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Abstract. Principal Component Analysis is a well-known statistical method for 
feature extraction, data compression and multivariate data projection. Aiming to 
obtain a guideline for choosing a proper method for a specific application we 
developed a series of simulations on some the most currently used PCA 
algorithms as GHA, Sanger variant of GHA and APEX. The paper reports the 
conclusions experimentally derived on the convergence rates and their 
corresponding efficiency for specific image processing tasks. 

1 Introduction  

Principal component analysis allows the identification of a linear transform such that 
the axes of the resulted coordinate system correspond to the largest variability of the 
signal. The signal features corresponding to the new coordinate system are 
uncorrelated. One of the most frequently used method in the study of convergence 
properties corresponding to different stochastic learning PCA algorithms basically 
proceeds by reducing the problem to the analysis of asymptotic stability of the 
trajectories of a dynamic system whose evolution is described in terms of an ODE [5]. 
The Generalized Hebbian Algorithm (GHA) extends the Oja’s learning rule for 
learning the first principal components. Aiming to obtain a guideline for choosing a 
proper method for a specific application we developed a series of simulations on some 
the most currently used PCA algorithms as GHA, Sanger variant of GHA and APEX.  

2 Hebbian Learning in Feed-forward Architectures 

The input signal is modeled as a wide-sense-stationary n-dimensional process 
( )( )0≥t,tX  of mean 0 and covariance matrix ( ) ( )( ) StXtXE T = . We denote by  

n,...,ΦΦ1  a set of unit eigen-vectors of S  indexed according to the decreasing order 
of their corresponding eigen-values nλ≥≥λ≥λ L21 . The most informative 
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directions of the process ( )( )0≥t,tX  are given by  n,...,ΦΦ1  and for any 
nmm ≤≤1,  its LMS-optimal linear features are m,...,ΦΦ1 . The architecture of a 

PCA neural network consists of the n-neuron input layer  and the m-neuron 
computation layer. The aim is to develop an adaptive learning algorithm to encode 
asymptotically m,...,ΦΦ1  as values of the synaptic vectors mW,...,W1 of the neurons 
in the computation layer. Let ( ) ( ) ( )( )tW,...,tWtW m1= be the synaptic memory at the 

moment t, and let ( ) ( ) ( )( )Tm tY,...,tYtY 1= be the output of the computation 

layer, mj ≤≤1 , ( ) ( ) ( )tXtT
jWtjY = . The Hebbian rule for learning the first principal 

component is, ( ) ( ) ( ) ( ) ( )kYkXkkWkW 111 1 η+=+ , where the sequence of learning rates 
( )( )kη  are taken such that the conditions of the Kushner theorem hold [5], 

( ) ∞=η∑
∞

=1k
k , ( ) 0=η

∞→
klim

k
, there exists 1p >  such that ( )( ) ∞<η∑

∞

=1k

pk . The 

normalized version of the Hebbian learning rule is, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )kYkXkkW

kYkXkkWkW
11

11
1 1

η
η

+
+
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In order to get a local learning scheme a linearized version of (1) using first order 
approximation was proposed in [7] yielding to the cellebrated Oja’s learning 
algorithm, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kWkYkYkXkkWkW 1
2

1111 1 −+=+ η  (2) 

The Generalized Hebbian Algorithm (GHA) [3] is one of the first neural models 
for extracting multiple PCs. At any moment t, each neuron j, 1≥j , receives two 
inputs, the original signal X(t) and the deflated signal Xj(t) and computes 

( ) ( ) ( )tXtWtY T
jj = and ( ) ( ) ( )tXtWtY j

T
jj

~~
= , ( ) ( ) ( ) ( )tWtYtXtX jjjj 111

~~
−−− −= , 2≥j . 

The GHA learning scheme is, for mj ≤≤2 ,  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kWkYkYkXkkWkW 1
2

1111 1 −+=+ η  (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kWkYkYkXkkWkW jjjjjj
2~~~1 −+=+ η  (4) 

where ( ) ( ) ( ),kXkWkY T
jj = ( ) ( ) ( ) ( ) =−= −−− kWkYkX~kX~ jjjj 111 ( ) ( )∑

−

=

1

1

j

i
ii kWkY , and 

( ) ( ) ( )kX~kWkY~ j
T
jj = . 

The variant proposed by Sanger [7] simplifies the learning process by using only 
output of each neuron in both, the synaptic learning scheme and the input deflation. 
The Sanger variant of GHA is, for mj ≤≤2 , 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kWkYkYkXkkWkW 1
2

1111 1 −η+=+  (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kWkYkYkXkkWkW jjjjjj
2~1 −+=+ η  (6) 
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where ( ) ( ) ( )kXkWkY T
jj =  and ( ) ( ) ( ) ( )kWkYkX~kX~ jjjj 111 −−− −=  is the input deflated 

at the level of the jth neuron.  
The APEX learning algorithm proposed in [2] generalizes the idea of lateral 

influences by imposing a certain learning process to the weights of lateral connections. 
The output of each neuron j, is computed from its own output and the effects of the 
outputs corresponding to all neurons i, 11 −≤≤ ji , weighted by the coefficients ( )taij , 

( ) ( ) ( ) ( ) ( )∑
−

=

−=
1

1

j

i
iij

T
jj tYtatXtWtY  2≥j  (7) 

The learning scheme for the local memories is essentially the Oja’s learning rule 
taken for the transformed outputs jY , 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tWtYtXtYttWtW jjjjj
21 −η+=+  (8) 

The learning scheme for the weights of lateral connections is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tatYtYtYttata ijjjiijij
21 −η+=+  (9) 

Note that the theoretical analysis [1], [2], [3], establishes the almost sure 
convergence to the principal components of the sequences of weight vectors 
generated by the above mentioned algorithms.  

3 Recursive Least Square Learning Algorithm of the Principal 
Directions 

Let W1(t-1) be the synaptic vector at the moment t and assume that the inputs are 
applied at the moments t=0,1,2,…. If we denote by X(k) the input at the moment k, 
then the output is Y(k) = W1(k-1)h1(k) = W1(k-1)WT

1(k-1) X(k), where h1(k)=WT
1(k-1) 

X(k) is the neural activation induced by the input. The mean error at the moment t is 

( ) ( )∑
=

ε=
t

k
ktJ

1

2
1 , where ( ) ( ) ( ) 22 kYkXk −=ε . The aim is to determine ( )tW1

ˆ  

minimizing ( )( )tWJ 11  the overall error, when at each moment of time k, 1≤k≤ t, the 
decompression is assumed as being performed using the filter W1(t), that is,  
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k
khtP and ( ) ( ) ( )tPthtk 111 = , we get the RLS algorithm , 

    ( )01W randomly selected;  h1(t) = WT
1(t-1)X(t);   ( ) ( ) ( )
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P1(t)=[1-k1(t)h1(t)]P1(t-1);   ( ) ( ) ( ) ( ) ( ) ( )[ ]11ˆ1111ˆ1ˆ −−+−= tWthtXtktWtW  
In case that the largest eigen value λ1 of the covariance matrix Σ is of multiplicity 

order 1 and let φ1 be its corresponding unit eigen vector. The theoretical analysis 
concerning the behavior of the sequence ( )( ) NttW ∈1

ˆ  establishes that, almost surely, 

If ( )( ) 00 11 >φTW , then ( ) 11
ˆlim φ=

∞→
tW

t
. If ( )( ) 00 11 <φTW , then ( ) 11

ˆlim φ−=
∞→

tW
t

.    

Let ∑
=

φα=
n

i
ii ttX

1
)()(  be the expansion of the input signal in terms of the 

{ }nφφ ,...,1 , an orthogonal basis  of Σ  eigen vectors, where the corresponding eigen 

values are taken in the decreasing order. Let ∑
−

=

φα−=
1

1
)()()(

p

i
iip ttXtd be the deflated 

signal at the level p, np ≤≤2 . The extended RLS algorithm for learning the first m 
principal components is given by the following learning equations. 

hp(t)=WT(t-1)X(t);   ( ) ( ) ( )
( ) ( )11

1
2 −+

−
=

tPth
thtP

tk
pp

pp
p  

Pp(t)=[1-kp(t)hp(t)]Pp(t-
1) ; ( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1ˆˆ −−+−= tWthtXtktWtW ppppp  

Theoretical analysis establishes that, if npp λλλλλ ≥≥>>>> + LL 121 , then  

for each 1≥p , the sequence ( )( )
Ntp tW

∈
ˆ  generated by the extended RLS converges to 

either pφ or pφ− . 

4 Experimental Analysis and Concluding Remarks 

In the following we present the use of above mentioned learning schemes for image 
compression/decompression purposes. Let ( )tI  be a wide-sense- stationary N-
dimensional process of mean ( )( )tIE resulted by sampling a given image I ; 
( ) ( ) ( )( )tIEtItI −= . Each sampled matrix ( )tI  is processed row by row, each row 

being split in lists of 15 consecutive components. We denote by ( )tX  such a sub-list 
and we assume that ( )tX ~ ( )∑,N 0 . We denote by 15=n  the dimension of the input 
data, 3=m  the number of desired principal components, { }75502010 ,,,tmax ∈   the 

number of the variants of the image I, ( ) ( )tt
t

ln
1

=η   the sequence of learning rates 

taken to satisfy the constrains considered in the Kushner theorem, ( )RMW x3150∈   the 
initial synaptic memories whose entries are randomly generated; each column vector 
of 0W  is of norm 1. In case of the APEX algorithm, the initial values of the lateral 
connection weights are 0=≥∀ ija,ji  and for all 31 ≤<≤ ji , ija  are randomly 
generated according to the uniform distribution on[0,1) . The reported results are 
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obtained with respect to the following examples, ( ) ( )( ) 3,2,1,,..., 151 ==∑ idiag ii
i σσ , 

( ) ,1.01 =kσ  ( ) ,62
2 =σ  ( ) ( ) ( ) ( ) ,51

3,102
1

1
2,151

1 ==== σσσσ  ( ) ( ) 04.0,2 22
3 == kσσ  

( ) ( ) ( ) ,1,4 3
3

3
2

3
1 === σσσ ( ) 01.03 =kσ , 154 ≤≤ k . The empirical mean variation of 

the synaptic vectors on the final iteration and the mean error with respect to the eigen 
vectors are given by, 

( ) ( )( )∑
=

−=
m

i
maximaxi tW,tWD

m
V

1
11 , 

( ) ( )( ) ( )( ) ( )( )∑
=

−−=−
n

k
iiii ktWktWtWtWD

1
maxmaxmaxmax 11,  

      ( )( )∑
=
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m

i
imaxi ,tWE

m
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1

1 , ( )( ) ( )( ) ( )∑
=

Φ−=Φ
n

k
imaxiimaxi kktWD

n
,tWE

1

1 .  

The obtained results are shown in Table 1and Table 2.  

Table 1. 

V - 
GHA 

Er-
GHA 

V - 
Sanger 

Er-
Sanger 

V- 
APEX 

Er-
APEX 

∑  maxt  

0.0377 0.0339 0.0371 0.0423 0.0491 0.0499 
1∑   

75 
0.0186 0.0295 0.0186 0.0403 0.0243 0.0426 

2∑  
0.0064 0.0379 0.0054 0.0532 0.0074 0.0417 

3∑  

 

0.0387 0.0334 0.0393 0.0429 0.0542 0.0485 
1∑   

50 
0.0276 0.0331 0.0273 0.0450 0.0348 0.0453 

2∑  
0.0090 0.0414 0.0070 0.0561 0.0102 0.0442 

3∑  

 

0.0896 0.0417 0.0851 0.0551 0.1085 0.0543 
1∑   

20 
0.0572 0.0434 0.0499 0.0572 0.0662 0.0505 

2∑  
0.0160 0.0484 0.0114 0.0614 0.0172 0.0493 

3∑  

 

0.1569 0.0555 0.1751 0.0612 0.1759 0.0626 
1∑   

10 
0.0774 0.0629 0.0600 0.0629 0.0858 0.0531 

2∑  
0.0202 0.0637 0.0135 0.0637 0.0211 0.0520 

3∑  

 

 
The entries of ( )RMW x3150∈  are randomly generated, but each column of 0W  is 

of norm 1. The ratio 
Er
V of the stabilization coefficient V and the error Er, is fast 

decreasing in case of the APEX and GHA algorithms as compared to its variation in 
case of Sanger variant. The APEX and GHA lead to smaller errors versus the 
stabilization index V. The stabilization of the Sanger variant is installed faster than in 
case of GHA and APEX. The errors are significantly influenced by the variation of 
the eigen values and they are less influenced by their actual magnitude.  
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According to the results obtained by our tests we conclude that there are no 
significant differences from the point of view of the corresponding convergence rates 
between the GHA and the Sanger variant, but the APEX algorithm proves to be 
slower than them, most probably because it the convergence rate is more influenced 
by the initial values.  Also, the performance is strongly dependent on the magnitude 
of the noise variances. The tests on the efficiency of the RLS algorithm were 
performed on the 10×10 matrix representations of the Latin letters. The experiments 
pointed out that the good quality can be maintained when the 
compression/decompression process involved at least the first 15 components. Only 5 
line features assure enough accuracy in the compression/decompression process.  

Table 2. 

Er
V  - GHA

Er
V  - Sanger

Er
V  - APEX ∑  maxt

1.1120 0.8770 0.9839 
1∑  

1.1586 0.9160 1.2634 
2∑  

2.1486 

 

1.5446 1.9981 
3∑  

 
75 

2.8270 2.1320 2.8099 
1∑  

0.6305 0.4615 0.6029 
2∑  

0.8338 

 

0.6066 0.7682 
3∑  

 
50 

1.3179 0.8723 1.3108 
1∑  

1.5357 0.9538 1.6158 
2∑  

0.1688 

 

0.1015 0.1774 
3∑  

 
20 

0.2173 0.1247 0.2307 
1∑  

0.3305 0.1856 0.3488 
2∑  

0.3899 

 

0.2119 0.4057 
3∑  

 
10 
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