TOWARDS CREATION OF LOGICAL FRAMEWORK FOR
EVENT-DRIVEN INFORMATION SYSTEMS

Darko Anicic and Nenead Stojanovic
Forschung Zentrum Informatik (FZI), University of Karlsruhe, Germany

Keywords: Event-Condition-Action Rules, Reactive Systems, Rule-based Reasoning, Logic Programming.

Abstract: Event-Condition-Action (ECA) rules offer extensible and flexible approach to realizing active Enterprise In-
formation Systems. Such systems are enabled to actively respond on events or state changes. Hence their
behavior is programable by means of ECA rules. We propose an implementation of ECA rules in a completely
logical framework, usingransaction Datalog as an underlying logic. In this way, we extend the current
ECA framework by means of powerful and declarative semantics, which also have an appropriate procedu-
ral interpretation. We show how a logical calculusToénsaction Datalog: can be exploited for realizing
composite events, conditions, and actions; justifying the use of declarative semantics for solving some of the
existing issues in reactive systems.

1 INTRODUCTION with each other (e.g., one action from an ECA rule
has to be accomplished in order to start an action from
another ECA rule). Such and similar formal descrip-

Event-driven architecture (EDA) represents a new tions could than serve for executing different activi-

hype in enterprise information systems, that comple- ties, and reasoning about behavioral aspect of reactive

ments the service-oriented architecture. Event-drivenjnformation systems.

applications trigger actions as a response to the detec- |n order to formalise reactive systems, we are

tion of events. The event may Slgnlfy a prOblem or proposingTransaction Data|og (q‘@ﬁ) (Bonner,

an impending problem, an opportunity, a threshold, 1998) to be used as an underlying logic. In fact,

or a deviation. Upon generation, the event is immedi- the main contribution is the extension of the standard

ately disseminated to all interested parties (humans orgcA framework with the formal semantics @fo —.
machines). The interested parties evaluate the eventyye use deductive rules to define new implicit events
and Optionally take action. The event-driven action or Complex Conditions and actions_ Moreover we ar-
may include the invocation of a service, the trigger- gye that the interaction between events and actions is
ing of a business process, and/or further information possib|e and achievable by means of |ogic_ As pointed
publication/syndication. EDA is the architecture of iy (Bry and Eckert, 2007b), use of rules for describ-
choice for implementing straight-through multistage ing, rule based, "virtual” events is highly desirable
business processes that deliver gOOdS, services and indue to a number of reasons: rules serve as an ab-
formation with minimum delay and maximal flexibil- straction mechanism and offer a higher-level event de-
ity. Itis a style of application architecture centered scription. Rules allow for an easy extraction of differ-
on asynchronous push-based communication leadingent views of the same reactive system. Rules are suit-
to the so-called active enterprise information systems, gple to mediate between the same events differently
that are able to react autonomously on various inter- represented in various interacting reactive systems.
nal and external events. However, despite its enor- Finally, rules can be used for reasoning about causal
mous importance, this kind of systems is still missing relationship between events. Similar argumentation

a comprehensive mechanism for (formal) representa-for the rule-based events also applies for the condi-

tion of event-action causality (usually coded in Event- tjon and action part. Moreover integration of events,

Condition-Activity rules). One challenge is, for ex- conditions, and actions by means of logic brings new

ample, to formally represent two set of actions, trig- é)ossibilities in utilising behavioral aspects of event-

gered by the same event, that have to be synchronise

394

Anicic D. and Stojanovic N. (2008).

TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS.

In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 394-401
DOI: 10.5220/0001716703940401

Copyright © SciTePress

TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS

driven enterprise information systems. in an appropriate moment.

Our goal is to enable information systems to cap- condition. The context, in which an ECA rule fires,
ture internal and external (relevant) changes. A sys-js gescribed by the condition part. The condition part
tem needs to properly react on changes in an auto-is ysyally represented as a query to a persistent knowl-
mated manner. Such reaction can be seen as an act ofggepase. More importantly, the condition acts as a
change propagation. In general, an action changes thgyye petween different parts of a rule (i.e., event and
state of the system or triggers a new event. Thereforeaction)_ In Section 4, we will introduce a more com-
it is a question how to effectively control the whole re- plex condition form, where the condition part may

active; syst.em., ie. hovv_ machines can keep executingg|so be represented as any Datalog-like rule.
certain activities, ensuring at the same time the system

consistency. In order to achieve this goal, we combine
a reactive system (i.e., ECA system) with deductive
capabilities in a Logic Programming style. First, our
extension is motivated by the aim to synthesizéve
behavior(from ECA rules) withprocedural and de-
ductive semantic§rom Transaction Datalog). Sec-
ond, the extended framework integrateactive and
continuoushehavior appropriately.

The paper is organised in the following manner: In
the second section we give a short introduction into
the ECA rules, whereas the third section introduces
TransactionDatalog. Our logic-based realisation of
ECA rules is described in setcion four. Section five
describes related work, whereas section six contains
concluding remarks.

Action. The action part changes the state of a system.
While events are triggered as a consequence of state
changes, the actual state changes are caused by ac-
tions. Hence the reactive behavior of ECA systems
is realized through the execution of actions. Typi-
cal examples of actions are: updating persistent data,
calling a web service, triggering new events, commit-
ting a database transaction, or the rule base modifi-
cation. In some cases, more simple (atomic) actions
may be combined to form eomplex action An ex-
ample of a complex action issequencef atomic ac-
tions. Further on, a complex action may be defined as
a specification odlternativeactions (i.e., if one action
fails, the other one will start executing). In Section 4,
we propose use of Transaction Datalogn order to
specify complex actions. Use of Transaction Datalog
in an ECA framework, does not allow us only to cre-
ate more complex actions, but also to enable coordi-
2 ECA FRAMEWORK nation and cooperation between them. Communica-
tion, synchronization and concurrency between run-
Event-Condition-Action rules have recently gained ning actions are also supported.
significant attention in information systems where re-
active behavior is required, i.e., systems capable to

detect events and respond to them automatically. The3 OVERVIEW OF TRANSACTION

context, in which events are triggered, is also taken

into account. The general form of ECA rules is: "ON DATALOG -
EventlF ConditionDO Actior’’. Interpretation of a
single ECA rule is to execut&ctionwhenEventoc- In this section we give a short overview of Transaction

curs, provided tha€Conditionholds. When a set of Datalog, highlighting the language’s most important
rules is considered, the interpretation is getting more properties with respect to this paper.

complicated (Berstel et al., 2007). This, particularly Transaction Datalog. Transaction Datalog(») is a
holds, when taking into account the execution model g pset of Transaction Logia(®) (Bonner and Kifer,

of rules (i.e., behavior of rules alin-time). First, the 1995), and Concurrent Transaction Logic7()

rule set may contain conflicting rules. Second, there (Bonner and Kifer, 1996). Concurrent Transaction
is an issue how to execute rules with respect to: order- Logic is a general logic designed specifically for
ing,_priorities, granglarity; such that, they still capur the rule-based paradigm, and intended to provide a
the intended meaning. For those reasons we use thgjeclarative account for state-changing actions. Our
semantics of { D), trying to create an ECA frame- mgtivation to use this particular logic, in an ECA
work that is more robust and formal. In the following, framework, lies in a set of special logical and tem-
we briefly describe the basic elements of an ECA rule. poral connectives provided by ». For instance, a
Event. In general, reactive systems are recursive sys- sequence of actions may be executed sequentially or
tems, where event is a central notion for driving the in parallel. Further, actions may be synchronized and
execution. Hence the role of events s, first, to identify communicate among themselves (e.g., one action can
situations in which the system is supposed to react, read what another action writes). On the other side,
and second, to start the execution of ECA programs an action may also be executed in isolation from the

395

ICEIS 2008 - International Conference on Enterprise Information Systems

other actions.7 » allows users to specify properties independently. In particular, each action performs
of state-changing programs, and to reason about themthree tasks, whergaskG (from actionC) cannot start
(Bonner and Kifer, 1995). until taskB (from actionB) is finished. Similarly,
Transaction Logic has a "Horn” fragment, with taskB cannot start untitaskG is completed (i.e.,
both, a procedural and declarative semantics (Bonnerspecified withins.startBs from actionC and an atom
and Kifer, 1995) o is derived from this Horn frag- ~ startBs fromactionB). Therefore we see thattionB
ment, just like, classical Datalog is derived from clas- communicates witlactionC Moreover the two sub-
sical Horn logic (Bonner, 1998). Compared with the actions,actionBand actionG are synchronized be-
full logic, 7 has simpler semantics, hence gives a tween themselves.
possibility for more effective implementation. At the Negation. Unlike (Bonner, 1998), we use Transaction
same time, we will show (in Sections 4.1 and 4.3) that Datalog embellished withegation-as-failuréLloyd,
7 D is still expressive enough to fulfil requirements 1989), thus extending » to 7 »— (the same way as
for an expressive ECA framework. classical Datalog is extended to Datatggin Section

Syntax. The syntax of Transaction Datalog is the 4. we will define complex ECA rules that possible in-
same as the classical Datalog syntax (Ullman, 1990), cludenegatedevents and actions. When negation is
extended with three additional predicate symbols: allowed, there might not be a least fixed point (i.e.,
p.emptyins.panddel.p Intuitively, p.emptymeans unique sqlutlon f_or a given set of rules), but seyeral
S re'ation p empty ins_pmeans Insert atom p in m|n|ma| f|Xe-d pOIntS (U"man, 1990) In SUC-h situa-
the knowledgebaseand del.pmeans Delete atomp ~ tions, ther(_e is a problem to determme_what is _the ac-
from the knowledgebaseT o, further, includesse- ~ tual meaning of the rules. We permit tistratified
rial conjunction concurrent conjunctiorandmodal- ~ negation(Uliman, 1990), as with that form of nega-
|ty of iso|ation respective|y denote@), |’ o. For t|0n, one can St|” Choose- an |ntu|t|Ve-r:nean|ng In case
example, ifr,q,t, andw are atomic actions, thap of the non-unique solution. In addition, we should
is defined agp(X) « del.q(X) ® o(t(X) | w(X)) ® also mention that rules im » may be recursive as in
ins.r(X), is a complex action (represented as a Trans- classical Datalog.
action Datalog rule). Executing the actign in- Execution Paths. Transaction Datalog provides a
tuitively, we perform three successive sub-actions: declarative account fostate-changingactions. A
delete an atom(X), execute in parallel sub-actiorts, stateis defined as a finite set of ground atomic formu-
andw, and finally, insert an atom(X) to the knowl- las with EDB predicate's To model complex, concur-
edge base. If any of the sub-action fails, the whole rent actionsg © has a notion oéxecution pathghat
action will fail. In that situation, the system retracts records the execution history of the complex actions.
to its initial state (i.e., a state before the execution Intuitively, the path represents periods of continuous
started). This mechanism keeps the system alwaysexecution, separated by periods of suspended execu-
in a consistent state. The isolation operator is used totion (during which other action may execute) (Bonner
constrain communication between concurrently run- and Kifer, 1996). In Section 4, we further discuss im-
ning sub-actions. For instance, consider a complex portance of theexecution pathsvith respect to our
actionds | (®¢2) | 3. During the execution of such ECA framework. Transaction Datalog hasredel
an action, sub-action; and ¢z may communicate theoryinherited fromz £ , and an operational seman-
between themselves. Howewer will be executed in tics based on a proof procedure with unification. For
isolation of them. detailed analysis about syntax, semantics, and an in-
The following example from (Bonner, 1998), ference system af 0, we referthe readerto (Bonner,
demonstrates another important featurerab, that 1998; Bonner and Kifer, 1996).
is synchronization

Example 3. 4 |IMPLEMENTING ECA RULES
actionA— actionB| actionC

actionB — taskB ® ins.startG ® taskB ® startBs ® WITH 79D~

taskBs.

actionC — taskG ® startG, ® taskG © insstartBs & In this section we review the role of basic elements

of an ECA rule (i.e., event, condition, action), putting
them in a logical framework, and implementing them
with Transaction Datalog.

taskG.

The first rule defines a compleactionA which
consists of two sub-actionsactionB and actionC 1As in classical Datalog, there are two sorts of predi-
The two sub-actions execute concurrently, but not cates: base or EDB, and derived or IDB predicates.

396

TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS

4.1 Event before @) as well as for the sequence; before(e;
before g). In order to prevent such unintended se-
The execution in reactive systems is driven by events. mantics, a complex evertT:, Tz, X1, X2, ..., Xn) that,
We distinguish between anternal and anexternal for instance, consist of evergs(Ts, T, X1, X2, ..., Xn)
event. The internal event occurs as a consequence oindex(Ts, Te, X1, X2, ..., Xn) is defined over an interval
a state-change in the system (e.g., a fact has been in{T1, Tz] whereTy = min{T3, Ts} andT, = max{Ta, Ts}.
serted in the knowledgebase, a transaction commit-
ted, an exception occurred in the system etc.), while Definition 4.1 A complex event is a formula of the
the external event is raised by a happening outside thefollowing form:
system (e.g., caused by an external procedure, a sen-
sor or an applicatiorf) In either case, an event needs
to be registered, such that, an ECA system can recog- ® (evenf Aevens A ... Aevent), wheren > 0 and
nize the event and behave accordingly. For this pur- eacheventis an event (Conjunctive composition);

pose we use aevent.ontologje.g., complex events e (eventVeventV ...V eveng), wheren > 0 and

are bu_lld out of atomic events by means of class rela- eacheventis an event (Disjunctive com_position);

tionship etc.).

Composite Event. Composite (or complex) event

consists of atomic events that satisfy some pre-

defined patterns. For instance, a pattern may be de- e —event whereeventis an event (negation).

fined as a conjunction, disjunction, or negation of

atomic events, followed by some temporal constraints

(e.g., one event happened 10 min after another one) A rule is a formula of the formeventA— eventB

We use Transaction Datalegto formally specify =~ whereeventAis an atomic event, andventBis ei-

these patterns, and later on, to identify complex eventsther an atomic or a complex evellk In the above

by capturing the state-changes in the knowledgebase definition, everyevent is defined over a time interval
We assume a discrete time model, whérae [T1, T2] with possible set of data terms that are omitted

is an ordered set of time points. In this paper due to space reasons.

points are represented as integers, but other time In following examples we demonstrate the power

models for time and data representation are possi-of Transaction Dataloglanguage, and give justifica-

ble without restrictions. The notion of astomic tion for its use in our ECA framework.

event is defined as arelevant state changdein Example 4.1 defines a complex event,

a system, characterized by the time. Formally, checkStatus which happens if a priceChange

an event ise(Ty, Ty, X1,X2,...,%y),n > 0, where event is followed with a stockBuy everfurther on,

e is an event name (i.e., a predicate symbol), the two events have happened within a certain time

and Tp, T2, X, X2,...,Xn is a list of arguments. frame (i.e.t <5).

X1,X2,...,Xn represent a set of data terms. Events

contain data relevant for a reactive system. The dataExample 4.1

of event is a data term that may be either a variable, checkStatudy, T4, X,Y,Z,W) —

a constant, or a function symbolT;, T, defines a priceChang€T;, T2, X,Y) ® stockBuyTs, Ty,Z,Y,W) A

time interval during which the event has occurred. (T;—T; <5).

Following the argumentation from (Paschke et al.,

2007), interval-based events are suitable for Com- |n our system, we have an event ontology where the

plex Event Processing (CEP). For an atomic event following has been definéd

e1(T1, Tz, X1, X2, ..., Xn), it appears thal; is equal to

T,. However consider a complex evexthat is a se-

guence of eventsy, e;, andes in the following order:

e; before(e; before g). If an event was not defined

over a time interval (i.e., the detection time of the e stockBuyT;,T;,Z,W,Y) defines a transaction, in

terminating event is used as occurrence time of the which, a buyeiZ has bough®vV amount of stocks

complex event), an inconsistency would occur dueto from a company.

the possibility to deteat as a sequence; before(e;

e an atomic event;

e (eveni @ event ® ... ® event), wheren > 0 and
eacheventis an event (Sequential composition);

e (event whereeventis an event (isolation).

e priceChangéT;, Tj,X,Y) is an event, that de-
scribes the change in the stock pri¢ée.g.,£5%)
of a companyy;

[— 4Note that, apart from events defined in the event on-
2Note that there is no strict difference between an (ex- tology, we use a number of built-in predicates with prede-

plicit) event and a state change (i.e., an implicit event). fined meaning (e.g.,2” and "<” represent "subtraction”
SWhat is a relevant change depends on an application. and "less then” arithmetic operations).

397

ICEIS 2008 - International Conference on Enterprise Information Systems

In some cases a user may be interested in an- Finally, the modality of isolation operatap is
alyzing past events. For this purpose, we need aused for defining a composite event with additional
formalism that allow us, not only to create complex constraints. Usually a composite event consists of
events, but also to query them. We have ement (atomic) events that satisfy some pre-defined pat-
system logwhich serves to record each event occur- tern. In this respect, a composite event is not de-
rence in the system. In the following example we ask pendant on all events monitored in the system, but
for all events where the change in stock price was those that constitutes that particular event. However
bigger than 10%. the modality of isolation operator allow us to con-
struct a composite eventthat is, apart from its (atomic)
events, also constrained with other events from the
system. For instance, a composite eventlefined
ase(Ty, T, X,Y) «— e1(T1, T2, X) ® €2(T3, T4, X,Y) ®

As all events are accumulated in the event system €(Ts: Te, X,Y), will be triggered if e;,€;, and e3
log, we can also describe situations where negated@PPen next to each other with no other events in-
events are used. For instance, Example 4.3 representf€tween. Of course, a time interval for such compos-
a notFul filledOrder event, that triggers when a € events should be clearly defined as a scope over
customer has made a purchase, but the purchase ha@hich events are monitored (i.¢Ty, Te] in this case).
not been delivered within a certain time. Therefore, o
we see, that the system is also capable to support4.2 Condition
non-monotonicfeatures (i.e., the existence of an
event which is defined in absence of other events, The condition part determines whether an ECA rule
may beretracted if one of the absent event occurs (triggered by a certain event) will be executed or not.
later). Note that, since the event stream is infinite, The condition part is usually represented as a query,
one should always define a time interval as a scope ofsince it depends on the current state of the system. In
a query, or a rule. In the Example 4.3 the interval in our framework, the condition of an ECA rule may be
which we check whether an item has been delivered significantly more complex.
is [T3,T4].

Example 4.2
?— priceChangéT;, T;, X,Y) A X > 10.

Definition 4.2 The condition part of an ECA rule
is any Datalog rule, where the rule head is the
condition name, and the rule body is the condition
definition

Example 4.3
notFul filledOrder Ty, T4,X) « purchasedT;, T2, X) ®
—deliveredTs, Tg, X) A (T4 — Ty > 3).

The following 7 » formula represents an action,
act, that will be executed iff the condition padond
is fulfilled:

Example 4.4
complexEvertily, T4, X)
eventBTs, Ty, X)

= eventATy, T, X) ®

In Example 4.4, we demonstrate use of the se-
guential composition operator (from Definition 4.1),
i.e., acomplexEvenwill occur if eventAis followed
by eventB If eventAhas happened, the system needs
to "remember” it, and to raiseomplexEvenbnce
eventBhappens. Detection of complex events is done
by following the state-change (transition) path. In
general case, executing a Transaction Datalog rule
the system may change the state frpto S, (i.e.,
going through states$,S,...,S,). If the rule de-

scribes a complex event, this state-transition may be
seen as the progress towards detection of a com-

plex event. In this way, ifeventAhas occurred
but eventBhas not, the system willvait, and raise
complexEvenbnceeventBis triggered. Note, if we
replaceeventBTs, T4, X) with eventATs, T4, X) from

®[cond® act]

In this way we express @ » formula, that is at
the same time, a Condition-Action rule. Hence the
action, act, will be executed only if the condition,
condis fulfilled. Further on, the condition partgnd
may be extensively dependant on a number of other
sub-conditions, as defined by Definition 4.2, and
shown below:

cond« cond, A (cong V conds) A —cond;.
cong < cond, A conds.

4.3 Action

the example 4.1, we can define a repeated event (e.g.In general case, the purpose of the action part is to

double click).

398

change the state of the system. An example of a

TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS

state change is a single update in the knowledgebaseplex actions are executed, and record their execution
However atomic actions, such as data update, are tochistory. Formally, an execution path of a complex

limiting in practise. More often we need to com-
bine atomic actions int@omplex actions We ex-
tend the standard ECA framework with deductive ca-
pabilities, such that the action part can be formally
described with Transaction Datateg First, our ex-
tension is motivated by the aim to integraigive be-
havior (from ECA rules) withdeductive capabilities
(from Transaction Datalog). Second, the extended
framework integrateeactiveand continuousbehav-
ior appropriately.

In the following, we give legal possibilities for
creating a complex action out of atomic ones.

Definition 4.3 An action is a formula of the following
form:

e an atomic action;

e (actiom AactiomA... Aaction,), wheren> 0 and
eachaction is an action (Conjunctive composi-
tion);

e (actiom Vactionp V... Vaction,), wheren> 0 and
eachaction is an action (Disjunctive composi-
tion);

e (actiom ® actionp ® ... ® actiory,), wheren > 0
and eaclaction is an action (Sequential compo-
sition);

e (actiom | actior | ... | action,), wheren > 0 and
eachaction is an action (Concurrent composi-
tion);

e —action whereactionis an action (negation).
e (action whereactionis an action (isolation).

A rule is a formula of the formactionA« actionB
where actionAis an atomic action, andctionB is
either an atomic or a complex acti@h

action is represented as a finite sequence of pairs:
S, $%Sy, ..., 5-1S,, where each state-change (i.e.,
SS.1) represents a period of an atomic action execu-
tion. For instance, imagine an evemthas occurred,
and caused a corresponding complex actipto start
executing. The every has occurred when the knowl-
edgebase was in the stéig and after the execution

of the actiomas, the system will be broughtto the state
Sh. Since thea; is a complex action, the system will
go through a set of stat& S, 3%, ..., Sv-1S. Ev-

ery state transition§gS.1, corresponds to execution

of an atomic action. Now suppose that during the ex-
ecution ofay, an event, has occurred. The eveet

has caused an actiay to happen, which is a sim-
ple action, and hence, will be completed befaie
Note thatap will change the state of the whole sys-
tem, whilea; is still executing. Thanks to aimter-
leaving semanticef 7 o, after the execution of both
actions, our whole ECA system will still remain in a
consistent state. The interleaving semantics assumes
a single execution path although a number of concur-
rent complex actions may be running at the same time.
Every complex action consists of a sequence of sub-
actions, where each sub-action changes a state of the
system. However by interleaving these sequences, we
obtain a new sequence of state changes, which is an
execution path.

However some complex actions need to be
executed continuously (i.e., without interruption by
other sub-actions, or suspension). In this situation we
use amodality of isolation For example, consider a
complexactionAwhich consists of three sub-actions:

actionA— @ [taskA ® taskA ® taskAs]

An execution path of the above action is a sin-

A rule may be seen as an action procedure, wheredle pair of states$;, S,. AlthoughactionAis a com-
the rule head is a complex action name, and the rulePlex action, it has been modeled to change the state

body is the action definition. Likewise events, actions

only from § to S (not as a sequence of changes:

are not just propositions, but contain data terms. EachS1S, $Ss, $S). Therefore if some other actions are

actiona(Xq, Xz, ..., Xn) may be of arity nn > 0, where

X1, X2, ..., X is a list of variables or constants, repre-

senting parameters of the action procedure.
Utilising 7 ® operators, complex action may cre-

ate complex processes that, at the end, may form a

workflow (Bonner, 1999). As we can see, from Sec-
tion 3 and Definition 4.3, actions may run in parallel

executing at the same time, their execution paths will
not be interleaved with the one afctionA There-
fore assuming thactionAstarted to execute first, the
other actions will be committed after tlagtionA

In the Example 3 (section 3) we have explained
how a complex action can be implemented with
two concurrently running, synchronised, actions. In

possibly having non-serializable access to shared re-case we want to synchronise the two actions with
sources, or for instance, they can communicate andsome (external) events, we may replace constructs for

synchronise themselves.
As mentioned in Section 37 » has a notion of
execution pathsExecution paths show the way com-

the synchronisation (i.eins.startG andins.startBs)
with some eventstartG, startBs. In this way, our
ECA framework features tighter integration between

399

ICEIS 2008 - International Conference on Enterprise Information Systems

events and actions. Moreover this integration has These actions may run in parallel, or in a sequence
been achieved at the logical level, which allows rea- (or combined). More importantly is that our frame-
soning about actions and events. For instance a pat-work has two-fold benefit of using semantics. The
tern such as "notify me if amactionAhappened be- first advantage is deployment of an inference engine
fore aneventE and theeventEhappened before an for finding alegal execution patamong all possible
actionB' would be easy extractable by the reasoner. choices of executions. Usually, the execution path
depends on run-time properties of a logic program.
Hence searching for an executable path (in run-time)
is rather a reasoning task. Using declarative seman-
tics, our framework is capable to accomplish this task
in an automated manner. We see this approach, as
more flexible, and in some real-world scenarios, as
the only one. The second advantage is: executing a
path (found by the reasoner), the system will never
run into aninconsistenstate.

ECA rules are considered as an appropriate form
of reactive rulesfor a distributed environmente.g.,
Web). However their use in a distributed environment
may be very unpredictable, with respect to their in-
tended semantics (Kifer et al., 2006). In general case,
execution of an event may trigger other events, and
these events may trigger even more events. There

4.4 Executing ECA Rules

In this section we give more details about basic con-
cepts underlying our ECA framework with respect
to the evaluation of ECA rules. We adhere to the
general syntax of an ECA rule:

ON EventlF ConditionDO Action

However our approach differs from existing
frameworks in defining thEvent Condition andAc-
tion part. As given by Definitions 4.1, 4.2, and 4.3,
each component of an ECA rule may be defined as a
set of eitherr » - or Datalog- rules.

ECA-based systems, with complex events, con-
ditions, and actions; have been extensively studied
elsewhere in (Paton and Diaz, 1999; Bry and Eck-
ert, 2007a). One of the common issue in these sys-
tems is a specification of @axecution semantieghen

is neither guarantee that, such a chain of events will
stop, nor that states (through which a distributed sys-
tem passes) are valid. We see semantics as a means to
establish some sort of@nsistency cheagkechanism

in an ECA framework. The purpose of this mecha-

a setof ECA rules is considered (rather than a sin- g is to control state-changing actions, keeping the

gle arule). The execution semantics gives an answergy siem always in a consistent state. By executing a set
how rules are treated ain-time Imagine a s_ltuat|c_)n of complex ECA rules, our system changes its states.
where several events occur at the same time trigger-|, s transition, every state in which the system en-

ing several actions to happen_(i.e., §evera| ECAtules). ters, needs to be a legal state (with respect to the ECA
'Lhe systlem dq?fs not kr;]oyv in wh|cf|1 order tQﬁaDPW rules and the semantics providedby). However if
those rules. Different choices may lead to different ,q jnference engine, searching for a possible execu-

executions. For these, and similar issues, various ex-qn hath enters to an illegal state (w.r.t the semantics
ecution semantics have been proposed, €.9., Selectingy¢ qiven ryles), such a state-transition will be rolled

only one rule from the conflict set, executing all rules, oo 1n this way, our framework is an attempt to
rejecting the execution of any rule and triggering an implement ECA rules in a completely logical frame-

exception etc. (Paton and Diaz, 1999) work, trying to achieve better run-time properties of
Our approach is accomplished in a completely ihe entire ECA system.

declarative framework (i.e., using the formal seman-
tics of 7 - language). We write ECA rules as a
set of logical equations. These equations are spec-
ified declaratively (i.e., specifyingvhat we want to
achieve, rather thahow we want to achieve that).
Now, let us assume the same issue as earlier in thisThis section briefly overview current approaches in
text (i.e., several ECA rules have been triggered at therealizing an ECA framework, with the declarative se-
same time). In our case, we deploy an inference en-mantics, and logical rules. Work on modelibghav-
gine to find an execution path. Precisely, the goal of ioral aspect of an application (using various forms of
the inference engine is to find a possible execution, reactive rules) has started in the Active Database com-
for a given set of rules following the procedural se- munity. Different aspects have been studied exten-
mantics ofz ©— (Bonner and Kifer, 1996). sively, ranging from modeling and execution of rules,

In conclusion, following the semantics afo —, to architectural issues (Paton and Diaz, 1999). How-
the reasoner executes a set of ECA rules, executingever, what is clearly missing in this work, is a clean
at the same time, a set of (possibly) complex actions. integration of active behavior wittheductiveandtem-

5 RELATED WORK

400

TOWARDS CREATION OF LOGICAL FRAMEWORK FOR EVENT-DRIVEN INFORMATION SYSTEMS

poral capabilities. This is exactly a goal of our ap- 7 D—, as well as on the prototype implementation.
proach. Going in that direction, (Behrends et al.,

2006) is an attempt which combines ECA rules with

Process Algebra. The idea is to enrich thetion REFERENCES

part, with the declarative semantics of Process Alge-

bra, particularly CCS algebra (Milner, 1983). Use of Behrends, E., Fritzen, O., May, W., and Schenk, F. (2006).

Process Algebra specification aims to enableréize Combining eca rules with process algebras for the se-
soningfunctionality (e.g., model checking) in such mantic web. InrRuleML

an ECA system. R_ecently,_ the event part of a rule Berstel, B., Bonnard, P., Bry, F., Eckert, M., and Patrapjan
has also been put in a logical framework (Bry and P. L. (2007). Reactive rules on the web.Reasoning

Eckert, 2007a). There, an event may be defined us- Wehb Springer.

ing reactive, but also, deductive rules. In (Paschke Bonner, A. J. (1998). Transaction datalog: A compositional
etal., 2007) ahomogenousreaction rule language was language for transaction programming. Database

given. The approach combines different paradigms Programming Languagespringer.

such as reactive rules, declarative rules and integrity Bonner, A. J. (1999). Workflow, transactions and datalog.
constraints. In conclusion, all previously mentioned In PODS '99: Proceedings of the eighteenth ACM
studies, are motivated to use more formal semantics. ~ S/GMOD-SIGACT-SIGART symposium on Principles

Our approach may also be seen as an attempt towards of database systemaCl.

that goal, though followed by a pure Logic Program- Bonner, A. J. and Kifer, M. (1995). Transaction logic pro-
gramming (or, a logic of procedural and declarative

ming style. knowledge. InTechnical Report CSRI-270
Bonner, A. J. and Kifer, M. (1996). Concurrency and com-
munication in transaction logic. lioint International
6 CONCLUSIONS AND FUTURE Conference and Symposium on Logic Programming
WORK MIT Press.

Bry, F. and Eckert, M. (2007a). Rule-based composite event
queries: The language xchangeeq and its semantics. In

We propose an expressive ECA framework that uses RR Springer.

Transaction Datalog as an underlyln_g _formallsrr_]. Bry, F. and Eckert, M. (2007b). Towards formal founda-
The framework clearly extends capabilities of Active tions of event queries and rules. $econd Int. Work-
Databases with declarative semantics, and power of shop on Event-Driven Architecture, Processing and
rule-based reasoning. Further on, Active Databases Systems EDA-PS

usually combine two or more formalisms (e.9., SQL kjter, M., Bernstein, A., and Lewis, P. (20086).
as a declarative language for querying, and Java, or Database Systems - An Application-Oriented Ap-

some other high-level language, for procedural pro- proach Addison-Wesley Longman Publishing Co.,
gramming). Similarly, in (Behrends et al., 2006), Inc., Boston, MA, USA, 2nd edition.

Process Algebra has been chosen as a formalismLloyd, J. W. (1989). Foundations of Logic Programming
for the complex action specification and execution. Computer Science Press.

The event and condition part may possibly be spec- Milner, R. (1983). Calculi for synchrony and asynchrony.
ified by other languages (e.g., XPath/XQuery, Dat- In Theor. Comput. Sci.

alog, SPARQL, F-Logic etc.). Using Transaction paschke, A., Kozlenkov, A., and Boley, H. (2007). A ho-
Datalog~, we provide a unified framework that is mogenous reaction rules language for complex event
also clean and simple. Transaction Datalog does not ~ Processing. Iinternational Workshop on Event Drive
make a sharp distinction between declarative and pro- ~ Architecture for Complex Event Proce#CM.

cedural programming. Therefore, our framework pro- Paton, N. W. and Diaz, O. (1999). Active database systems.
vides a seamless integration of these two program- N ACM Comput. SUNACM.

ming styles, and allows specification of more com- Ullman, J. D. (1990). Principles of Database and
plex events, conditions, and actions (e.g, events can ~ Knowledge-Base Systems, VolumeN. H. Freeman
be combined as a sequence of atomic events or actions & C0-» New York, NY, USA, 2nd edition.

can talk to each other or be nested and executed in

parallel). We believe this approach is more pragmatic

from the implementation and optimization point of

view. For the next steps we will continue to formalise

our ECA framework. Currently, we are working on

practical reasoning procedures forp—. Later on,

we plan to work on efficient algorithms for CEP with

401

