
APPLYING MDA TO GAME SOFTWARE DEVELOPMENT

Takashi Inoue and Yoshiyuki Shinkawa
Graduate School of Science & Technology, Ryukoku University, 1-5 Seta Oe-cho Yokotani, Otsu, Shiga, Japan

Keywords: Game software, Modeling, MDA, UML.

Abstract: Game software becomes more and more complex, according as the game platforms are improved or the re-
quirements of game users become sophisticated, and so does the development of game software. However,
there are few established development methodologies for game software development, and it decreases the
productivity of the development. One of the solutions for this problem is to apply modeling technologies
to it as we do to other application areas, and through modeling we can anticipate productivity improvement.
This paper evaluates the applicability and suitability of MDA (Model driven Architecture) to game software
development, along with establishing a UML modeling process for typical game categories.

1 INTRODUCTION

Since Atari released VCS (Video Computer System)
in 1970’s, many game platforms and games that run
on them have emerged. These games are usually im-
plemented as software, and the scale and complex-
ity of the game software have increased year by year,
according as the game platforms are improved with
higher performance CPUs, higher speed graphic en-
gines, and larger size memories, or as the require-
ments to the games become sophisticated.

In many software application domains which in-
clude finance systems, insurance systems, plant con-
trol systems, and embedded systems, object oriented
and model driven approaches won great success in
software developments. However, there are no es-
tablished methodologies in game software develop-
ment, including object orientation and modeling. One
of the difficulties in creating a standard methodol-
ogy for game software development is that each game
presents its unique appearance, behavior, and func-
tionality, or in other words, they are too different from
each other.

The lack of established methodologies would de-
crease the productivity of game software develop-
ment, and makes it difficult to reuse software assets.
The introduction of the above object oriented and
model driven approaches into game software develop-
ment seems to improve the productivity and reusabil-
ity. These approaches would improve them especially

in the large scale game software development, in the
following points.

• Each project member can commonly understand
the system to be developed

• The resultant system can be rigorously verified to
the requirements

• The system configurations can be validated in
early phases of development

• The scale of development can be predicted

In this paper we discuss the applicability of object
orientation and modeling technologies to game soft-
ware development, along with a modeling process.
As a modeling framework, we focus on MDA (Model
Driven Architecture) which is one of the state-of-the-
art modeling technologies, and as a object oriented
modeling language, we use UML (Unified Model-
ing Language), which is one of the industry-standard
modeling languages.

The paper is organized as follows. In section 2, we
discuss the scope of modeling, in which the applica-
bility of the above technologies is examined. Section
3 defines a classification of games, in order to view
the games at more abstract level for modeling. Sec-
tion 4 presents a detailed modeling process in game
software development.

454
Inoue T. and Shinkawa Y. (2008).
APPLYING MDA TO GAME SOFTWARE DEVELOPMENT.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 454-459
DOI: 10.5220/0001726604540459
Copyright c© SciTePress



2 MODEL DRIVEN GAME
SOFTWARE DEVELOPMENT

MDA is a development approach which focuses on
modeling of target domains or systems. MDA defines
two different kinds of models, namely PIM (Plat-
form Independent Model) and PSM (Platform Spec-
ify Model).The former represents the models that are
independent to the platforms, which represent a tar-
get problem domain at higher abstract level, in order
to depict and understand what it essentially is. On
the other hand, the latter represents the models which
show how the domain is implemented on a specific
platform. PSM could automatically be transformed
from PIM using some tools in MDA (Frankel, 2003).
We mainly focus on the analysis and high-level design
phases in game software development. Therefore, this
paper deals with only PIM, that is, the models inde-
pendent from platforms, in order to evaluate whether
we can model game software based on MDA.

Up to now, we have been designing game soft-
ware in programming-oriented style, mainly using
script languages, which is relatively old-fashioned in
comparison with modern model oriented approaches
(Nishimori and Kuno, 2003). This old-fashioned style
often decreases the productivity of game software de-
velopment. If we can apply MDA to game soft-
ware development, we would anticipate the improve-
ment of productivity, since there are many advantages
of modeling to the above old-fashioned development
style, as stated in the previous section.

In general, there are two orthogonal aspects in
software modeling. One is “static” or “structural” as-
pect, and the other is “dynamic” or “behavioral” as-
pect. Most games implemented as software show very
dynamic appearances. They are composed of many
game elements, namely characters including the pro-
tagonists, vehicles, weapons, animals, flowers, and so
on. Each game consists of the complicated combina-
tion of the behavior of these game elements along the
timeline. Therefore the dynamic aspect seems more
important in game software than the static aspect, and
we mainly focus on the dynamic aspect of the games
in order to evaluate whether we can express them as
the models in terms of MDA.

We use UML as modeling tool, since UML is one
of the industry standard modeling languages in ob-
ject orientation (Miles and Hamilton, 2006). We first
take the following five diagrams into account, that is,
“use case”, “activity”, “sequence”, “state machine”,
and “timing” diagrams, which represent the behav-
ioral aspects in various ways.

3 THE CLASSIFICATION OF
GAME SOFTWARE AND THE
SCOPE OF MODELING

There have been released numerous number of games.
Each of them has unique characteristics and very dif-
ferent from each other, in its behavior, appearance,
construction of the game, and operation. This unique-
ness is important to make each game competitive in
the market, however it makes it difficult to view the
games from common viewpoints in order to express
and analyze them through modeling. From modeling
viewpoints, it is important to view the games at more
abstract levels. One of the approaches to abstraction is
classificationusing criteria. There are several possi-
ble criteria such asgenres, platforms, prices, degrees
of difficulty, andpurposes.

Among the above criteria,genresare suitable for
abstraction to model the games, since the games in
the same genre would show the similar behavior. The
typical genres of video games and computer games
are as follows (Laird and Lent, 2000) (Fairclough and
Cunningham, 2001).

• Action games: A human player controls a char-
acter in a virtual environment. These games
emphasize combat against enemies using various
weapons.

• Role playing games: A human player may select a
favorite character from different types of charac-
ters, such as a warrior, a magician, or a thief. The
player goes on quest, trading items, fighting with
monsters, or changing the capabilities.

• Adventure games: A human player solves puz-
zles and interacts with other characters, as he/she
progresses through an unfolding adventure. These
games emphasize story, plot and puzzle solving.

In addition to the above three genres, there are
other game genres ofstrategy games, god games,
team sports games, board games, table games, sim-
ulation games, shooting games, and so on.

Even though there are many game genres, recent
market trends show the majority of games can be cate-
gorized into one of the three major genres, namely ac-
tion games, role playing games, and adventure games.
Therefore, this paper discusses the adaptability of
modeling technologies to the games in these three
genres. We abbreviate action games as ACT, role
playing games as RPG, and adventure games as ADV
henceforth.

In these kinds of games, a human player and game
software mainly interact through a input device and
display. The input device is often called a game con-
troller. The player can take various operations using

APPLYING MDA TO GAME SOFTWARE DEVELOPMENT

455



Figure 1: Classification of game operations.

the game controller, which affect the game progress.
These operations can be divided into two different
types. One is an asynchronous operation which the
player can take at any time in a game stream, and the
game proceeds without this operation. The other is a
synchronous operation which is taken in order to re-
sume a paused game stream, and is taken in the form
of selectionor answer. Since the former often occurs
in action games, and the latter often occurs in adven-
ture games, we refer the former as an action oriented
operation, and the latter as an adventure oriented op-
eration. Figure 1 shows the above classification of
player operations and Figure 2 shows a classification
of these games based on the above two operations.

Figure 2: Classification of games.

As shown in Figure 2, RPG fully include ADV
from these two operational viewpoints. Therefore, we
deal with only ACT and RPG. In order to evaluate the
adaptability of modeling technology to the above two
games, namely ACT and RPG, we assume the typ-
ical scenesand actions in above games as shown in
Table 1 and Table 2. The brief descriptions of these
games are as follows (Onder, 2002)(Taylor and Bas-
kett, 2006).

[ACT]

1. Characters horizontally move with jumping ac-
tions.

Table 1: Components of ACT.

Scene Component Action
Battle Player Move

Jump
Attack

Weapon change
Change the target at

which the weapon aims
Enemy Move

Jump
Attack

Change the target at
which the weapon aims

Bullet Move forward
Barricade -

Table 2: Components of RPG.

Scene Component Action
Town Player Move

Talk to
Open the Menu

Inspect
Construction -
(Houses etc)

Fixture -
(Doors etc)
Inhabitants -

(Merchants etc)
Prompt Player Select

(Shopping, decide
Conversation, Advance the

Selection Menu) Messages

2. A player may engage with enemies using
weapons.

3. A game exits when a player lose all the HPs (hit
points) which he/she obtained.

4. Attack items, e.g. bullets, arrows, spears or fire-
balls disappear after timeouts.

[RPG]

1. A player can change the atmosphere. (go to the
next room etc)

2. A player can talk with inhabitants. If there mer-
chants, he/she can trade with them.

3. A player can buy items such as weapons, protec-
tors, tools.

ICEIS 2008 - International Conference on Enterprise Information Systems

456



4 APPLYING UML TO GAME
SOFTWARE DEVELOPMENT

In this section, we discuss how UML is applied to
ACT and RPG based on the game components and
specifications stated in the previous section. Figure
3 shows the modeling process we use, which is com-
plied with use case driven development, e.g. I. Jacob-
son’s OOSE (Object-Oriented Software Engineering)
(Jacobson, 2000).

Figure 3: A modeling process for games.

In this process, use case diagrams are firstly cre-
ated through requirement analysis, then each step is
consecutively performed, following the directed ar-
rows, and finally we obtain state-machine diagrams
with optional timing diagrams. However, the paper
mainly aims at the applicability of UML to game soft-
ware development from behavioral or dynamic view-
points, and therefore we do not discuss the step for
class diagrams in Figure 3, but we assume appropri-
ate class diagrams are derived.

Figure 4: Modeling view points of UML diagrams.

The five kinds of UML diagrams to be created,
excluding class diagrams, are classified as shown in
Fig 4, from two orthogonal viewpoints, namely “part-
whole” and “internal-external”. The paper focuses
on partial-order relationships between actions in the
games and we do not deal with real time based con-
straints, as script design languages currently used do
not. Therefore, timing diagrams are not discussed

henceforth in this paper. Detailed modeling processes
for ACT and RPG are presented in the following sub-
sections.

4.1 Use Case Diagrams

[ACT Modeling]

Possible actions in ACT shown in Table 1 are ag-
gregated into three action groups of “Player ac-
tions through input devices”, “Background object ac-
tions”, and “Object collisions”, from player view-
points. These three groups are represented by use case
diagrams in the following way.

1. Player actions through input devices
Each player operation through input devices is ex-
pressed as a use case. These use cases charac-
terize the game software from operational view-
points, since the game requires rapid player reac-
tions through the devices.

2. Background object actions
Each action performed by objects except the
player, e.g. a background object movement or an
enemy attack, is expressed as a use case. A player
takes an appropriate action through the devices,
reacting these object actions.

3. Object collisions
Each event that occurs by an object collision is
expressed as a use case. Such events include ex-
plosions, vanishment, or splits of the objects. In
ACT, a player could be affected by these events,
e.g. he obtains score points when the bullets hit
enemies. There are enormous numbers of object
collisions to be considered, however most colli-
sions do not affect the player, for example, even if
a collision between the player and a wall occurs,
it only affects his movement, and is expressed as a
use case in “background object actions”. We only
deal with the collisions that affect the player seri-
ously.

[RPG Modeling]

RPG include much more adventure based operations
than action based ones, therefore we mainly make ef-
fort to model the adventure based operations. As for
action based operations, we can follow the same pro-
cess for ACT. The use case modeling process for ad-
venture based operations is as follows.

1. An adventure based operation can be represented
as a series of decisions which are made by select-
ing from option lists. Each option in the list is
regarded as a use case, and it composes a decision
tree, the nodes of which are use cases. Such a tree

APPLYING MDA TO GAME SOFTWARE DEVELOPMENT

457



structure of use cases clearly describes the rela-
tionships between use cases, and makes the use
case diagrams understandable.

2. The option lists that are dealt with in the above
step are limited to those with a fixed number of
predefined options, in order to make the modeling
simplified. The lists with a variable number of
options, or variable kinds of options are dealt with
in use case scenarios.

4.2 Activity Diagram

[ACT Modeling]

Numerous object collisions could occur in ACT, and it
seems important to model these collisions in activity
modeling for ACT. In order to handle these collisions
easily, we assume a collision monitoring component
is included in ACT software (Rocker, 2002). The ac-
tivity modeling process for ACT is as follows.

1. ACT usually include very complicated game
flows according to player actions and object colli-
sions. Therefore, it is not practical to include all
the game flows from the beginning to the end of
ACT in a single activity diagram. Instead, we take
a time slice out of the whole duration of the game,
and build an iterative activity model with possible
concurrent actions, which are consolidated into a
collision detection mechanism. The collision de-
tection is performed at the end of each time slice
in order to reduce complexity. The game may exit
from any times slices discussed above, based on
exit conditions. In order to simplify the activity
diagrams, the actions are hierarchically decom-
posed, and so are the activity diagrams.

2. Complete all the activity diagrams at every lev-
els of the above action hierarchy. In above each
time slice, the game player may or may not take
an action through an input devices, therefore two
different situations could occur according to the
player’s choice. This choice expressed as a deci-
sion node of UML activity diagrams. If there are
multiple objects other than the player controlled
character in the time slice, they are expressed as
an input collection of an expansion region. Using
expansion regions could simplify the complicated
multiple object behavior, which may be depicted
with similar actions of multiple objects.

3. If the above collision detection mechanism detects
collisions, complete the activity diagrams which
represent the resultant effects caused by the col-
lisions. These diagrams can be built in a similar
way to the diagrams discussed in item 1 and 2.

[RPG Modeling]

In RPG, activity modeling is performed based on the
combination of action oriented operations and adven-
ture oriented operations. The modeling procedure is
as follows.

1. Action oriented operations in RPG can be repre-
sented similarly to ACT. However, RPG allows
a game player to change action scenes and ad-
venture scenes bidirectionally, and all the action
scenes must be resumed from the interruptions.
In order to resume the scenes, all the states at
the interaction points must be stored in any way.
For this purpose, we usehistory pseudo-statesin
UML state machine diagrams to store the states.
Even though it is not a standard notation of a UML
activity diagram, we expand UML activity dia-
grams using these pseudo-states to express the re-
sumption of the scenes.

2. Adventure oriented operations are decomposed
based on the selections in adventure scenes, and
as a result, activity diagrams for the operations are
expressed hierarchical activity diagrams. This no-
tation can simplify each activity diagram, in com-
parison to a huge activity diagram which includes
all the selection.

4.3 Sequence Diagram

In our approach, a sequence diagram is basically cre-
ated for each activity diagram.

[ACT Modeling]

A sequence diagram of an ACT is composed of a sin-
gle loop fragment, since each activity diagram for a
time slice or referenced diagrams from it is expressed
as a loop. The creation rules for sequence diagrams
are as follows.

1. The behavior of each object that occurs in the
above loop fragment is depicted in apar fragment
resides in theloop fragment, followed by anopt
fragmentwhich deal with the collisions of the ob-
jects. This structure reflects the above mentioned
collision detection mechanism.

2. If there areref fragmentsin the above diagram,
break it down into another sequence diagram.

3. Similarly, eachref fragmentin the opt fragment
for object collisions is broken down into another
sequence diagram.

[RPG Modeling]

In RPG, additional modeling efforts are needed for
adventure oriented operations.

ICEIS 2008 - International Conference on Enterprise Information Systems

458



1. Depict anopt fragmentfor scene switching, suc-
ceeded by theper fragmentsthat reside in the
above discussedloop fragment. This fragment
includes ref fragmentswhich represent scene
switching operations.

2. The rest of theloop fragmentsare identical to
ACT.

3. Depict the object behavior that is represented by
theref fragmentsin item 1 in the form of sequence
diagrams.

4.4 State Machine Diagram

State machine diagrams for ACT and RPG are ex-
pressed as the hierarchies of composite states in our
approach.

[ACT Modeling]

1. At the top of the hierarchy of state machine dia-
gram, crate a state machine diagram represent the
whole game. This state machine diagram includes
other diagrams, each of which represents more de-
tailed level game operations.

2. If there are multiple state transitions within an ob-
ject, these transitions are depicted by the regions
in a composite state.

[RPG Modeling]

In RPG, in addition to the hierarchical descriptions for
action oriented operations, adventure oriented opera-
tions are also described hierarchically. The following
shows the basic rules for modeling.

1. Action oriented operations are modeled in the
same way to ACT.

2. As for adventure oriented operations, possible se-
ries of player’s decisions for selection items are
hierarchically expressed as composite state ma-
chines. Each player’s choice represented as a
choice pseudo-state.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a model based approach to
developing game software. We adopted MDA (Model
Driven Architecture) as a modeling framework and
UML as a notational tool. Among various game cat-
egories, we selected three game categories, that is,
ACT (ACTion games), ADV (ADVenture games) and
RPG (Role Playing Games), for modeling, since these
categories are seemed to dominate today’s game mar-
ketplace.

We characterize the games from two orthogonal
game player operations, namely adventure oriented
operations and action oriented operations. From these
view points, RPG include ADV, therefore the target
categories of our modeling are limited to ACT and
RPG. We proposed a systematic way to model the
above games for each UML diagram type and game
player operation type. These UML diagrams include
use case diagrams, activity diagrams, sequence di-
agrams and state machine diagrams. By applying
our approach to modeling typical game situations, we
conclude the modeling approach to ACT and RPG to
be feasible. Our modeling approach makes the de-
velopment of game software identical to other tradi-
tional software development like business software, in
which modeling technologies are effectively used.

In order to deal with real time constraint of the
games, timing diagrams would be needed. In addi-
tion, static diagrams like class diagrams, deployment
diagrams or component diagrams are also needed to
determine the game software structure.

REFERENCES

Fairclough, C, F. M. N. B. and Cunningham, P. (2001). Re-
search directions for ai in computer games. InPro-
ceedings of the Twelfth Irish Conference on Artificial
Intelligence and Cognitive Science PP.333-344.

Frankel, D. (2003).Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley.

Jacobson, I. e. (2000).Object-Oriented Software Engineer-
ing. ADDISON-WESLEY.

Laird, J. and Lent, M. (2000). Human-level ai’s killer ap-
plication:interactive computer games. InAAAI/IAAI
PP.1171-1178.

Miles, R. and Hamilton, K. (2006).Learning UML 2.0.
O’REILLY.

Nishimori, T. and Kuno, Y. (2003). Action game-oriented
programming language. InISSN Vol.44th PP.35-46.

Onder, B. e. (2002). GAME DESIGN PRESPECTIVES.
Charles River Media.

Rocker, R. (2002). Engineering and Computer Games.
Addison-Wesley.

Taylor, M.J, G. D. and Baskett, M. (2006). Computer game-
flow design. InACM Computers in Entertainment
Vol.4,No.1 PP.1-9.

APPLYING MDA TO GAME SOFTWARE DEVELOPMENT

459


