defaults are
overridden by specific annotations and high-level
construct annotations concerning their descendants
are overridden by any annotation of such descendant:
 Default ≤{relation, query, view}
 ≤ {attribute, condition, constraint}

4 LANGUAGE EXTENSIONS

In this section, we present SQL extensions that en-
able the implementation of the previous techniques
for the management of evolution. For extending a
system catalog with extra information regarding
evolution purposes, we provide extensions to SQL
regarding both top level construct definitions, like
tables, views, and queries, as well as fine grain con-
structs such as attributes, conditions of views/ que-
ries, and database constraints. All extensions out-
lined are given in BNF and throughout the section
we refer to the configuration shown in Figure 1.

4.1 Database-Wide Default Values

Regarding the definition of database default policies,
we consider each assertion as a tuple (event, policy).
Syntactically, this is expressed as follows:

ON <event> THEN <policy>

An event refers to evolution events in the database
schema comprising an event type, such as Delete,
Add, Modify, Rename and a construct type, which
takes any of the following values in the partial order
presented:

i. NODE
ii. RELATION, QUERY, VIEW
iii. ATTRIBUTE, CONDITION, PK, FK, NNC, UC

Note that we annotate nodes with default values only
for changes applied to themselves and not to any of

LANGUAGE EXTENSIONS FOR THE AUTOMATION OF DATABASE SCHEMA EVOLUTION

77

their ancestors or descendants. For example, we can
have the following annotations:

ON DELETE NODE THEN PROPAGATE
ON DELETE ATTRIBUTE THEN PROMPT

The definitions of the default policies are
expressed in SQL as follows.

 SQL Syntax
db-spec::= CREATE DATABASE <db-name> [policy-list]
policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event THEN policy
event::= event-type construct-type
event-type::= Add | Delete | Modify | Rename
construct-type::= NODE | RELATION | QUERY | VIEW |
ATTRIBUTE | CONDITION | PK | FK | NNC | UC
policy::= propagate | block | prompt

 Example
CREATE DATABASE company
ON DELETE ATTRIBUTE THEN PROMPT

4.2 Top Level Constructs

We extend SQL syntax to include evolution-based
semantics both in DDL statements as well as in SQL
queries. The general syntax is:

ON <event> TO <construct> THEN <policy>

where event again refers to evolution events in the
database schema, construct refers to the specific
database part suffering the event and policy can take
the values {propagate, block, prompt}.

4.2.1 Relations

Definition of policies on relations regarding their
behaviour on evolution changes is primarily en-
forced upon creation, and thus, we extend CREATE
TABLE syntax with certain policy clauses. Policies
imposed in a relation-wide scope can be applied
both to the relation itself as well as to all schema
attributes and constraints. In that way, the adminis-
trator has the ability to annotate with a single clause
the entire relation schema instead of annotating each
constituent attribute or constraint separately.

 SQL Syntax
table-spec::= CREATE TABLE <table-name>

(table-element-list [, policy-list])
policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO construct THEN policy
event::= Add Attribute | Delete Attribute | Rename
Attribute | Delete Relation | Rename Relation | Add
Condition | Delete Condition | Modify Condition
policy::= propagate | block | prompt
construct::= <table-name>

 Example
CREATE TABLE works
 (EMP# NUMBER(3), PROJ# NUMBER(3), HOURS NUMBER(5),
 ON Add Attribute TO works THEN propagate)

The above syntax corresponds to the annotation of
the respective relation node (i.e., works) with the

policy that allows the addition of attributes and
propagates this addition to all queries and views
accessing this relation. Similarly, policy clauses can
extend ALTER TABLE statements, enabling the
administrator to define policies on existing relations.

4.2.2 Views

Views are inherent constructs of the database
schema that constitute queries over the database
schema –w.r.t. to views’ definition– and relations to
other queries –w.r.t. views’ functionality. Therefore,
views invoke evolution events when (a) their
definition is altered, affecting all queries defined
over them and (b) the relations over which they are
defined are affected by schema changes. We enrich
existing SQL syntax for views creation to capture
potential events on their definitions as follows.

 SQL Syntax
view-spec::= CREATE VIEW <view-name> AS

query-expression [policy-list]
policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO construct THEN policy
event::= Add Attribute | Delete Attribute | Rename
Attribute | Delete View | Rename View | Delete
Relation | Rename Relation | Add Condition |
Delete Condition | Modify Condition
policy::= propagate | block | prompt
construct::= <view-name> | <table-name>

The policies capture events occurring at the
source tables of views’ definition (i.e., the construct
is a table-name) or events occurring at the view
definition itself (i.e., the construct is a view-name).

 Example
CREATE VIEW emps-prjs AS
 SELECT E.Emp#, E.Name, P.Projname
 FROM Emp E,Works W,Proj P
 WHERE E.EMP#=W.EMP# AND W.Proj#=P.Proj#
 ON Modify Condition TO emps-prjs THEN block

Such syntax corresponds to the annotation of the
view node emps-prjs with a policy, which blocks
changes in the WHERE clause of the view definition.

4.2.3 Queries

Queries are considered as top-level constructs in our
framework and they are the primary consumers of
evolution changes occurring at the database level.
Policies’ clauses enrich query syntax with evolution
semantics regarding the reaction of the query to such
changes and have a query-wide scope, i.e., prescribe
the behavior of the query itself and the query con-
stituents (query attributes, query conditions). In such
way, the developer may define a query-wide reac-
tion to an evolution change instead of assigning ex-
plicit policies to each query attribute and condition.

ICEIS 2008 - International Conference on Enterprise Information Systems

78

 SQL Syntax
query-expression::=
SELECT [ALL|DISTINCT] scalar-expression-list

FROM table-expression
[WHERE search-condition]
[GROUP BY grouping-column-list]
[HAVING group-condition]
[ORDER BY sort-specification-list]
[policy-list]

policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO construct THEN policy
event::= Add Attribute | Delete Attribute | Rename
Attribute | Delete View | Rename View | Delete
Relation | Rename Relation | Add Condition |
Delete Condition | Modify Condition
policy::= propagate | block | prompt
construct::= <view-name> | <table-name>

 Example
Q: SELECT EP.Emp#, EP.Name

FROM emps-prjs EP
WHERE EP.PRJNAME = ‘Olympic Games’

 ON Add Attribute TO emps-prjs THEN block

The above syntax corresponds to the annotation
of the query node Q with a policy, which blocks the
inclusion of added attributes in the underlying view
emps-prjs in the select clause of the query syntax.

4.3 Fine Grain Constructs

Policy annotation can be further specialized to fine
grain constructs such as attributes, database con-
straints and conditions of views/queries. Such an-
notations enable the administrator to define specific
policies on these constructs, which override policies
defined on their top-level containers.

4.3.1 Attributes

Policies are defined for relation attributes in table
definition and for view or query attributes in view or
query definitions, respectively. Policies’ clauses
refer to attribute constructs, which may be affected
by an evolution change, prescribing in that way the
specific behavior of that attribute.

 SQL Syntax
policy-clause::= ON event TO construct THEN policy
event::= Delete Attribute | Rename Attribute |
 Modify Domain
policy::= propagate | block | prompt
construct::= [<table-name> | <view-name>.]

<attribute-name>

 Example
CREATE TABLE emp
 (EMP# NUMBER(3),
 Name Varchar2(150),
 ... ,
 ON Delete Attribute TO Name THEN block)

Such syntax corresponds to the annotation of the
attribute node Name with the explicit policy that
blocks the node deletion from the container relation.
Q: SELECT E.Emp#, E.Name, P.Projname
 FROM Emp E,Works W,Proj P
 WHERE E.EMP#=W.EMP# AND W.Proj#=P.Proj#

 ON Delete Attribute TO Name THEN propagate

Such syntax corresponds to the annotation of the
projected attribute node Name of the query Q with the
explicit policy for allowing the node deletion from
the select clause of the query (i.e., the respective
attribute is removed from the underlying database.)

4.3.2 Constraints

Similarly, policies are defined on database con-
straints to override potential defined policies on their
top-level containers (i.e., relation) and thus to pre-
scribe their specific behavior to evolution changes.

 SQL Syntax
policy-clause::= ON event TO construct THEN policy
event::= Delete Constraint|Modify Constraint
policy::= propagate | block | prompt
construct::=[<table-name>.]<constraint-name>

 Example
CREATE TABLE emp
(EMP# NUMBER(3),
 Name Varchar2(150),
 Constraint EMP.PK PRIMARY KEY (EMP#),
 ON Modify Constraint TO EMP.PK THEN propagate)

The above syntax corresponds to the annotation
of the constraint node Emp.PK with the explicit pol-
icy for allowing the modification of itself and
propagating this change to all dependent constructs.

4.3.3 Conditions

Policies are defined on condition clauses of queries
and views for prescribing their behavior to evolution
events too. The modification or deletion of a view or
a query condition semantically impacts dependents
parts of the system. Thus, policies imposed on
conditions override query- or view-wide policies and
handle semantic changes invoked by such events.

 SQL Syntax
policy-clause::= ON event TO construct THEN policy
event::= Delete Condition|Modify Condition
policy::= propagate | block | prompt
construct::=[<view-name>.]<condition-name>

Moreover, we provide a facility for the man-
agement of conditions as first class citizens. We em-
ploy a specific name for each condition as follows.
CREATE CONDITION <condition> AS <expression>

For instance, we might have the following
statements, expressing (a) a simple condition em-
ployed in a query, (b) a foreign key constraint, and
(c) a join condition, respectively.
CREATE CONDITION Emp_Age_Cond AS AGE>50
CREATE CONDITION Works_Emp_FK AS WORKS.EMP# IN

EMP.EMP#
CREATE CONDITION Works_Emp_J AS
 WORKS.EMP#=EMP.EMP#

Traditional statements for the definition of foreign
keys or assertions for attribute domains are easily

LANGUAGE EXTENSIONS FOR THE AUTOMATION OF DATABASE SCHEMA EVOLUTION

79

refined to the above “normal form”, without
necessarily obliging the database designer or
administrator to abide by the above syntax.

Conditions may be employed in the WHERE
clause. For example, a query SELECT * FROM EMP
WHERE AGE_COND would simply use the condition as
a macro. Parametric conditions, to allow referring to
aliases in SQL queries are straightforward. One can
also deal with the problem of existing code in a
straightforward manner, since automatic condition
names can be assigned to all the queries.

5 EVALUATION

We evaluated the proposed framework and capabili-
ties of the approach presented via the reverse engi-
neering of a real-world evolution scenario extracted
from an application of the Greek public sector. Our
goal was to minimize the human effort required for
defining and setting the evolution metadata on the
system by using the proposed language extensions.

We extracted queries and views from applica-
tions and stored procedures, and we monitored the
events occurred on the database schema and the way
affected constructs had been manually adjusted by
the designers (e.g., through some rewriting) to each
evolution event. In doing so, we resolved the appro-
priate policies per event for all affected constructs.
Next, we used our approach for mapping constructs
to graphs and annotate them with policies. Our GUI,
namely HECATAEUS, allows for the representation of
the database graph and its annotation with policies
regarding evolution semantics and enables the user
to explicitly define policies on graph constructs and
perform what-if analysis for several evolution cases.

The configuration used comprises a total set of
52 queries over 18 relations. The evolution events
occurred in the database schema include renaming of
relations and attributes, modification of attribute
domain, deletion of attributes, and modification of
primary key constraints. Per event, we employed the
appropriate propagate or block policy on the
relations, queries or attributes affected by the event.

In the context of our graph model, our configu-
ration comprised approximately 2500 nodes
manually annotated with policies for each event that
were affected by. This was a rather time-consuming
task, as queries, query attributes, and relations had to
be explicitly annotated. Appropriate policies were
defined over different kinds of nodes (Table 1.)

Per query and relation, we counted the number
of nodes manually annotated with policies propa-
gate or block per event and the results are summa-

rized in Table 2. Each node may have been, anno-
tated with more than one policy when such annota-
tions address different events; e.g., an attribute node
may permit its renaming, whereas block its deletion.

Additionally, we employed the proposed SQL
extensions to impose the same policies on the graph.
We measured the number of the policy clauses,
which must enrich existing SQL and DDL
commands in order to annotate the same policies on
the graph as opposed to the number of manual
annotations on nodes. Hence, we evaluated 3
different cases: a) use of a default propagate policy
for a specific query and for the events Delete,
Rename and Modify Domains of attributes (query
scope) instead of manually annotating each query
attribute, b) use of default policies for all relations
(relation scope) for propagating the aforementioned
events, instead of annotating each query and c) use
of default propagate policy for database (database
scope) to allow the renaming of relations and the
addition of attributes instead of annotating each
relation. The results are shown in Table 3.

With the usage of the proposed SQL extensions,
the human effort for explicitly annotating these
nodes is minimized. Specifically, in the case study
previously described, the whole process of manually
identifying and adapting the changes lasted for 6
man-months, whereas by using our approach and
appropriately annotating the database constructs and
applying the respective policies, the same process
lasted for less than half a man-month.

Table 1: Kind of nodes annotated per event.
Event Annotated nodes

Rename relation Relation nodes
Add attributes Relation/Query nodes
Delete Attributes Attribute nodes
Rename Attributes Attribute nodes
Domain Modification Attribute nodes
Condition Modification Condition nodes

Table 2: Distribution of annotated nodes per kind of poli-
cies and events.

of nodes Event Propagate Block
Rename relations 18 0
Add attributes 64 13
Delete Attributes 1608 92
Rename Attributes 1615 85
Domain Modification 1690 10
Condition Modification 0 21
Total Annotations 4995 221

Table 3: Operations with and without SQL extensions.

of operations Scope Annotations Policy Clauses
Query scope 486 9
Relation Scope 5180 293
Database Scope 36 2

ICEIS 2008 - International Conference on Enterprise Information Systems

80

6 RELATED WORK

SQL Extensions. SQL/SE is a query language exten-
sion for databases supporting schema evolution
(Roddick, 1992). SQL/SE provides extensions for
querying evolvable database schemas in the context
of schema versioning and temporal databases. Our
proposed set of extensions does not require the ex-
istence of schema versioning or the integration of
time within database schema evolution. We provide
rules for the transformation and adaptation of que-
ries and views to the last valid database schema
without the assumption that the transformed queries
retain the same semantics. Another extension to
SQL, namely SchemaSQL supports multi database
querying (Lakshmanan, 2001). SchemaSQL focuses
on the problem of interoperability between different
schemas and their respective instances, enabling the
user to express queries over different schemas.

Evolution. A number of research works are re-
lated to the problems of database schema evolution.
Roddick surveys schema versioning and evolution
(Roddick, 1995) and presents a categorization of the
overall issues regarding evolution and change in data
management (Roddick, 2000). The problem of view
adaptation after redefinition is mainly investigated in
(Bellahsene, 2002; Gupta, 2001), where changes in
views definition are invoked by the user and rewrit-
ing is used to keep the view consistent with the da-
tabase schema. Bellahsene (2002) deals also with
warehouse adaptation, but only for SPJ views. Nica
(1998) deals with the view synchronization problem,
where the views become invalid after schema
changes in the underlying base relations. We extend
that work to incorporate attribute additions and the
treatment of conditions. In (Fan, 2004), AutoMed, a
framework for managing schema evolution in data
warehouse environments is presented. They
introduce a schema transformation-based approach
to handle evolution of the source and the warehouse
schema. Also, in (Velegrakis, 2004) they propose a
framework for the management of evolution, but
their model is more restrictive as it is retains the
original semantics of the queries. Our work is a
larger framework that allows the restructuring of the
database graph (i.e., model) either towards keeping
the original semantics or towards its readjustment to
the new semantics.

7 CONCLUSIONS

In this paper, we have dealt with the problem of da-
tabase evolution. We have provided a coherent

framework for propagating potential changes of the
database software to all the affected points of the
system, with a limited overhead imposed on both the
system and the humans, who design and maintain it.
We have proposed a feasible and powerful extension
to the SQL language specifically tailored for the
management of evolution. The applicability and
efficiency of our approach has been tested in a real-
world scenario occurred in the Greek public sector.

Regarding future work, we plan to pursue our re-
search toward the identification of patterns of evolu-
tion sequences.

ACKNOWLEDGEMENTS

Information dissemination of this work was
supported by the European Union in the framework
of the project “Support of Computer Science Studies
in the University of Ioannina” of the “Operational
Program for Education and Initial Vocational
Training” of the 3rd Community Support
Framework of the Hellenic Ministry of Education,
funded by national sources and by the European
Social Fund (ESF).

REFERENCES

Bellahsene, Z., 2002. Schema evolution in data ware-
houses. In Knowledge and Information Systems 4(2).

Fan, H., Poulovassilis, A., 2004. Schema Evolution in Data
Warehousing Environments - A Schema Transformation-
Based Approach. In ER‘04.

Gupta, A., et al., 2001. Adapting materialized views after
redefinitions: Techniques and a performance study. In
Information Systems (26).

Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N., 2001.
SchemaSQL – An Extension to SQL for multi data-
base interoperability. In TODS, 26(4): 476-519.

Nica, A., Lee, A.J., Rundensteiner, E.A., 1998. The CSV
algorithm for view synchronization in evolvable large-
scale information systems. In EDBT.

Roddick, J.F., 1992. SQL/SE: A query language extension
for databases supporting schema evolution. In ACM
SIGMOD Record, 21(3): 10-16.

Roddick, J.F., 1995. A survey of schema versioning issues
for db systems. In Information Software Techn. 37(7).

Roddick, J.F., et al, 2000. Evolution and change in data
management. In SIGMOD Record 29(1).

Sjoberg, D., 1993. Quantifying Schema Evolution. In In-
formation and Software Technology, 35(1), 35-44.

Velegrakis, Y., et al., 2004. Preserving mapping consistency
under schema changes. In VLDB Journal, 13(3).

LANGUAGE EXTENSIONS FOR THE AUTOMATION OF DATABASE SCHEMA EVOLUTION

81

