
GRAPHICAL REPRESENTATIONS OF MESSAGE EXCHANGES
INTO WEB SERVICE-BASED APPLICATIONS

René Pegoraro
Computer Science Department, São Paulo State University at Bauru, UNESP, Brazil

Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, Toulouse, France

João Maurício Rosário
Mechanical Design Department, University of Campinas, UNICAMP, Brazil

Khalil Drira
Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, Toulouse, France

Keywords: Web services, SOAP, Web applications, Graphical representation.

Abstract: Web service-based application is an architectural style, where a collection of Web services communicate to
each other to execute processes. With the popularity increase of Web service-based applications and since
messages exchanged inside of this applications can be complex, we need tools to simplify the understanding
of interrelationship among Web services. This work present a description of a graphical representation of
Web service-based applications and the mechanisms inserted among Web service requesters and providers
to catch information to represent an application. The major contribution of this paper is to discus and use
HTTP and SOAP information to show a graphical representation similar to a UML sequence diagram of
Web service-based applications.

1 INTRODUCTION

Web service-based application is a collection of
Web services that communicate with each other to
execute a process. Every Web service participates as
a functional building block, loosely coupled, and
reusable.

W3C (Booth et al., 2004) defines a Web service
as a software system designed to support
interoperable machine-to-machine interaction over a
network. Some specifications have been developed
to extend Web Services capabilities; among them
WS-Addressing that defines XML elements to
identify requester and provider endpoints.

We may implement Web service-based
application by using orchestration, choreography
and other approaches, including an invocation of
Web services as service component parts of other
Web service. Web services are a technology well
established, we may publish, discover, and use them
in a standard form, but interrelationship among Web

services is not easy to verify or understand in a
process execution, since many communications may
take place in parallel.

The objective of this paper is to propose an
automatic graphical representation of message
exchanges into Web service-based applications,
allowing developers and administrators visualize and
understand the interrelationship among an
application and its Web services. This graphical
representation uses the information taken from
packets HTTP and Simple Object Access Protocol
(SOAP) messages used in most of Web service
communications and the times involved in these
communications.

As a proof of concept, we present a
representation of a Web food shop prototype using
BPEL (Web Services Business Process, 2007).

The organization of this paper is as follows:
Section 2 presents some concepts of Web service
and WS-Addressing; section 3 describes how the
system gathers information; section 4 discusses the

367
Pegoraro R., Maurício Rosário J. and Drira K. (2008).
GRAPHICAL REPRESENTATIONS OF MESSAGE EXCHANGES INTO WEB SERVICE-BASED APPLICATIONS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 367-370
DOI: 10.5220/0001720303670370
Copyright c© SciTePress

representation and shows an experimental result; and
section 5 conclusion and future works.

2 WEB SERVICES

A Web service is set of software operations designed
to support interoperable machine-to-machine
interaction over a network. It uses XML standards
allowing integration of applications through
different standards of operating systems and
programming languages.

Web services use Simple Object Access Protocol
(SOAP) to exchange messages. SOAP messages
consist of an envelope that defines a framework for
describing what is in a message. The envelope
groups an optional header and a mandatory body.
The SOAP header can contain information about the
message. The SOAP body contains the message.

There are varieties of specifications that have
been developed or are currently being developed to
extend Web Services capabilities. These
specifications are normally referred to as WS-* and
they may complement, compete, or supersede with
each other. WS-Addressing (WS-A) specification is
our choice to identify the endpoints that are
exchanging SOAP messages. WS-A describes the
ways to indicate requester and provider addresses
inside of the header of a SOAP message.

2.1 WS-Addressing

WS-Addressing (WS-A) is a recommendation to
incorporating message addressing information into
SOAP messages. This separates information of Web
services from message transportation protocols,
allowing the endpoint identifications in SOAP level
and making independent of the underlying transport.
Besides, WS-A incorporates, into a SOAP envelope,
reply destination to allow asynchronous operations
and fault handler addressing information.
The WS-A 1.0 (Box, 2004) describes, among others,
the following elements:
To – This optional element provides the value for

the destination property.
From – This optional element provides the value for

the source endpoint property.
ReplyTo – This optional element provides the value

for the reply endpoint property.
Action – This required element conveys the value of

the action property.
MessageID – This optional element conveys the

message identify property.

RelatesTo – This optional element information item
is used to link this message with another
previous message.

2.2 HTTP Addressing

SOAP does not specify a transport protocol, but
using SOAP carried in HTTP is the way most
commonly used in transactions between Web
services.

When a standard SOAP message is sent over
HTTP, HTTP header consists at least of three lines:
the start-line, Host and a specific header field
SOAPAction. The start-line includes the method to
be applied to the resource, the Web service address,
and the HTTP version. The header field Host
indicates the address of the provider and the
SOAPAction the operation inside of the specified
Web service that will be invoked. This interaction
between SOAP and HTTP is described in (Box,
2000).

3 GATHERING INFORMATION
FROM MESSAGES

The interactions inside a Web services-based
application happen using HTTP and SOAP message
exchanges. From these messages, we can take
endpoint informations and the times involved in
Web service communications.

To gather information from Web service
messages, the communication links must be
instrumented. As enumerated in Rud (2006), many
ways of instrumentations may be used in Web
service environments. We choose HTTP proxy
server because it is a technology well established in
network, easy to implement, multi-platforms, and
possible to install in almost all Web application
servers with few configurations. A standard proxy
server can be placed in the client computer, in the
provider computer, or at a specific location between
the client and the provider. Our intention is to take
endpoint informations and execution time measures.
If we want to measure time values that does not
include times spend in the network, it is better to
install the proxy as close as possible to the provider
computer; on the other hand, if we need to measure
time values including network times, the better place
is in the client computer or in its neighbourhood.
Obviously, if we need to measure the times of the
network and the services, we should install two
proxies, one beside client and other beside provider.

ICEIS 2008 - International Conference on Enterprise Information Systems

368

However, this paper just concerns to Round-Trip
Delay Time (RTT), consequently, we used just one
proxy placed in a computer close to a client. The
RTT is the total time used in a complete Web
service operation call, starting from the moment that
the client sends the request until the client receives
the response.

When proxies are inserted into a Web service
application, every message passes through them.
Each proxy gathers the information from SOAP and
HTTP with some relevance to graphical
representation. This information is stored in a log. In
the log we have the fields:

"SOURCE" – it is the message origin, it is taken
from optional SOAP element “From”. If it is
omitted in SOAP, the machine name or IP
comes from communication socket and
stored in log;

"DESTINATION" – it is the address and name
of the Web service to invoke, optional SOAP
element “To” provides this value. If it is
omitted, the destination is taken from HTTP
header start-line and field “Host”;

"ACTION" – it is operation name, it is taken
from mandatory SOAP element “Action”. If
the SOAP does not use WS-A extension, the
operation is taken from HTTP header field
“SOAPAction”;

"MSG_UUID" and "RELATES_TO_UUID"
they are message identifications, from SOAP
“MessageID” and “RelatesTo”, respectively;

"T1", "T2" – they are the measured times to
execute the Web service. This identifies the
start and the end times of the service. RTT
can be calculated from the difference
between "T1" and "T2".

4 EXPERIMENTAL RESULTS

As a proof of concept, we insert our architecture in
the FoodShop Company prototype connections. We
deploy the food shop in four virtual machines: one
Shop, one Warehouse, and one Supplier. Another
virtual machine was also used in the test
environment to host the proxy. In order to keep
things as simple as possible, we decided to use only
one centralized proxy. Thereby, all the connections
pass through this proxy, which can take information
from the messages

4.1 Food Shop

The food shop prototype used has become the
standard test bed in the frame of Ws-Diamond

Project (IST-516933) and it involves characteristics,
as asynchronous and synchronous invocations,
compositions using BPEL, and simple Web services.

The FoodShopping example is concerned with a
FoodShop Company that sells and delivers food.
The company has an online SHOP and several
WAREHOUSEs and SUPPLIERs located in
different areas.

Figure 1 shows our graphical representation of
the food shop execution.

4.2 Graphical Representation

Our graphical representation of the Web service
application represents the execution times of every
operation. Thereby the execution time start at the top
of representation and ends at the bottom. The arrows
represent message exchanges observed inside the
Web service application and the rectangles are the
Web service operation executions. Arrows with dark
heads are the synchronous invocations, dashed
arrows represents the return from synchronous
invocations. Arrows with open heads mean
asynchronous messages. To simplify the diagram,
operation names are not directly represented, but the
user can choose an operation execution to see its
informations.

In a general sense, Web services are black boxes.
We do not know what they do internally. Since, our
representation use just messages, some internal
behaviour is not possible to be represented. We
represent the Web service executions as follow:
• Each big rounded white rectangle, which we

call swim lane, represents a computer in the
network.

• Each column with vertical names represents
a Web service;

• Each small rectangle is an operation
execution into a Web service column. Every
operations are represented inside a swim
lane;

• Gray small rectangles represent synchronous
operations;

• White small rectangles represent
asynchronous operations

Horizontal size of each operation rectangle
represents the time of the operation execution.

We use all available information inside the
SOAP/HTTP messages. However, if the origin is not
specified (in “From” SOAP field), it is not possible
to state exactly the Web service source of the
message, then the only available information is the
network IP of Web service source machine.
Thereby, the arrow starts from the swim lane border

GRAPHICAL REPRESENTATIONS OF MESSAGE EXCHANGES INTO WEB SERVICE-BASED APPLICATIONS

369

of origin host. However, it is just possible if the
origin and Web service invoked are in different
machines. If both are in the same machine, no arrow
is drawn.

Figure 1: Food shop representation from our system.

We can observe in Figure 1 that there are some
operations that seemingly execute alone, without a
invoker to request them. The food shop example was
constructed using BPEL, this kind of orchestration
work like a Web service, but it can remain executing
even after it sends the response message. Our
representation just uses messages and cannot
identify internal executions without message
exchanges.

5 CONCLUSIONS

In this paper, we described a graphical
representation of Web service-based applications. It
is based on the information obtained from
HTTP/SOAP messages.

We presented a methodology by using proxy
servers to obtain information of message exchanges
between Web services, and identify requester and
provider endpoints participating in application.

The presented methodology directed the
prototype implementation of a Java proxy server and
a graphical tool that produces a graphical
representation of the Web service interactions.

5.1 Futures Works

This visualization tool is a step toward to
performance hot spots identification in Web service-

based architecture. With the taken information by
proxy is possible to orientate efforts improving
business goals, making better QoS agreements, and
achieving better customer experience.

Some Web service invocations may be
anonymous to permit override in Web service
operations. To complete the information of this kind
of communications, we intend to take missed data
from the WSDL.

ACKNOWLEDGEMENTS

This work was supported by CAPES – Brazilian
Council of Research and LAAS-CNRS, France,
through collaboration research project CAPES-
COFECUB.

REFERENCES

Booth, D., Haas, H., McCabe, F., Newcomer , E.,
Champion, M., Ferris , C., Orchard, D. (Eds.) (2004,
February 11). Web Services Architecture. W3C
Working Group Note. Retrieved March 22, 2007,
from http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

Box, D., and Curbera, F. (Eds.) (2004, August 10). Web
Services Addressing (WS-Addressing). Web Services
Addressing (WS-Addressing), W3C Member
Submission, Retrieved July 30, 2007,
from http://www.w3.org/Submission/ws-addressing/.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H., Thatte, S., Winer, D.,
(Eds.) (2000, May 08) Simple Object Access Protocol
(SOAP) 1.1. W3C Note, Retrieved July 30, 2007, from
http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

Gudgin, M., Hadley, M., Rogers, T. (Eds.) (2006, 9 May).
Web Services Addressing 1.0 – Core. Retrieved March
25, 2007, from http://www.w3.org/TR/ws-addr-core/

Mahmoud, Q. H. (2005, April). Service-Oriented
Architecture (SOA) and Web Services: The Road to
Enterprise Application Integration (EAI). Retrieved
November 21, 2007, from http://java.sun.com
/developer/technicalArticles/WebServices/soa/.

Rud, D., Schmietendorf, A., Dumke, R. (2006).
Performance Modeling of WS-BPEL-Based Web
Service Compositions. IEEE Services Computing
Workshops (SCW'06) 140-147.

Web Services Business Process Execution Language v2.0
(2007, April 11). Retrieved November 20, 2007,
from http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

ICEIS 2008 - International Conference on Enterprise Information Systems

370

