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Abstract: Event-Condition-Action (ECA) rules offer extensible and flexible approach to realizing active Enterprise In-
formation Systems. Such systems are enabled to actively respond on events or state changes. Hence their
behavior is programable by means of ECA rules. We propose an implementation of ECA rules in a completely
logical framework, usingTransaction Datalog¬ as an underlying logic. In this way, we extend the current
ECA framework by means of powerful and declarative semantics, which also have an appropriate procedu-
ral interpretation. We show how a logical calculus ofTransaction Datalog¬ can be exploited for realizing
composite events, conditions, and actions; justifying the use of declarative semantics for solving some of the
existing issues in reactive systems.

1 INTRODUCTION

Event-driven architecture (EDA) represents a new
hype in enterprise information systems, that comple-
ments the service-oriented architecture. Event-driven
applications trigger actions as a response to the detec-
tion of events. The event may signify a problem or
an impending problem, an opportunity, a threshold,
or a deviation. Upon generation, the event is immedi-
ately disseminated to all interested parties (humans or
machines). The interested parties evaluate the event,
and optionally take action. The event-driven action
may include the invocation of a service, the trigger-
ing of a business process, and/or further information
publication/syndication. EDA is the architecture of
choice for implementing straight-through multistage
business processes that deliver goods, services and in-
formation with minimum delay and maximal flexibil-
ity. It is a style of application architecture centered
on asynchronous push-based communication leading
to the so-called active enterprise information systems,
that are able to react autonomously on various inter-
nal and external events. However, despite its enor-
mous importance, this kind of systems is still missing
a comprehensive mechanism for (formal) representa-
tion of event-action causality (usually coded in Event-
Condition-Activity rules). One challenge is, for ex-
ample, to formally represent two set of actions, trig-
gered by the same event, that have to be synchronised

with each other (e.g., one action from an ECA rule
has to be accomplished in order to start an action from
another ECA rule). Such and similar formal descrip-
tions could than serve for executing different activi-
ties, and reasoning about behavioral aspect of reactive
information systems.

In order to formalise reactive systems, we are
proposingTransaction Datalog¬ (T D¬) (Bonner,
1998) to be used as an underlying logic. In fact,
the main contribution is the extension of the standard
ECA framework with the formal semantics ofT D ¬.
We use deductive rules to define new implicit events
or complex conditions and actions. Moreover we ar-
gue that the interaction between events and actions is
possible and achievable by means of logic. As pointed
in (Bry and Eckert, 2007b), use of rules for describ-
ing, rule based, ”virtual” events is highly desirable
due to a number of reasons: rules serve as an ab-
straction mechanism and offer a higher-level event de-
scription. Rules allow for an easy extraction of differ-
ent views of the same reactive system. Rules are suit-
able to mediate between the same events differently
represented in various interacting reactive systems.
Finally, rules can be used for reasoning about causal
relationship between events. Similar argumentation
for the rule-based events also applies for the condi-
tion and action part. Moreover integration of events,
conditions, and actions by means of logic brings new
possibilities in utilising behavioral aspects of event-

394
Anicic D. and Stojanovic N. (2008).
TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 394-401
DOI: 10.5220/0001716703940401
Copyright c© SciTePress



driven enterprise information systems.
Our goal is to enable information systems to cap-

ture internal and external (relevant) changes. A sys-
tem needs to properly react on changes in an auto-
mated manner. Such reaction can be seen as an act of
change propagation. In general, an action changes the
state of the system or triggers a new event. Therefore
it is a question how to effectively control the whole re-
active system, i.e. how machines can keep executing
certain activities, ensuring at the same time the system
consistency. In order to achieve this goal, we combine
a reactive system (i.e., ECA system) with deductive
capabilities in a Logic Programming style. First, our
extension is motivated by the aim to synthesizeactive
behavior(from ECA rules) withprocedural and de-
ductive semantics(from Transaction Datalog¬). Sec-
ond, the extended framework integratesreactive and
continuousbehavior appropriately.

The paper is organised in the following manner: In
the second section we give a short introduction into
the ECA rules, whereas the third section introduces
TransactionDatalog¬. Our logic-based realisation of
ECA rules is described in setcion four. Section five
describes related work, whereas section six contains
concluding remarks.

2 ECA FRAMEWORK

Event-Condition-Action rules have recently gained
significant attention in information systems where re-
active behavior is required, i.e., systems capable to
detect events and respond to them automatically. The
context, in which events are triggered, is also taken
into account. The general form of ECA rules is: ”ON
EventIF ConditionDO Action”. Interpretation of a
single ECA rule is to executeActionwhenEventoc-
curs, provided thatConditionholds. When a set of
rules is considered, the interpretation is getting more
complicated (Berstel et al., 2007). This, particularly
holds, when taking into account the execution model
of rules (i.e., behavior of rules atrun-time). First, the
rule set may contain conflicting rules. Second, there
is an issue how to execute rules with respect to: order-
ing, priorities, granularity; such that, they still capture
the intended meaning. For those reasons we use the
semantics of (T D ), trying to create an ECA frame-
work that is more robust and formal. In the following,
we briefly describe the basic elements of an ECA rule.

Event. In general, reactive systems are recursive sys-
tems, where event is a central notion for driving the
execution. Hence the role of events is, first, to identify
situations in which the system is supposed to react,
and second, to start the execution of ECA programs

in an appropriate moment.

Condition. The context, in which an ECA rule fires,
is described by the condition part. The condition part
is usually represented as a query to a persistent knowl-
edgebase. More importantly, the condition acts as a
glue between different parts of a rule (i.e., event and
action). In Section 4, we will introduce a more com-
plex condition form, where the condition part may
also be represented as any Datalog-like rule.

Action. The action part changes the state of a system.
While events are triggered as a consequence of state
changes, the actual state changes are caused by ac-
tions. Hence the reactive behavior of ECA systems
is realized through the execution of actions. Typi-
cal examples of actions are: updating persistent data,
calling a web service, triggering new events, commit-
ting a database transaction, or the rule base modifi-
cation. In some cases, more simple (atomic) actions
may be combined to form acomplex action. An ex-
ample of a complex action is asequenceof atomic ac-
tions. Further on, a complex action may be defined as
a specification ofalternativeactions (i.e., if one action
fails, the other one will start executing). In Section 4,
we propose use of Transaction Datalog¬, in order to
specify complex actions. Use of Transaction Datalog
in an ECA framework, does not allow us only to cre-
ate more complex actions, but also to enable coordi-
nation and cooperation between them. Communica-
tion, synchronization and concurrency between run-
ning actions are also supported.

3 OVERVIEW OF TRANSACTION
DATALOG ¬

In this section we give a short overview of Transaction
Datalog, highlighting the language’s most important
properties with respect to this paper.

Transaction Datalog.Transaction Datalog (T D ) is a
subset of Transaction Logic (T R ) (Bonner and Kifer,
1995), and Concurrent Transaction Logic (C T R )
(Bonner and Kifer, 1996). Concurrent Transaction
Logic is a general logic designed specifically for
the rule-based paradigm, and intended to provide a
declarative account for state-changing actions. Our
motivation to use this particular logic, in an ECA
framework, lies in a set of special logical and tem-
poral connectives provided byT D . For instance, a
sequence of actions may be executed sequentially or
in parallel. Further, actions may be synchronized and
communicate among themselves (e.g., one action can
read what another action writes). On the other side,
an action may also be executed in isolation from the
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other actions.T D allows users to specify properties
of state-changing programs, and to reason about them
(Bonner and Kifer, 1995).

Transaction Logic has a ”Horn” fragment, with
both, a procedural and declarative semantics (Bonner
and Kifer, 1995).T D is derived from this Horn frag-
ment, just like, classical Datalog is derived from clas-
sical Horn logic (Bonner, 1998). Compared with the
full logic, T D has simpler semantics, hence gives a
possibility for more effective implementation. At the
same time, we will show (in Sections 4.1 and 4.3) that
T D is still expressive enough to fulfil requirements
for an expressive ECA framework.

Syntax. The syntax of Transaction Datalog is the
same as the classical Datalog syntax (Ullman, 1990),
extended with three additional predicate symbols:
p.empty, ins.p anddel.p. Intuitively, p.emptymeans
” Is relation p empty”, ins.pmeans ”Insert atom p in
the knowledgebase”, anddel.pmeans ”Delete atom p
from the knowledgebase”. T D , further, includes:se-
rial conjunction, concurrent conjunction, andmodal-
ity of isolation, respectively denoted⊗, |, ⊙. For
example, ifr,q, t, andw are atomic actions, thanp
is defined asp(X)← del.q(X)⊗⊙(t(X) | w(X))⊗
ins.r(X), is a complex action (represented as a Trans-
action Datalog rule). Executing the actionp, in-
tuitively, we perform three successive sub-actions:
delete an atomq(X), execute in parallel sub-actions,t
andw, and finally, insert an atomr(X) to the knowl-
edge base. If any of the sub-action fails, the whole
action will fail. In that situation, the system retracts
to its initial state (i.e., a state before the execution
started). This mechanism keeps the system always
in a consistent state. The isolation operator is used to
constrain communication between concurrently run-
ning sub-actions. For instance, consider a complex
actionϕ1 | (⊙ϕ2) | ϕ3. During the execution of such
an action, sub-actionsϕ1 andϕ3 may communicate
between themselves. Howeverϕ2 will be executed in
isolation of them.

The following example from (Bonner, 1998),
demonstrates another important feature ofT D , that
is synchronization.

Example 3.
actionA← actionB| actionC.
actionB← taskB1 ⊗ ins.startC2 ⊗ taskB2 ⊗ startB3 ⊗

taskB3.
actionC← taskC1 ⊗ startC2 ⊗ taskC2 ⊗ ins.startB3 ⊗

taskC3.

The first rule defines a complexactionA, which
consists of two sub-actions:actionB and actionC.
The two sub-actions execute concurrently, but not

independently. In particular, each action performs
three tasks, wheretaskC2 (from actionC) cannot start
until taskB1 (from actionB) is finished. Similarly,
taskB3 cannot start untiltaskC2 is completed (i.e.,
specified withins.startB3 from actionC, and an atom
startB3 from actionB). Therefore we see thatactionB
communicates withactionC. Moreover the two sub-
actions,actionB and actionC, are synchronized be-
tween themselves.

Negation.Unlike (Bonner, 1998), we use Transaction
Datalog embellished withnegation-as-failure(Lloyd,
1989), thus extendingT D to T D¬ (the same way as
classical Datalog is extended to Datalog¬). In Section
4, we will define complex ECA rules that possible in-
cludenegatedevents and actions. When negation is
allowed, there might not be a least fixed point (i.e.,
unique solution for a given set of rules), but several
minimal fixed points (Ullman, 1990). In such situa-
tions, there is a problem to determine what is the ac-
tual meaning of the rules. We permit thestratified
negation(Ullman, 1990), as with that form of nega-
tion, one can still choose an intuitive meaning in case
of the non-unique solution. In addition, we should
also mention that rules inT D may be recursive as in
classical Datalog.

Execution Paths. Transaction Datalog provides a
declarative account forstate-changingactions. A
stateis defined as a finite set of ground atomic formu-
las with EDB predicates1. To model complex, concur-
rent actions,T D has a notion ofexecution paths, that
records the execution history of the complex actions.
Intuitively, the path represents periods of continuous
execution, separated by periods of suspended execu-
tion (during which other action may execute) (Bonner
and Kifer, 1996). In Section 4, we further discuss im-
portance of theexecution pathswith respect to our
ECA framework. Transaction Datalog has amodel
theoryinherited fromT R , and an operational seman-
tics based on a proof procedure with unification. For
detailed analysis about syntax, semantics, and an in-
ference system ofT D , we refer the reader to (Bonner,
1998; Bonner and Kifer, 1996).

4 IMPLEMENTING ECA RULES
WITH T D ¬

In this section we review the role of basic elements
of an ECA rule (i.e., event, condition, action), putting
them in a logical framework, and implementing them
with Transaction Datalog¬.

1As in classical Datalog, there are two sorts of predi-
cates: base or EDB, and derived or IDB predicates.
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4.1 Event

The execution in reactive systems is driven by events.
We distinguish between aninternal and anexternal
event. The internal event occurs as a consequence of
a state-change in the system (e.g., a fact has been in-
serted in the knowledgebase, a transaction commit-
ted, an exception occurred in the system etc.), while
the external event is raised by a happening outside the
system (e.g., caused by an external procedure, a sen-
sor or an application)2. In either case, an event needs
to be registered, such that, an ECA system can recog-
nize the event and behave accordingly. For this pur-
pose we use anevent ontology(e.g., complex events
are build out of atomic events by means of class rela-
tionship etc.).

Composite Event. Composite (or complex) event
consists of atomic events that satisfy some pre-
defined patterns. For instance, a pattern may be de-
fined as a conjunction, disjunction, or negation of
atomic events, followed by some temporal constraints
(e.g., one event happened 10 min after another one).
We use Transaction Datalog¬ to formally specify
these patterns, and later on, to identify complex events
by capturing the state-changes in the knowledgebase.

We assume a discrete time model, wheretime
is an ordered set of time points. In this paper
points are represented as integers, but other time
models for time and data representation are possi-
ble without restrictions. The notion of anatomic
event is defined as arelevant state change3 in
a system, characterized by the time. Formally,
an event is e(T1,T2,X1,X2, ...,Xn),n ≥ 0, where
e is an event name (i.e., a predicate symbol),
and T1,T2,X1,X2, ...,Xn is a list of arguments.
X1,X2, ...,Xn represent a set of data terms. Events
contain data relevant for a reactive system. The data
of event is a data term that may be either a variable,
a constant, or a function symbol.T1,T2 defines a
time interval during which the event has occurred.
Following the argumentation from (Paschke et al.,
2007), interval-based events are suitable for Com-
plex Event Processing (CEP). For an atomic event
e1(T1,T2,X1,X2, ...,Xn), it appears thatT1 is equal to
T2. However consider a complex evente that is a se-
quence of eventse1, e2, ande3 in the following order:
e1 before(e2 before e3). If an event was not defined
over a time interval (i.e., the detection time of the
terminating event is used as occurrence time of the
complex event), an inconsistency would occur due to
the possibility to detecteas a sequence:e1 before(e2

2Note that there is no strict difference between an (ex-
plicit) event and a state change (i.e., an implicit event).

3What is a relevant change depends on an application.

before e3) as well as for the sequence:e2 before(e1
before e3). In order to prevent such unintended se-
mantics, a complex evente(T1,T2,X1,X2, ...,Xn) that,
for instance, consist of eventse1(T3,T4,X1,X2, ...,Xn)
ande2(T5,T6,X1,X2, ...,Xn) is defined over an interval
[T1,T2] whereT1 = min{T3,T5} andT2 = max{T4,T6}.

Definition 4.1 A complex event is a formula of the
following form:

• an atomic event;

• (event1∧ event2∧ ...∧ eventn), wheren ≥ 0 and
eacheventi is an event (Conjunctive composition);

• (event1∨ event2∨ ...∨ eventn), wheren ≥ 0 and
eacheventi is an event (Disjunctive composition);

• (event1⊗ event2⊗ ...⊗ eventn), wheren≥ 0 and
eacheventi is an event (Sequential composition);

• ¬event, whereeventis an event (negation).

• ⊙event, whereeventis an event (isolation).

A rule is a formula of the formeventA← eventB,
whereeventAis an atomic event, andeventBis ei-
ther an atomic or a complex event� In the above
definition, everyeventi is defined over a time interval
[T1,T2] with possible set of data terms that are omitted
due to space reasons.

In following examples we demonstrate the power
of Transaction Datalog¬ language, and give justifica-
tion for its use in our ECA framework.

Example 4.1 defines a complex event,
checkStatus, which happens ”if a priceChange
event is followed with a stockBuy event”. Further on,
the two events have happened within a certain time
frame (i.e.,t < 5).

Example 4.1
checkStatus(T1,T4,X,Y,Z,W) ←

priceChange(T1,T2,X,Y) ⊗ stockBuy(T3,T4,Z,Y,W) ∧

(T4−T1 < 5).

In our system, we have an event ontology where the
following has been defined4:

• priceChange(Ti,Tj ,X,Y) is an event, that de-
scribes the change in the stock priceX (e.g.,±5%)
of a companyY;

• stockBuy(Ti ,Tj ,Z,W,Y) defines a transaction, in
which, a buyerZ has boughtW amount of stocks
from a companyY.

4Note that, apart from events defined in the event on-
tology, we use a number of built-in predicates with prede-
fined meaning (e.g., ”−” and ”<” represent ”subtraction”
and ”less then” arithmetic operations).
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In some cases a user may be interested in an-
alyzing past events. For this purpose, we need a
formalism that allow us, not only to create complex
events, but also to query them. We have anevent
system log, which serves to record each event occur-
rence in the system. In the following example we ask
for all events where the change in stock price was
bigger than 10%.

Example 4.2
?− priceChange(Ti,Tj ,X,Y)∧X > 10.

As all events are accumulated in the event system
log, we can also describe situations where negated
events are used. For instance, Example 4.3 represents
a notFul f illedOrder event, that triggers when a
customer has made a purchase, but the purchase has
not been delivered within a certain time. Therefore,
we see, that the system is also capable to support
non-monotonicfeatures (i.e., the existence of an
event which is defined in absence of other events,
may beretracted, if one of the absent event occurs
later). Note that, since the event stream is infinite,
one should always define a time interval as a scope of
a query, or a rule. In the Example 4.3 the interval in
which we check whether an item has been delivered
is [T3,T4].

Example 4.3
notFul f illedOrder(T1,T4,X) ← purchased(T1,T2,X) ⊗

¬delivered(T3,T4,X)∧ (T4−T1 > 3).

Example 4.4
complexEvent(T1,T4,X) ← eventA(T1,T2,X) ⊗

eventB(T3,T4,X)

In Example 4.4, we demonstrate use of the se-
quential composition operator (from Definition 4.1),
i.e., acomplexEventwill occur if eventAis followed
by eventB. If eventAhas happened, the system needs
to ”remember” it, and to raisecomplexEventonce
eventBhappens. Detection of complex events is done
by following the state-change (transition) path. In
general case, executing a Transaction Datalog rule,
the system may change the state fromS1 to Sn (i.e.,
going through states:S1,S2, ...,Sn). If the rule de-
scribes a complex event, this state-transition may be
seen as the progress towards detection of a com-
plex event. In this way, ifeventAhas occurred
but eventBhas not, the system willwait, and raise
complexEventonceeventBis triggered. Note, if we
replaceeventB(T3,T4,X) with eventA(T3,T4,X) from
the example 4.1, we can define a repeated event (e.g.,
double click).

Finally, the modality of isolation operator⊙ is
used for defining a composite event with additional
constraints. Usually a composite event consists of
(atomic) events that satisfy some pre-defined pat-
tern. In this respect, a composite event is not de-
pendant on all events monitored in the system, but
those that constitutes that particular event. However
the modality of isolation operator allow us to con-
struct a composite event that is, apart from its (atomic)
events, also constrained with other events from the
system. For instance, a composite evente, defined
as e(T1,T6,X,Y)← e1(T1,T2,X)⊗ e2(T3,T4,X,Y)⊗
e3(T5,T6,X,Y), will be triggered if e1,e2, and e3
happen next to each other with no other events in-
between. Of course, a time interval for such compos-
ite events should be clearly defined as a scope over
which events are monitored (i.e.,[T1,T6] in this case).

4.2 Condition

The condition part determines whether an ECA rule
(triggered by a certain event) will be executed or not.
The condition part is usually represented as a query,
since it depends on the current state of the system. In
our framework, the condition of an ECA rule may be
significantly more complex.

Definition 4.2 The condition part of an ECA rule
is any Datalog¬ rule, where the rule head is the
condition name, and the rule body is the condition
definition�

The followingT D formula represents an action,
act, that will be executed iff the condition part,cond,
is fulfilled:

⊙[cond⊗act]

In this way we express aT D formula, that is at
the same time, a Condition-Action rule. Hence the
action, act, will be executed only if the condition,
condis fulfilled. Further on, the condition part (cond)
may be extensively dependant on a number of other
sub-conditions, as defined by Definition 4.2, and
shown below:

cond← cond1∧ (cond2∨cond3)∧¬cond4.

cond3← cond1∧cond5.

4.3 Action

In general case, the purpose of the action part is to
change the state of the system. An example of a

ICEIS 2008 - International Conference on Enterprise Information Systems

398



state change is a single update in the knowledgebase.
However atomic actions, such as data update, are too
limiting in practise. More often we need to com-
bine atomic actions intocomplex actions. We ex-
tend the standard ECA framework with deductive ca-
pabilities, such that the action part can be formally
described with Transaction Datalog¬. First, our ex-
tension is motivated by the aim to integrateactive be-
havior (from ECA rules) withdeductive capabilities
(from Transaction Datalog¬). Second, the extended
framework integratereactiveandcontinuousbehav-
ior appropriately.

In the following, we give legal possibilities for
creating a complex action out of atomic ones.

Definition 4.3An action is a formula of the following
form:

• an atomic action;

• (action1∧action2∧ ...∧actionn), wheren≥ 0 and
eachactioni is an action (Conjunctive composi-
tion);

• (action1∨action2∨ ...∨actionn), wheren≥ 0 and
eachactioni is an action (Disjunctive composi-
tion);

• (action1⊗ action2⊗ ...⊗ actionn), wheren ≥ 0
and eachactioni is an action (Sequential compo-
sition);

• (action1 | action2 | ... | actionn), wheren≥ 0 and
eachactioni is an action (Concurrent composi-
tion);

• ¬action, whereactionis an action (negation).

• ⊙action, whereactionis an action (isolation).

A rule is a formula of the formactionA← actionB,
whereactionA is an atomic action, andactionB is
either an atomic or a complex action�

A rule may be seen as an action procedure, where
the rule head is a complex action name, and the rule
body is the action definition. Likewise events, actions
are not just propositions, but contain data terms. Each
actiona(X1,X2, ...,Xn) may be of arity n,n≥ 0, where
X1,X2, ...,Xn is a list of variables or constants, repre-
senting parameters of the action procedure.

Utilising T R operators, complex action may cre-
ate complex processes that, at the end, may form a
workflow (Bonner, 1999). As we can see, from Sec-
tion 3 and Definition 4.3, actions may run in parallel
possibly having non-serializable access to shared re-
sources, or for instance, they can communicate and
synchronise themselves.

As mentioned in Section 3,T D has a notion of
execution paths. Execution paths show the way com-

plex actions are executed, and record their execution
history. Formally, an execution path of a complex
action is represented as a finite sequence of pairs:
S1S2,S3S4, ...,Sn−1Sn, where each state-change (i.e.,
SiSi+1) represents a period of an atomic action execu-
tion. For instance, imagine an evente1 has occurred,
and caused a corresponding complex actiona1 to start
executing. The evente1 has occurred when the knowl-
edgebase was in the stateS1, and after the execution
of the actiona1, the system will be brought to the state
Sn. Since thea1 is a complex action, the system will
go through a set of statesS1S2,S3S4, ...,Sn−1Sn. Ev-
ery state transition,SiSi+1, corresponds to execution
of an atomic action. Now suppose that during the ex-
ecution ofa1, an evente2 has occurred. The evente2
has caused an actiona2 to happen, which is a sim-
ple action, and hence, will be completed beforea1.
Note thata2 will change the state of the whole sys-
tem, whilea1 is still executing. Thanks to aninter-
leaving semanticsof T D , after the execution of both
actions, our whole ECA system will still remain in a
consistent state. The interleaving semantics assumes
a single execution path although a number of concur-
rent complex actions may be running at the same time.
Every complex action consists of a sequence of sub-
actions, where each sub-action changes a state of the
system. However by interleaving these sequences, we
obtain a new sequence of state changes, which is an
execution path.

However some complex actions need to be
executed continuously (i.e., without interruption by
other sub-actions, or suspension). In this situation we
use amodality of isolation. For example, consider a
complexactionAwhich consists of three sub-actions:

actionA←⊙ [taskA1 ⊗ taskA2 ⊗ taskA3]

An execution path of the above action is a sin-
gle pair of states,S1,S2. AlthoughactionAis a com-
plex action, it has been modeled to change the state
only from S1 to S2 (not as a sequence of changes:
S1S2,S2S3,S3S4). Therefore if some other actions are
executing at the same time, their execution paths will
not be interleaved with the one ofactionA. There-
fore assuming thatactionAstarted to execute first, the
other actions will be committed after theactionA.

In the Example 3 (section 3) we have explained
how a complex action can be implemented with
two concurrently running, synchronised, actions. In
case we want to synchronise the two actions with
some (external) events, we may replace constructs for
the synchronisation (i.e.,ins.startC2 andins.startB3)
with some eventsstartC2, startB3. In this way, our
ECA framework features tighter integration between
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events and actions. Moreover this integration has
been achieved at the logical level, which allows rea-
soning about actions and events. For instance a pat-
tern such as ”notify me if anactionAhappened be-
fore aneventE, and theeventEhappened before an
actionB” would be easy extractable by the reasoner.

4.4 Executing ECA Rules

In this section we give more details about basic con-
cepts underlying our ECA framework with respect
to the evaluation of ECA rules. We adhere to the
general syntax of an ECA rule:

ON EventIF ConditionDO Action

However our approach differs from existing
frameworks in defining theEvent, Condition, andAc-
tion part. As given by Definitions 4.1, 4.2, and 4.3,
each component of an ECA rule may be defined as a
set of eitherT D¬ or Datalog¬ rules.

ECA-based systems, with complex events, con-
ditions, and actions; have been extensively studied
elsewhere in (Paton and Dı́az, 1999; Bry and Eck-
ert, 2007a). One of the common issue in these sys-
tems is a specification of anexecution semanticswhen
a set of ECA rules is considered (rather than a sin-
gle a rule). The execution semantics gives an answer
how rules are treated atrun-time. Imagine a situation
where several events occur at the same time trigger-
ing several actions to happen (i.e., several ECA rules).
The system does not know in which order to apply
those rules. Different choices may lead to different
executions. For these, and similar issues, various ex-
ecution semantics have been proposed, e.g., selecting
only one rule from the conflict set, executing all rules,
rejecting the execution of any rule and triggering an
exception etc. (Paton and Dı́az, 1999)

Our approach is accomplished in a completely
declarative framework (i.e., using the formal seman-
tics of T D¬ language). We write ECA rules as a
set of logical equations. These equations are spec-
ified declaratively (i.e., specifyingwhat we want to
achieve, rather thanhow we want to achieve that).
Now, let us assume the same issue as earlier in this
text (i.e., several ECA rules have been triggered at the
same time). In our case, we deploy an inference en-
gine to find an execution path. Precisely, the goal of
the inference engine is to find a possible execution,
for a given set of rules following the procedural se-
mantics ofT D¬ (Bonner and Kifer, 1996).

In conclusion, following the semantics ofT D¬,
the reasoner executes a set of ECA rules, executing
at the same time, a set of (possibly) complex actions.

These actions may run in parallel, or in a sequence
(or combined). More importantly is that our frame-
work has two-fold benefit of using semantics. The
first advantage is deployment of an inference engine
for finding alegal execution pathamong all possible
choices of executions. Usually, the execution path
depends on run-time properties of a logic program.
Hence searching for an executable path (in run-time)
is rather a reasoning task. Using declarative seman-
tics, our framework is capable to accomplish this task
in an automated manner. We see this approach, as
more flexible, and in some real-world scenarios, as
the only one. The second advantage is: executing a
path (found by the reasoner), the system will never
run into aninconsistentstate.

ECA rules are considered as an appropriate form
of reactive rulesfor a distributed environment(e.g.,
Web). However their use in a distributed environment
may be very unpredictable, with respect to their in-
tended semantics (Kifer et al., 2006). In general case,
execution of an event may trigger other events, and
these events may trigger even more events. There
is neither guarantee that, such a chain of events will
stop, nor that states (through which a distributed sys-
tem passes) are valid. We see semantics as a means to
establish some sort of aconsistency checkmechanism
in an ECA framework. The purpose of this mecha-
nism is to control state-changing actions, keeping the
system always in a consistent state. By executing a set
of complex ECA rules, our system changes its states.
In this transition, every state in which the system en-
ters, needs to be a legal state (with respect to the ECA
rules and the semantics provided byT D ). However if
the inference engine, searching for a possible execu-
tion path, enters to an illegal state (w.r.t the semantics
of given rules), such a state-transition will be rolled
back. In this way, our framework is an attempt to
implement ECA rules in a completely logical frame-
work, trying to achieve better run-time properties of
the entire ECA system.

5 RELATED WORK

This section briefly overview current approaches in
realizing an ECA framework, with the declarative se-
mantics, and logical rules. Work on modelingbehav-
ioral aspect of an application (using various forms of
reactive rules) has started in the Active Database com-
munity. Different aspects have been studied exten-
sively, ranging from modeling and execution of rules,
to architectural issues (Paton and Dı́az, 1999). How-
ever, what is clearly missing in this work, is a clean
integration of active behavior withdeductiveandtem-
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poral capabilities. This is exactly a goal of our ap-
proach. Going in that direction, (Behrends et al.,
2006) is an attempt which combines ECA rules with
Process Algebra. The idea is to enrich theaction
part, with the declarative semantics of Process Alge-
bra, particularly CCS algebra (Milner, 1983). Use of
Process Algebra specification aims to enable therea-
soning functionality (e.g., model checking) in such
an ECA system. Recently, the event part of a rule
has also been put in a logical framework (Bry and
Eckert, 2007a). There, an event may be defined us-
ing reactive, but also, deductive rules. In (Paschke
et al., 2007) a homogenous reaction rule language was
given. The approach combines different paradigms
such as reactive rules, declarative rules and integrity
constraints. In conclusion, all previously mentioned
studies, are motivated to use more formal semantics.
Our approach may also be seen as an attempt towards
that goal, though followed by a pure Logic Program-
ming style.

6 CONCLUSIONS AND FUTURE
WORK

We propose an expressive ECA framework that uses
Transaction Datalog¬ as an underlying formalism.
The framework clearly extends capabilities of Active
Databases with declarative semantics, and power of
rule-based reasoning. Further on, Active Databases
usually combine two or more formalisms (e.g., SQL
as a declarative language for querying, and Java, or
some other high-level language, for procedural pro-
gramming). Similarly, in (Behrends et al., 2006),
Process Algebra has been chosen as a formalism
for the complex action specification and execution.
The event and condition part may possibly be spec-
ified by other languages (e.g., XPath/XQuery, Dat-
alog, SPARQL, F-Logic etc.). Using Transaction
Datalog¬, we provide a unified framework that is
also clean and simple. Transaction Datalog does not
make a sharp distinction between declarative and pro-
cedural programming. Therefore, our framework pro-
vides a seamless integration of these two program-
ming styles, and allows specification of more com-
plex events, conditions, and actions (e.g, events can
be combined as a sequence of atomic events or actions
can talk to each other or be nested and executed in
parallel). We believe this approach is more pragmatic
from the implementation and optimization point of
view. For the next steps we will continue to formalise
our ECA framework. Currently, we are working on
practical reasoning procedures forT D¬. Later on,
we plan to work on efficient algorithms for CEP with

T D¬, as well as on the prototype implementation.
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