A Model Transformation Framework for Model Driven
Engineering

Xiaoping Jia, Hongming Liu, Lizhang Qin and Adam Steele

School of Computer Science, Telecommunication and Information Systems
DePaul University, Chicago, lllinois, U.S.A.

Abstract. Model Driven Engineering(MDE) is a model-centric software devel-
opment approach aims at improving the quality and productivity of software de-
velopment processes. While some progresses in MDE have been made, there are
still many obstacles in realizing the full benefits of model driven engineering.
These obstacles include incompleteness in existing modeling notations, inade-
quate in tools support, and the lack of effective model transformation mecha-
nism. This paper presents a new model driven engineering framework, which is
based on a formal modeling notation — Z-based Object-Oriented Modeling nota-
tion (ZOOM). It includes a set of supporting tools aiming at delivering the ben-
efits in practical applications of model driven engineering. In particularly, this
proposal focuses on one key aspect of MDE — model transformation. A tem-
plate based model transformation framework using Hierarchical Relational Meta-
model (HRM) is introduced. This framework aims to provide a simple, effective,
and practical way to define model transformations. The potential benefits of the
proposed model transformation framework include: 1) readability and rigorous-
ness of meta-model definitions; 2) simplicity of transformation definition; and
3) extensibility of transformation templates. The architecture and design of the
framework is discussed and comparisons with related research work are provided
to show the benefits of this framework.

1 Introduction

Model Driven Engineering (MDE) tackles the elusive problem of system development
by promoting the usage of models as the primary artifact to be constructed and main-
tained [1, 2]. MDE shifts software development from a code-centric activity to a model-
centric activity. Accomplishing this shift entails developing support for modeling con-
cepts at different levels of abstraction and transforming abstract models to more con-
crete descriptions of software. In other words, MDE reduces complexity in software
development through modularization and abstraction [3].

Because of MDE's potential to dramatically change the way we develop applica-
tions, companies are already working to deliver supporting technologies [4]. However,
there is no universally accepted definition of the requirements for a MDE infrastructure
and many requirements for MDE support are unclear or even unspecified. Notwith-
standing the lack of standards, with careful reading of related researches [5], we argue

Jia X., Liu H., Qin L. and Steele A. (2008).

A Model Transformation Framework for Model Driven Engineering.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 59-70
DOI: 10.5220/0001732400590070

Copyright © SciTePress

60

that the main issues MDE infrastructure is facing are: @mpleteness in existing
modeling notations; (2)lack of effective model transfotimamechanism.

The first issue is currently addressed specifically yet igadeely by the Object
Management Group(OMG) UML 2.0 [6] standard specificatiohlLJ2 is thede facto
standard object modeling notation for software enginegiirallows modelers to cap-
ture a wealth of information about software system comptmeheir behaviors, and
their interactions. However, currently UML-2 is insuffinifor MDE owing to its de-
ficiencies in several critical areas including incomplets) semi-formal and inconsis-
tent[7,8].

The second issue of model transformation is also an activprgenature research
area [9, 10]. Model transformation is the process of convgrone model to another
model. Performing a model transformation requires a clealetstanding of the ab-
stract syntax and semantics of both the source and targetlsada take modeling to a
higher level of abstraction, it is needed to define a standechanism to define meta-
models of modeling languages [11]. OMG addresses this issite MDE initiative
Model Driven Architecture(MDA) [12] by creating Model OlgeFacility(MOF) [13].
In response to the need for a standard approach to definerttigoins that map between
metamodels, the OMG issued the MOF (Meta Object Facilit§)Query/View/Trans-
formation (QVT) [14] Request for Proposals. Currently thigtiative is undergoing
finalization [15].

Considering both of above issues, we provide an alternéi¢ico, which is a new
model-driven engineering framework including a formal relinly notation and a set
of supporting tools aiming at the realization of the benefftsrue model-driven en-
gineering. We have developed a new formal modeling notatidled Z-based Object-
Oriented Modeling notation or ZOOM, which is based on thefakspecification nota-
tion Z [16—18], and several key components of UML-2. ZOOM siraple, precise, and
easy to use modeling language. It has dual representatibratend visual. The syn-
tax of textual representation is defined precisely in EBN&hgnar. The formalism of
modeling notation provides a solid foundation for metanliodevhich is an important
factor in model transformation. With a simplified metamaaigidesign, we are able to
develop an extensible model transformation process.

In summary, our work objective is to apply such an overaleagsh approach in
realization of MDE focusing on model transformation. Theation and metamodel
design lays the foundation of my tool development and thédewelopment in turn
demonstrates the validity and advantage of the design.

This paper is organized as follows: Section 2 provides Betdiackground infor-
mation about model driven engineering and model transfdomaSection 3 presents
the ZOOM architecture and notation. Then section 4 coversharacteristics of our
model transformation approach and the model transformgiocess. Section 6 dis-
cusses related research work and compares them with oweagpand finally Section
7 concludes the paper.

61

Knowledge -based
™ Model Compilation Rules
Event -Driven Framework Tools

Templates

Transformation

. And . —
Code Generation b
Structural Model e
Derive
ul POA
Functional : Generation
. Behavioral Model
Requirements Derive - ﬂ

Derive o
L[Device Profile

User Preference

Fig. 1. ZOOM Architecture.

2 ZOOM Architecture and Notation

2.1 ZOOM Architecture

While UML-2 is widely used as a visual modeling language tppsart MDE, it has
several weaknesses. UML-2 is not specifically designed fBEMso its models are
generally informative without providing definitive viewalso, while UML-2 provides
multiple visual views to present similar aspects of a sofengesign, it lacks an inher-
ent mechanism to enforce consistency between these vielditidnally, UML-2 lacks
user and system interface design notations. To overcorse tiestacles, we propose to
enhance the UML-2 models and meta-model to include suppofbfmal syntax and
semantics and to provide a new Ul model. The result is a nemdbnotation called
ZOOM. ZOOM stands for Z-based Object-Oriented Modeling biased on the formal
specification notation Z [17-19], which is in turn based upettheory and mathemati-
cal logic. ZOOM provides a human-readable syntax to speledymathematical model
in Z. A complete description of how ZOOM supports Z notati@m de found in [20].
Although widely used to specify software systems, one d&iy of Z is that its spec-
ification is limited to mathematical logic and does not pdevuseful mechanisms to
support OO modeling such as classes or inheritance. ZOOdhdsgtZ to support these
object-oriented concepts. Another deficiency of Z (and ttheinZ-Based OO exten-
sions) is the lack of visual notations for its constructs andabsence of notations for
specifying user interfaces. ZOOM provides visual represtéans of models that are
consistent with UML-2, and extends those notations to sttggband formal action
design [21].

Figure 1 shows the overall architecture of the ZOOM modelafeoftware system.
The functional requirements derive the structural, bedraviand Ul models. ZOOM
provides a pre-defined event model, which is processed byert-@riven framework,
to bind the structural, behavioral, and Ul models toget&t.[The integrated ZOOM
model will be processed by the Knowledge-based Model Catipil Tools resulting
in different implementations of the software system basethe specific platform and
knowledge base.

We partition the software design into three componentactiral models, behav-
ioral models and Ul models. The separation of a system irgeeththree parts is an

62

struct Student {
String nane;

}

1
2
3
4
s struct Graduate extends Student {
6 String advisor;

7 String thesis;

e}

9 sStruct Undergraduate extends Student {
10 String mnor;

u }

13 @°ssociation(rmultiplicityLeft=Miltiplicity.Mny,

14 mul tiplicityR ght=Multiplicity. Many,

15 rol eLeft = students, rol eRight = courses)
16 Rel ati on<St udent, Course> enroll;

Listing 1.1. Student.zoom.

application of the well-known paradigm in software engmiag - Separation of Con-
cerns, which formally separates the system based on specfase concerns [23]. This
separation allows each aspect of the system to be specifiadadely, making each as-
pect easier to write, understand, and change with less ingpethe other aspects. For
example, under this separation, modelers can modify thentseface based on device
profiles and user preferences without changing the stralcubehavioral models. The
other advantage of this separation is that we can use diffésemal specification lan-
guages to describe different aspects of the system. Usipgdafie language, which is
developed and aimed at a specific need, makes the modelioggsronore accurate and
formal.

Each ZOOM model has dual representations including a tegpeification and a
visual view. The visual representations are consistertt e@emmon UML-2 diagrams,
such as class, use case and state machine diagrams, bubaisteisemantics and
extensions. Listing 1.1 shows an example of a ZOOM struttouogel. The same model
is used as example in Section 3.2.2. This enables the usgafgrdools to design and
maintain ZOOM models. Modelers will appreciate the abildyuse available tools to
construct their models and to add formal specifications tse¢hmodels. Unlike the
models in UML-2, the ZOOM models are executable with its efien semantics. All
three components in ZOOM can be independently animatedihend/hole software
system can be visually animated with the event-driven fiaonk.

3 Our Model Transformation Approach

The primary objective of our approach is to assist a devetprifecycle, from plat-
form independent models to platform dependent models add,asith a framework
that provides a simple way to define transformations, magsiand refinements. We

63

accomplish this by using ZOOM as a UML extension to definefptat independent
model and a transformation mechanism supporting model teftcansformation.

Our approach of model transformation is different from nafghe existing MDE
approaches that are based on MOF. We propose a simplerdtimarmeta model-
ing architecture than MOF. The key element in our model fiansation is focus on
how transformations can be specified at the metamodel I&hel.approach to spec-
ifying model transformations involves specializing theskirchical Relational Meta-
model(HRM) we proposed to characterize source or targeemmod/e will discuss the
use of metamodel in transformation in following sections.

Figure 2 shows the basic structure of our model transfoondtamework. A trans-
formation engine takes the HRM defined source model as irgmat,use a template
comprise of a set of transformation rules to produce outmdehin a format specified
by the templates. In other words, the output from the trams&tion engine is a trans-
formation of the input model. We regard a model as a set of ineldeents that are
in correspondence with a metamodel element via the instioi relationship. Meta-
model based transformations use only the elements of themoelels, thus the trans-
formation description is expressed in terms of the two metdats. The rule set in the
Figure 2 is the transformation template which is an extdagsibmponent. Different set
of templates can be used in different transformation tasksdrious target platforms.
It's in this sense that we also call the template “cartridigereflect the exchangeability
of templates. It’s the core component of the transformdtiamework. We will discuss
the characteristics of our approach in the following sutisas.

HRM MetaModel Rule Set

Post
Result
Model Level T)
ZOOM Model e Lo Target | process |podel/Code
(Source Model) Model
Expression Level Transformation L

Transformation Engine

Fig. 2. Model Transformation Process Overview.

3.1 Source Model Representation

We use ZOOM notation to represent Platform Independent MBtd). ZOOM no-
tation has a textual syntax defined by BNF, which gives us pl#ied way to define
and use ZOOM metamodel. Since ZOOM provides the textualgyint a form that
most programming languages have, we are able to build amaiteepresentation of
ZOOM models in a structure similar to Abstract Syntax Treg{A, only the node in
the tree will be constructs of the modeling language instdambnstructs of program-
ming language. However, to capture more complicated moglédinguage constructs
like association. We adopt mathematical collection to detbhie relationships of dif-
ferent constructs. Considering it’s tree structure andh setationships, we name our
metamodel Hierarchical Relational Metamodel(HRM).

64

The use of HRM provides a way for transformation to undeistamd make use of
the abstract syntax and semantics of both the source aret tagglels. Base on HRM,
we design our template based model transformation to gétthenation necessary to
generate target model or code from HRM-compliant modelgéa model repository.
A set of interchangeable templates can be provided for noaie$formation between
different target technical platforms.

3.2 A Metamodeling Language

Metamodeling is a critical part of our transformation agguio. It provide a mechanism
to unambiguously define modeling languages - ZOOM in our.daisethe prerequisite
for a model transformation tool to access and make use of tieels. We will now
look into the design of our Hierarchical Relational MetaragdlRM).

Hierachical Relational Metamodel. The fact that ZOOM notation has a textual syntax
defined by BNF gives us a simplified way to define and use ZOOMeat®uhetamodel.
From implementation point of view, metamodel defines therimtl representation of
models. In programming language, this internal represientaften takes the form of
Abstract Syntax Tree(AST) that can be processed by intenpoe compiler [24, 25].
Since ZOOM provides the textual syntax in a form that mosgpamming languages
have, we are able to build an internal representation of ZO@ddels in a structure
similar to Abstract Syntax Tree. The only difference is tloeles in the tree are con-
structs of the modeling language instead of constructs @jramming language. To
capture more complicated modeling language construasbkociation, we also adapt
mathematics collection to depict the relationships ofedéht constructs. It is consider-
ing its tree structure and such relationships that we namertatamodel Hierarchical
Relational Metamodel(HRM).

HRM Definition. We provide the following definition of HRM:

Definition 5.1 Hierarchical Relational Metamodel is a 3-tuple: HRM = (N,;

N is a set of nodes: N £n; , ny, ... n;}

C is a relation on Nx N, which forms a tree structure that has one root and no un-
connected nodes. Each node may have zero or more childrethénwords, a node is
either aleaf(i.e. with no children) or can be decomposed as one or motdrehiand
each child forms a subtree

R ={ry, i ... r;} is a set of relations between nodes, wheris & relation on Nx N.
Figure 3 shows a simple class diagram that has four clastefer®8, Graduate, Under-
graduate and Course. The corresponding HRM diagram is latse i Figure 3 in the
middle. This metamodel can be represented as (N, C, R) aogotal Definition 5.1.
More specifically, we can elaborate the contents of its thoaeponents as:

HRM component content

N { ClassDiagrm, Student, Graudate, enroll, x, y, Studenten@rnaduate.advisor, }..

C { (Student, Student.name),(Graduate, Graduate.advi&8udate, Graduate.thesis)} ...
R { superClass, subClass, leftAssociationEnd, rightAssiociEnd }

S UBer G ass {(x, Student), (y, Studen})

Su G ass i) {(x, Graduate), (y, Undergraduae)

| ef t Associ ati onEnd = {(enrol, studenty

rg ht Associ ati onEnd {(enroll, Course}

65

superClass.
ClassDiagram

— Course Sudent
Student
enroll id:int Attribute name
name: String
name: String subClass
5 Atribute name [y Iondergraduate
Graduate
Adtribute advisor LeftAssociationEnd
Graduate Undergraduate
e
thesis: String - RightAssociationEnd

Fig. 3. HRM Example of a Class Diagram.

The componentsuper d ass, subC ass, | ef t Associ ai t onEnd and
ri ght Associ at i onEnd are relations between classes Student, Graudate, Undergra
uate, Course and relationship enroll, x, v.

3.3 Transformation Template

The rule set shown in Figure 2 is a collection of transforomatules. Here we provide
the definition of transformation rule as followings:

Definition 3.1 A transformation rule r = P» (Ty.e, Tpost) Where P defines the pattern
to select the element of source model and the template pait,(T,os:) defines the
mapping to target model. Respectivaly.. defines the mapping to target model before
traversing children of selected element, did,; defines the mapping to target model
after traversing children of selected element. The rat®wd this design is closely
related to the transformation algorithm that we will talloabin the next sub section.

In our framework, the development of transformation is iraegé part the pro-
cess of constructing transformation rules. The rule sehénRigure 2 is an extensible
component. Different set of templates can be used in diftdransformation tasks for
various target platforms. That's why we also call the tertgtaartridge” to reflect the
exchangeability of templates. Template is the core compiookthe transformation
framework. We will show how template or rules are develope8éction 7.

3.4 Transformation Algorithm

Metamodel based transformation uses the elements of md&in@ur adopting of Hi-
erarchical Relational Metamodel(HRM) allows us to build@ternal representation of
ZOOM models in a structure similar to Abstract Syntax Tre&{A Once metamodel
is generated as an AST like structure, it is accessible bytrdresformation process
through traversing the tree.

1 transformNode(node, ruleSet, output M odel)

2 rule < —f i ndMat chi ngr ul e(node, ruleSet) /ffinding the matching rule for this node
3 targetText < —i nst ant i at e(rule.pre, node)

4 outputModel.append(targetText) llgetting the output text by applyingre part of the rule
5 foreach c is a child of node

6 t ransf or mMNode (¢, ruleSet, output M odel)

7 endforeach /kraverse all the children nodes and do transformation on each of them

66

8 targeText < —i nst anti at e(rule.post, node)
9 output M odel.append (targetText) llgetting the output text by applyimpstpart of the rule

We use an algorithm of “pre-order” to traverse of the treeckhineans each node
is visited before its children are visited and the root igted first. The algorithm is
exemplified by the pseudo code shown in the above pseuda-code

As we can see in Definition 3.1, a transformation rule has tappng part, J,.
and T,.s:. They are represented age.pre andrule.postin the pseudo code. Shown
in the above pseudo codaile.preis the mapping before traversing children of se-
lected element, whileule.postis the mapping after traversing children of selected el-
ement. And as shown in line 5-7 in the pseudo code, each nattie imetamode will
be visited once and all its children node will get visited. tligger the transforma-
tion algorithm, the root node of source metamodel need todssqal, in the form of
transf ornNode(root, rul eSet, outputMdel).

4 Model Transformation Process

To start the MDE process we need to build a platform-indepetwhodel that comprises
the essence of target software system. This is the only ntbhdethe developer will
create completely “by hand.” The other models are mosthegaed.

The complete transformation process is depicted in Figuide id divided into 5
individual steps. Now let’s walk through the transformatprocess step by step.

Model M metamodel Literate Target Code

step?: traversing
—

stepl: parsing

[Instantiated Block

="StrucyField">

Tock 3

Import java. Ui,
class A
protected Type attrl;

}

Final Target Source

Fig. 4. Model Transformation in details.

Parsing the Source Model. A source model is provided, in our case, student.zoom
in Listing 1.1. Parsing involves reading actual source aafd@e model, or the textual
representation of model roster and splitting it into untierdable language symbols.
This is made possible by ZOOM'’s formally defined syntax. Agearwill parse the
textual representation of model roster and generates amaitabstract syntax tree
(AST) representation of roster, which is an object tree.

Traversing the Object Tree. Once metamodel is generated as AST, which is accessi-
ble by the transformation process through traversing e e use an algorithm of
“pre-order” traversal of the tree which is introduced intg®t4.3. It means each node

67

is visited before its children are visited and the root isted first. The traversing is
exemplified by pseudo code shown in section 3.4. Since thehimat metamodel node
with rule(step 3) and generating target text(step 4) happeng the process of travers-
ing. The pseudo code in section 3.4 actually shows all ofetl3esteps. To trigger this
transformation algorithm, the root node of source metarhioeled to be passed. In our
case, it is passing &g ansf or mMNode(i, rul eSet, out put Model), sincent is
the root node.

As we can see in Definition 4.2, a transformation rule has twapping part,T,,.
andT,.s:. They are represented asle.pre and rule.postin pseudo code in Section
3.4. Shown in the pseudo codeile.preis the mapping before traversing children of
selected element, whileile.postis the mapping after traversing children of selected
element. And as shown in line 5-7 in the pseudo code, eachindde metamode will
be visit once and all its children node will get visited.

Matching Node in Object Tree with Rule. The key step in this transformation process
is applying rules to source medels represented by theimmaztals. At this point, trans-
formation engine enters into the picture. As implied in sfanmation rule definition, r
=(P— (Tpre, Tpost)), to apply a rule on a certain model include both matchiregytht-
tern P and implement mappifig,. andT,,:. The pattern P is specified to make sure
that right node is being located and used. In the pseudo oadztion 3.4rule.preline

3) andrule.posfline 8) function as a template for the transformation. Wheplement

a template, we allow both static and dynamic specificatitetiSspecification is a ver-
batim mapping and dynamic specification can be in one of ttvesdorms: macros or
JSP alike syntax.

Generating Target Text. The generation of target text can be as simple as output the
text included in the rul@re or emphpost elements as shown in pseudo code in section
3.4 line 3 and line 8. However, more complicated scenaridbeaimvolved in this step.

For example, in most of the cases, expressions are in difféyans in source and target
model. We provide an extensible mechanism to assist theftmanation, or mapping.
The result of these steps is Literate Target Code. It willdedas input in the final step,
post processing.

Post Processing.The Literate Target Code generated in Step 4 as shown ind-gur
may or may not in a desirable order that fits to the target teahplatform. Post pro-
cessing is responsible to rearrange the Literate Target @oa desirable style that fits
to the target technical platform. Here we treated the Litef@rget Code as pieces of
segment that can be flexibly rearranged. A post process oasgh all these pieces
and place each of them in right places in final models or coties ffees the model
transformation engine from the details of contextual regaents of target platform.
This approach has a similar style as proposed in Knuth'satiéeProgramming [26].
Literate programming is a methodology that combines a @mogning language with
a documentation language, hereby making programs morst,ohaore portable, more
easily maintained, and arguably more fun to write than oty that are written only
in a high-level language.

After all the above transformation steps, the results ardetsoor source code of
target platform. In our example, the results are a group\d daurce code.

68

5 Related Work

A number of partial solutions to describe and implement rhvdasformation are cur-
rently available. Some of these are applicable only in aéichdomain, or provide very
low-level abstractions for transformations [27].

5.1 AndroMDA

AndroMDA [28] is a code generation tool that takes a UML moaglinput and gen-
erates source code as output. It adopts a template-bassfioraation methodology
similar to ours in a degree but differs significantly in hanglof metamodel. Using a
series of template files (which you can customize if you wigimdroMDA can produce
source code from a UML model in any programming languageallefemplates exist
to generate Java code (and in particular J2EE code). AndroMi8s designed to get
the information necessary to generate code from MOF compt@dels inside a MOF
repository.

Both AndroMDA and our approach are template-based, metatmased model
transformation frameworks that support code generatiath Bave an extensible ar-
chitecture consists of cartridges. These cartridges gém#hre code specific to a certain
concrete technical platform. However, the fundamentdédéhce between these two
approaches are the metamodel that they base upon. AndroM&NIOF while we use
HRM. Because of the complexity of the MOF compliant metanhogleen AndroMDA
traverses its AST objects, it has to access them via a ptapyiéMI interfaces, meta-
model facades. Comparing to AndroMDA, our approach singglithe transformation
template development by adopting a concise, tree-streicti@tamodel.

5.2 XSLT Style

Extensible Stylesheet Language Transformations (XSL9) [an XML-based lan-
guage used for the transformation of XML documents into odeL. The XSLT
processor ordinarily takes two input files - an XML source wtoent, and an XSLT
stylesheet and produces an output document. The XSLT bgd¢gontains the XSLT
program text and is itself an XML document that describes leeciion of template
rules: instructions and other hints that guide the proaesseard the production of the
output document. Since XSLT must be written in terms of thecepts in the source
XMI document (model), and object (or element) creation Explthe style is highly
procedural and due to its XML basis, the concrete syntax iig user unfriendly. As
such, itis unsuitable for one of the major goals of a dedlaatansformation language
- which is to communicate mapping specifications to humandsei

Comparing to XSLT, our approach provides a much more usendiy template
language syntax. In most cases, transformation develapenged to fill in the syntax
details of target platform when writing the specific temelat

5.3 QVT(Queries/Views/Transformations)

In the Model-Driven Architecture(MDA), QVT (Queries/ViaATransformations) is a
standard for model transformation defined by the Object Mangent Group. Presently

69

there are several products (commercial or open sourcerliat compliance to the
QVT standard. QVT defines a standard way to transform soumsets into target
models. Duddy et al propose a transformation language whilthmeet the require-
ments of QVT RFP, and several others besides [30]. The lgygisadeclarative and
patterns based. Transformation descriptions are eXpligitisable and modular. Rules
that make up such descriptions may be aspect-driven, altpbarr transformations to
be written to address semantic concepts rather than stalif®atures.

Since the abstract syntax of QVT conform to MOF 2.0 metamoaied of the
strength in our approach again is adopting a concise, traetsre metamodel, HRM.
Because of the simplified metamodel, when transformati@inentraverses its AST
objects, it can have direct access to the properties of tjeetsh This facilitates model
transformer to develop transformation template in a easidrquicker way.

6 Conclusions

In this paper we present a template based model transfanmiaéimework using Hi-
erarchical Relational Meta-model (HRM). By adopting Z-&&©bject-Oriented Mod-
eling notation (ZOOM) as the formal modeling notation, thiedel transformation
framework provides benefits consist of: 1) readability agdnousness of meta-model
definitions; 2) simplicity of transformation definition; &8) extensibility of transfor-
mation templates.

The current development of this project has made substamtigress and further
research effort will be mainly focusing on two things: onédsextend the capacity of
current framework; the other is to further prove the vajidit this research by building
more sophisticate cases. With these two major parts in pleeean further compare
our approach with other model transformation mechanismeetdy the advantages
of our framework, which is providing a simple, effective dapractical way to define
model transformations.

References

1. Kent, S.: Model driven engineering. In: Proc. IFM 2002yiBger-Verlag (2002) LNCS
\ol. 2335.

2. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipéapy., Neema, S.: Developing ap-
plications using model-driven design environments. Caep89 (2006) 33

3. Gray, J., Lin, Y., Zhang, J.: Automating change evolutiormodel-driven engineering.
Computer 39 (2006) 51

4. Poole, J.: Model-driven architecture: Vision, standa@hd emerging technologies. In:
ECOOP’01 — Object-Oriented Programming. (2001)

5. Rouvoy, R., Merle, P.: Towards a model-driven approachuitsl component-based adapt-
able middleware. In: ARM '04: Proceedings of the 3rd workslba Adaptive and reflective
middleware, New York, NY, USA, ACM Press (2004) 195-200

6. (UMLT™ 2.0 Superstructure Specification) OMG Document ptc/0®DgAugust, 2003).

7. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Blattiven development using uml
2.0: Promises and pitfalls. Computer 39 (2006) 59

70

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24,
25.
26.
27.
28.
29.

30.

. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Moddlianguage reference man-

ual.(1998)

. Sendall, S., Kozaczynski, W.: Model transformation: Teart and soul of model-driven

software development. IEEE Software 20 (2003) 42—-45

D’Ambrogio, A.: A model transformation framework forgtautomated building of per-
formance models from uml models. In: WOSP '05: Proceedirfgh@ 5th international
workshop on Software and performance, New York, NY, USA, AEMss (2005) 75-86
Bzivin, J., Farcet, N., Jzquel, J.M., Langlois, B., BQID.: Reflective model driven engi-
neering. In: "UML” 2003 - The Unified Modeling Language, Spger-Verlag (2003) LNCS
Vol. 2863.

Mukerji, J., Miller, J.: (Model-Driven Architecture) ttp:// www.omg.org/cgi-
bin/doc?ormsc/2001-07-01.

Group, O.M.: (Meta-Object Facility 1.4) OMG Documentrf@l/2002-04-03.

(MOF 2.0 Query / Views / Transformations RFP) OMG Docutati04-10-02.

(MOF QVT final adopted specification) OMG Document adlQ501.

Spivey, J.M.: The Z Notation: A Reference Manual, 2nd #&892)

Woodcock, J., Davies, J.: Using Z Specification, Refimgmand Proof. Prentice Hall
Europe (1996)

Wordsworth, J.B.: Software Development with Z. Addis@esley, Boston, MA (1992)

Jia, X.: An approach to animating Z specifications. Imd?d9th Annual IEEE Int'l Com-
puter Software and Applications Conf. (COMPSAC 1995), BsgllTexas, USA (1995) 108-
113

Jia, X.: (The ZOOM Notation - A Reference Manual) TecahReport, DePaul University,
2004.

Jia, X., Steele, A.: Incorporating uidls into modelvén development. In: Proceedings of
UIXML2004, Gallipoli, Italy (2004)

Qin, L., Liu, H., Jones, C., Jia, X.: An Integrated EvB&miven Framework Supporting MDD.
In: Proc. of the 2004 Midwest Software Engineering Confeee(MSEC’04), Chicago,IL
USA. (2004) 32-44

Lopes, C., Hrsh, W.: (Separation of concerns) Techi®eglort, Computer Science School,
Northeastern University, Boston, US, 1995.

Aho, A.V,, Ullman, J.D.: Theory of Parsing, Translatiand Compiling. Prentice Hall
Professional Technical Reference (1973)

Wile, D.S.: Abstract syntax from concrete syntax. InNSEC'97: Proceedings of the 19th
international conference on Software engineering, Newk Wiy, USA, ACM Press (1997)
472-480

Knuth, D.E.: Literate programming. CSLI Lecture Not28q3)

Czarnecki K., S.H.: Classification of model transforioragpproaches. In: OOPSLA. (2003)
(Andromda website) http://www.andromda.org/.

(W3C), T. W. W. W. C.:(XSL Transformations (XSLT) Versid.0)

http:// www.w3c.org/TR/xslt.

et al, K.D.: Model transformation: A declarative, rebiggpatterns approach. (In: Proceed-
ings of the Seventh IEEE International Enterprise DistebObject Computing Conference
(EDOCO03))

