Context-based Configuration of Process Variants

Alena Hallerbach Thomas Bauérand Manfred Reichett
1 Group Research and Advanced Engineering, Daimler AG, Ulm, Germany

2 |nstitute of Databases and Information Systems, Ulm University, Germany

Abstract. When designing process-aware information systems, usually, variants
of the same process type have to be defined and maintained. Each of these process
variants constitutes an adjustment of the same process to specific requirements
building the variant context. Current business process management tools do not
support the context-based definition and configuration of such variants in an ade-
guate manner. Instead, each process variant has to be defined from scratch and be
kept in a separate model. This results in considerable redundancies when model-
ing and adapting process variants, and is also a time consuming and error-prone
procedure. This paper presents a more flexible and context-based approach for
configuring and managing process variants. In particular, we allow for the con-
figuration of process variants by applying a context-dependent set of well-defined
change operations to a base process.

1 Introduction

The flow of activities which have to be performed to achieve specific goals is often
captured in a process model. Usually, each model implements a particular process type
(e.g., handling a credit request or travel cost refund) by describing process activities,
execution constraints, required resources (e.g., humans or IT systems), and informa-
tion processed. There exists a variety of tools like ARIS Business Architect [1], ADO-
NIS [2], or WebSphere Business Modeler [3] for creating and managing such process
models. Typically, respective process modeling tools are used to improve process trans-
parency, to optimize a process, or to implement a process-aware information system,
e.g., based on a Workflow Management System (WfMS) [4, 5].

Process support is required in almost all business domains (e.g., healthcare [6],
engineering [7], or public administration). Characteristic process examples from the
automotive domain, for example, include product creation, product change manage-
ment, and release management [7]. In practice, different variants of a particular process
type are usually required. Figure 1 a, for example, depicts a simplified product change
process that starts with initiating a change request (Activity 1). Afterwards comments
(cmts.) are requested from those departments that might be affected by the change (Ac-
tivities 2a, 2b, and 2c). After all comments have been received an integrated change
document is created (Activity 3). This document is then passed to the decision board
which either approves the requested change or rejects it (Activity 4). In case of approval,
the development departmentimplements the change (Activity 5). Otherwise this step is
skipped.

Hallerbach A., Bauer T. and Reichert M. (2008).

Context-based Configuration of Process Variants.

In Joint Proceedings of the 5th International Workshop on Ubiquitous Computing (IWUC 2008) 4th International Workshop on Model-Driven Enterprise
Information Systems (MDEIS 2008) 3rd International Workshop on Technologies for Context-Aware Business Process Management (TCoB 2008),
pages 31-40

DOI: 10.5220/0001729600310040

Copyright © SciTePress

32

a) Standardized process

1) Request for Change

Development accept] 5) Implementation (Impl.)
e)_,-_, “
3) Integration
o 2b)Cmt. o) negrat 4) Approval reject @

[Project Leader] [Decision Board|

2c)Cmt.
[Production-Planning (PP)]

b) Variant 1:
Highly quality relevant

1) Request for Change

Project Participant

Project Leader; [Decision Board|

c) Variant 2:
Low implementation costs

1) Request for Change

Project Participant

3) Integration
: of(?mt.

d) Variant 3: Highly
quality relevant; low
implementation costs

1) Request for Change

Project Participant

3) Integration
) of gmt.

Project Leade

\Decision Board
6) Undo Impl.
Dev]

- Organisatorical |Logical operators:
unit () AND (X)) %OR

Fig. 1. Variants of a Standardized Product Change Process.

Different variants of this process exist in practice: Vatia (cf. Figure 1 b) treats
quality critical changes in a special way; i.e., the qualigpartment is involved in the
commenting process. At the model level this behavior carebézed by inserting an
additional activity (Activity 2d) into the original procesFigure 1 ¢ shows Variant 2
for which the change request is shortened. Particularlgti@anges with low implemen-
tation costs the development department often starts imgaiéing the change without
waiting for its approval. If the decision board rejects thquest, change implementa-
tion will be undone later. This variant can be realized by mgWActivity 5 to a position
parallel to the commenting activities and by conditionafigerting the Undo activity
(Activity 6). Finally, Variant 3 (cf. Figure 1 d) will be redred if the change affects
quality critical issues and can be shortened as well. Thimwaconstitutes the com-
bination of Variant 1 and 2. Thus, the process inherits glistthents from these two
variants; i.e., an additional comment is requested frongtiaity department and early
implementation of the change becomes possible.

In practice, additional variants are required, e.g., Batig specific constraints of
the respective vehicle project or development phase. Istiegi approaches such pro-
cess variants have to be defined and maintained in sepamatesgrmodels similar to
those of Figure 1. This results in a large amount of redundetel data as the vari-
ant models are identical or similar for the most part. Comsidy the large number of

33

variants required in practice, this drawback increaseseatimogl and maintenance ef-
forts significantly. This is both time-consuming and erpoone. Unfortunately, current
business process management tools do not allow for thexdemdsed definition and
configuration of a process variant that captures a giveatsito best.

This paper introduces the Provop (PROcess Variants by @®tapproach. In par-
ticular, it provides an advanced solution for modeling @sxvariants starting with a
common process model and using an operational modelingapipr Provop allows
for the context-based configuration of process variantsliggissed in detail in this
paper, and enables full life cycle support [8]. The remairadehis paper is structured
as follows: In Section 2 we introduce basic concepts of thev®y approach. Section
3 presents the configuration of process variants using xonties. Section 4 discusses
related work. The paper concludes with a summary and anauifoSection 5.

2 Basic Concepts of Provop

Our Provop approach has been motivated by the fact that @ psa@riant can be typi-
cally created by “cloning” a given process model and by aajgst to a given context.

In Provop we adapt this method to base the different variahs particular process
type on a singlebase procesd his base process can be a standard process or espe-
cially created for variant definition [9]. The variant-sgEcadjustments of the base
process are expressed in terms of high-levelnge operation®rovop itself allows to

| NSERT, DELETE, andMOVE process fragmentsFurthermore, &0DI FY operation for
changing attributes (e.g., actor assignment, activitations) is provided. To allow for
more complex process adjustments, change operations cgrobped into reusable
sets, which we denote aptions Thus a particular process variant is configured by ap-
plying one or more options to the respective base processhy. performing all change
operations set out by these options [9].

Figure 2 illustrates the basic concepts of our approachggtkie example of a pro-
duct change process from Figure 1 (for the sake of readabiéithave reduced activity
names to logically corresponding numbers): The procesehumpicted in Figure 1 a
is considered as the base process from which all variants lshalerived (cf. Fig-
ure 2 a). The difference between Variant 1 (cf. Figure 1 b) twedbase process can
be described by an option (i.e., Option 1). This option cdsgs anl NSERT opera-
tion that adds Activity 2d to the base process. TNBERT operation requires the exact
position for inserting Activity 2d. Therefore we defirljustment pointsvhich are
used to connect the incoming and outgoing edges of the neymfrat with the base
procesé. By applying Option 1, i.e., by inserting Activity 2d betwethe adjustment
points “start-comments” and “end-comments”, the procesdehnamed Variant 1 can
be created (cf. Figure 2 c). To configure the model of Variaftf2 Figure 1 c) we
define Option 2 which consists of the following change openat The first operation
constitutes an insertion of the undo activity (Activity @tlveen the adjustment points

3 A process fragment is a sub-graph with at least one processeet (e.g., node or edge).
4 Note that adjustment points are placed at the entry or exitmide in the base process and are
used by a change operation as reference.

34

“rejected” and “rejection complete” from the base procd¢ee second operation per-
forms aMOVE of Activity 5 from its original position (given by the adjusaent points
“start-implementation” and “end-implementation” in thade process) to its new posi-
tion between “start-comments” and “decision”. The resgifprocess model is depicted
in Figure 2 c.

a) Base Process [siari-implementation] |erd-implementation]
". B

7 D
b) Options E . [decision] _ |r5'jecfid-\ [rejection complele|
F |;| igl El is e rejected
‘-’@" iE o rejection complete

[]‘El start-implementation & start-comments
i end-implementation = decision [

\é \E! S o) start-comments
;l E 0 end-comments

Option 2

[Option 1

¢) Resulting Process Variants

Variant 1 (Option 1) Variant 2 (Option 2)

2a "
owﬁrooo 6 (0
o5
L =)

Activity] (M) aND (O XOR
Lo INSERT [] movE

. Adjustment point £ Mapping

Fig. 2. Options and Process Variants in Provop.

A main advantage of this operational modeling approachesatiility to configure
new process variants without additional modeling effdvtere precisely, when apply-
ing both options conjointly and therefore performing alange operations defined by
them the process model of Variant 3 (cf. Figure 1 d) results.

3 Configuring Process Variants based on Context Rules

Basic to variant configuration in Provop is the controlledges of change operations
grouped as reusable sets (i.e., options). By selectingetigp options and by applying
them to a given base process the desired variant can be defiyyadally, particular
process variants are required in a specific context. ThexgRvovop considers context-
based variant configuration as a crucial concept. In Se&ibrwe motivate the need
for context-awareness and describe the resulting regeinesyfor our approach. Sec-
tions 3.2 - 3.4 explain how these requirements are met.

3.1 Use Cases and Requirements

The product change management process as depicted in Eiguran be considered as
“standard” process that is used to derive different vasigeft Figures 1 b - 1 d). Each
variant then corresponds to a use case that occurs in a girdaxt. This context is

35

provided by the attributes of the change request, whicltcatdi for example, whether
the change is relevant for product quality, what the expkittgplementation costs are,
and which product components are affected by the change.clm be expressed in
terms of context variables, each with a given value rangg; the context variable
I npl ement ation Costs has one of the values “low”, “medium”, or “high”. Gener-
ally, each context variable defines one dimension of thege®context which might be
relevant for variant configuration. Consequently, mudtipbntext variables correspond
to a multidimensional cube. For example, the context of tloelpct change process is
given by thecontext cubalepicted in Figure 3 (simplified view): The axes are corre-
sponding to the context variabl@sal ity Rel evance, | npl enentation Costs, and
Phase. When specifying the values for all context variables or bssti of them we
obtain a particular process context, which logically cep@nds to asub-cubewithin
the context cube. Simply speaking, each process variaimikisd to a sub-cube which
describes its valid context (cf. Figure 3).

Implementation Variant 1 (Option 1) W
Costs 4 | |
Variant 2 (Option 2) DW
A Phase Variant 3 (Options 1 and 2) W

/ production

— etart.
/ development 4
advanced development context variable

«© \o":“ea\o‘“ ‘{\g“d\\\g“ Quality Relevance valdgiof atiribute
<@

high

medium

low

[process variant

Fig. 3. Context Cube of Possible Context Descriptions.

To allow for context-based variant configuration severguieements have to be met
[10]:

Req. 1 (User-friendly Definition of Context). A key prerequisite concerns the defini-
tion and maintenance of a process context model. To obtaimajsupport, an intuitive
method is required to support these tasks.

Req. 2 (Definition of Valid and Invalid Value Combinations). A particular sub-cube
of the context cube might not be valid. This will be the casegikample, if the combi-
nation of certain context values for a given set of variabless not make sense. Con-
sequently, no consistent process variant is required sncitmtext. All valid sub-cubes,
in turn, require a consistent and correct variant assighniersome way all “valid”
sub-cubes must be identified and captured within the comextel.

Req. 3 (Context-based Selection of OptionsYo allow for the context-based config-
uration of variants, options (i.e., collections of changemtions) and context descrip-
tions have to be linked. Thereby, it must be defined, whicloogs) shall be used in a
particular context (i.e., sub-cube). As Provop aims at nterity and reuse, single op-
tions should be applicable in different context; i.e., itshioe possible to assign them to
several sub-cubes. A process designer must further becaddsign a particular variant
by setting the respective context.

Reg. 4 (Context Changes During Runtime).The values of context variables may
change during process execution. Thus the currently selgrbcess variant might be-
come obsolete and might have to be replaced by another enather options have to
be chosen and applied to configure the desired process Hfsscantext change occurs

36

during runtime (i.e., while process instances of the vat@hbe replaced are executed in
a WFfMS), reconfiguration of the running process instancestde supported. Such a
reconfiguration may apply additional options to the basegss and undo adjustments
of obsolete options as well.

In the following we describe in detail how Provop deals withge requirements.

3.2 Process Context Definition

To allow for the context-based configuration of a procesmmafrfirst of all, a model for
capturing the process context is needed (cf. Req. 1). Indprsuch a model comprises

a set ofcontext variablestach context variable represents one specific dimension of
the process context, and is defined by a name, a variableptéstyand a value range.

In Provop we capture this context information in a table t§ure 4). This allows

the context modeler to create new entries and to managénexaies in a simple and
intuitive way.

Variable Name Description Value Range Mode
Quality Relevance :?szaecst on quality critical no, low, medium, high, very high static
. Costs that result when . . .
Implementation Costs implementing the change low, medium, high static
Phase Current phase of the advanced development, development, start-up, production dynamic
development process
Vehicle Project Name of a vehicle project |Current C-Class, Current E-Class, Next C-Class, Next E-Class, Hybrid Car |static

Fig. 4. Example of a Context Definition in Provop.

The context variables shown in Figure 4 do not only differtiait names and val-
ues, but also in another important aspect. While some covéeiables are static (e.g.,
Vehi cl e Project) others are dynamic. For example, the context variBbése has
dynamic nature since it is updated after a development phasenpleted (e.g., switch-
ing from “start-up” to “production”). This information isefevant, for example, to de-
cide whether an option that is chosen based on a certain valeontext variable is
ultimately defined or whether it may become obsolete durioggss execution. There-
fore Provop captures thrmodeof a context variable as well (cf. Table 4).

Based on our experience there exist valid and invalid cosilains regarding the
values of the different context variables (cf. Req. 2). Omeptified example that is
highly relevant in practice is as follows: Due to its “venghi’ Qual ity Rel evance
a requested product change necessitates extended \alidatil verification actions,
which leads to additional expenses. Consequently, sdtimgalue of the context vari-
ablel npl enment ati on Costs to “low” at the same time is not a valid combination in
practice. For each valid value combination, in turn, it rhestensured that a consistent
and correct process model exists for the required varidigr&fore the consideration of
such value interdependencies is crucial. Referring to thext cube depicted in Fig-
ure 3 a, a classification of valid and invalid combinations.(isub-cubes) would lead
to high efforts when considering the number of possible exdntariables in practice
(typically about 10 to 20 variables) and their respectiMe@aanges. In such scenarios
a context cube is no longer sufficient. Simple constraintsekample, the value of one

37

context variable directly implies the value of another oegy(aVehi cl e Project

is always in exactly on€hase), can be modeled as a dependency graph like the one
depicted in Figure 5 b. To be able to handle more complex digraies, e.g., between
multiple variables, Provop offers a rule-based logic (@§ufe 5 c) in addition. All de-
pendencies (i.e., simple and complex ones) are graphittairated in an overview on
context variable level as depicted in Figure 5 a. By doingasaser-friendly definition

of complex context constraints with sufficient graphicglgort is realized.

a) Implementation Costs 2l ©) [HybridCar NextE-Class _ NextC-Class Current E-Class __Current C-Class]
— L L v L +l
—————— 1 \advanced development development start-up production \

r
[Quality Relevance |[Vehicle Project]|

(@ IF Quality Relevance IN {*high”, “very high*}
AND Vehicle Project = “Hybrid Car”
THEN Implementation Costs IN {*medium”, “high” }

Fig.5. a) Dependencies between Context Variables (Overview),dpeBdency Graph, and c)
Dependency Rules.

3.3 Context Rules

Provop follows an operational approach for variant modglitherefore, a direct map-
ping of already configured variants to a context descripitonot feasible. Instead,
for configuring a process variant in a particular contex, thlevant options must be
selected based on the contextual knowledge (cf. Req. 3)rdwoP this relationship
between options and context values is realized by so cetletext rulesRegarding the
current context all options whose context rules evaluatetie” are applied to the base
process and therefore determine the required variant. pe@a case, the base process
itself may be used as one particular process variant (beoption is applied).

Figure 6 shows an example: Option 1 will be applied if a pradiange is of
“high” Qual ity Rel evance. Option 2, in turn, will be applied if the product change is
requested for th&ehi cl e Project “Hybrid car”. For example, when evaluating the
current context as specified by “higlial i ty Rel evance, “low” | npl enent ati on
Cost s, and theVehi cl e Proj ect “Current C-Class”, only the context rule assigned to
Option 1 evaluates to “true”. As a consequence, Option 1pdieghto the base process
creating the process model of the variant depicted in Figure

a) D activity
@ B ‘ adjustment point
= v o I; INSERT
S
_é- '—I—‘ l : Zg)Y(—>| IF Quality Relevance = “higtﬂ D context rule
=) — D current context
o
.E S I:> X IF Vehicle Project = “Hybrid Car”
£ L Ey i -]

Process Variant Quality Relevance = “high”
Implementation Costs = “low”
Vehicle Project = “Current C-Class”
Y (A1

Fig. 6. a) Context Rules assigned to Options and b) the ResultingeBsdv/ariant.

38

3.4 Context-based Reconfiguration of a Process Variant at Ruime

To capture context changes during process instance egac@iovop allows for the
usage of dynamic context variables, whose values may chdungeg process execu-
tion.> If dynamic context variables are used for defining a contald of an option,
the decision whether to apply the corresponding changeatipas or not has to be
made at runtime (cf. Req.4). As a consequence, the respqutdcess variant either
cannot be completely configured when creating the procesarioe or has to be re-
configured during runtime. To allow for the configuration afamplete (and therefore
executable) process instance of a variant, Provop usgant branche its process
models. The basic idea is to encapsulate the adjustmenitsgbé ®ptions within these
variant branches. The split condition at the variant bracmiesponds to the context
rule of the option. Whenever process execution reachesiantdranch, the current
context is evaluated. If the split condition evaluates toét the variant branch is exe-
cuted, i.e., the change operations are applied to the basegs. Otherwise, the variant
branch is skipped and therefore all adjustments of the otie ignored.

Figure 7 a shows an example of a variant branch definition:h&sapplication of
Option 1 depends on the dynamic context variadiflase the corresponding process
fragmentis encapsulated in a variant branch (indicatetiégncircled “less than” and
“greater than” symbols). Furthermore, the context rule pti@n 1 is used as a split
condition during process execution. If it evaluates toétr(cf. Figure 7 b) the variant
branch will be executed, otherwise it will be skipped (cfjliie 7 c).

A = G =
I= g E - ”

s |;| S E:spX|| 17 prass

§_ N2 EcDY (|| = "start-up®

< b

activated runnlng ﬁ undo @ éarll_a#t [contextrule (] activity |;\ INSERT
o variant- adjustment
;ﬁnlshet_i __x_ skipped \ abort @JOIN [current context . ot

Fig. 7. Context Change during Runtime.

A change update of a dynamic context variable at runtime rffagtavariant bran-
ches that are (partially) finished. Thus, if an evaluatisuheof a split condition be-
comes invalid a reconfiguration of the process will be regglitn Figure 7 d, the prod-
uct change process was started duringRimese “start-up”. Consequently the variant
branch of Option 1 was activated. During the execution & Hairiant branch a context
change occurs for the dynamic context variaPiase, which is set to “production”.
Therefore, the context rule assigned to Option 1 evaluatfalse”. As a consequence
the execution of the corresponding variant branch must bedrback by an abort re-
spective undo of the Activities N2 respective N1.

5 Static variables are defined at process instance creatiboamot change during runtime.

39

Since a rollback of completed activities is accompaniedhgyloss of work it is
not always feasible. Therefore the behavior is controllgdatsteering parameter. It
indicates that rollbacks i) are always enabled, or ii) aveagb disabled, or iii) always
require a decision of the process administrator whetheobthey are performed.

4 Related Work

The context of an actor or a software system can be utilizegadtize context-aware
applications in different domains (e.g., healthcare [I1¢arning solutions [12]). Such
applications gather contextual information about a useystem and adapt their behav-
ior accordingly. For example, in mobile computing contawtare applications might
use information about the location of a user as well as thpututevice to provide
context-specific services and to visualize informationriradequate way [13, 14].

Process management is concerned with context relatedtasgewell. For exam-
ple, the context of a specific process task can be used taglidplta, information and
knowledge relevant to perform this task.

In [15] a bottom-up approach for the (semi-)automatic camfigion of project-
specific process models is presented. Respective procagseseated by combining
generic process building blocks, taking into considergtimject-specific context (e.g.,
expressed in terms of requirements that influence the pase¥iguration). This ap-
proach requires a complete and therefore also extenseeetlto build consistent and
executable processes out of process building blocks.

A top-down approach for process model configuration is desdrin [16]. Refer-
ence process models are represented using configurable Praaess-Chains (c-EPC)
[17]. Generally, such a reference process model is of recemding character and can
be customized in different ways to meet specific needs. Therea reference process
model represents all possible control flow alternativesndya questionnaire that com-
prises questions expressed in natural language, configufatts are gathered. These
facts are evaluated at variation points within the refeegurocess model to configure a
specific model by either executing, skipping or optionaKlipping a process element.
As one drawback this approach only allows for the configaretif single elements at
given points in the process model (i.e., it is not possiblentrk a complete branch
as mandatory or optional). It is also not possible to movedormodel elements or to
adept element attributes like we do in Provop. As comparedference process mod-
els, the basic process in Provop can be modeled without atsiatéon; i.e., it needs
not to be defined with a specific use case in mind nor it conietita recommendation
for all processes of a given type.

5 Conclusions

We have described the Provop approach for configuring ctbesed process variants:
Context variables, context values and context constrgets, valid value combina-
tions) are defined in a user-friendly manner. The optiond figea process variant are
selected when evaluating context rules. This enables aepsoariant configuration
based on the current context. In addition, Provop allowstieg to context changes

40

during runtime by late evaluation of split conditions of iaat branches or the recon-
figuration of running process variants. The need of the prtesleconcepts and related
requirements have been elicited in a number of case studieonducted in the auto-
motive domain; i.e., practical relevance of Provop is high.

In future work we will detail the Provop approach: We will adds the configura-
tion of consistent process variants, when multiple optiamesrequired in the specified
context. Sophisticated techniques are required to prexeots and consistency prob-
lems (e.g., deadlocks, data flow inconsistency) due to @binfj change operations.
Finally, a detailed validation study of our concept based prototype that implements
the Provop concept will be conducted.

References

. IDS Scheer: ARIS Platform Method 7.0. (2006)
. BOC: The Business Process Management Tool ADONIS. (2008 erman).
. IBM: IBM WebSphere Business Modeller, Version 6.1. (2007
. Dumas, M., van der Aalst, W., ter Hofstede, A.: Procesarawnformation Systems. Wiley,
Los Angeles, CA (2005)
. Weske, M.: Business Process Management - Concepts, agaguArchitectures. Springer
(2007)
6. Lenz, R., Reichert, M.: IT Support for Healthcare ProesssPremises, Challenges, Per-
spectives. Data and Knowledge Engineering 61 (2007) 39-58
7. Muller, D., Herbst, J., Hammori, M., Reichert, M.: IT Sgt for Release Management
Processes in the Automotive Industry. In: Proc. of the 4th @onf. on Business Process
Management. (2006) 368—-377
8. Hallerbach, A., Bauer, T., Reichert, M.: Managing Prgc¥ariants in the Process Life
Cycle. In: Proc. of the 10th Int. Conf. on Enterprise Infotima Systems. (2008)
9. Hallerbach, A., Bauer, T., Reichert, M.: Modelation anduélization of Process Variants
in Provop. In: Proc. of Modellierung, Berlin (2008) (in Gean).
10. Hallerbach, A., Bauer, T., Reichert, M.: RequirementsModelation and Visualization of
Process Variants. In: Datenbank Spektrum. (2008) (in Geyma
11. Bricon-Souf, N., Newman, C.: Context-awareness in tdeate: A Review. In: International
Journal of Medical Informatics. Number 76. Elsevier (202+12
12. Schmidt, A.: Potentials and Challenges of Context-aess for Learning Solutions. In:
Proc. 13th Annual Workshop of the SIG Adaptivity and User Mt in Interactive Sys-
tems. (2005)
13. Schilit, B., Theimer, M., Welch, B.: Customizing Mobikpplications. In: Proc. of the
Symp. on Mobile and Location-independent Computing, Céagler MA (1993) 129-138
14. Schilit, B., Adams, N., Want, R.: Context-aware CompgitApplications. In: Proc. Work-
shop on Mobile Computing Systems and Applications. (19%498
15. Rupprecht, C., Rose, T., van Halm, E., Zwegers, A.: Btgjpecific Process Configuration in
Virtual Enterprises. In: Proc. of the 4th Int. Conf. on thesigm of Information Infrastructure
Systems for Manufacturing, Deventer, The Netherlands@pa6-53
16. Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstéde Questionnaire-driven Configu-
ration of Reference Process Models. In: Proc. of the 19tiCanf. on Advanced Information
Systems Engineering. (2007)
17. Rosemann, M., van der Aalst, W.: A Configurable Referévodelling Lanugage. Infor-
mation Systems 32 (2007) 1-23

A OWN PR

()]

