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Abstract. This work shows that the cryptanalysis of the shrinking generator re-
quires fewer intercepted bits than what indicated by the linear complexity. Indeed,
whereas the linear complexity of shrunken sequences is betive2¥2 and
A-2(5-1) we claim that the initial states of both component registers are easily
computed with fewer thai- S shrunken bits. Such a result is proven thanks to

the definition of shrunken sequences as interleaved sequences. Consequently, itis
conjectured that this statement can be extended to all interleaved sequences. Fur-
thermore, this paper confirms that certain bits of the interleaved sequences have a
greater strategic importance than others, which must be considered as a proof of
weakness of interleaved generators.

1 Introduction

Stream ciphers are considered nowadays the fastest encryption procedures. Consequent-
ly, they are implemented in many practical applications e.g. the algorithms A5 in GSM
communications [10], the encryption system EO in Bluetooth specifications [2] or the
algorithm RC4 [15] used in Microsoft Word and Excel.

From a short secret key (known only by the two interested parties) and a public al-
gorithm (the sequence generator), a stream cipher procedure is based on the generation
of a long sequence of seemingly random bits. Such a sequence is called the keystream
sequence.

For the encryption the sender realizes the bit-wise (Exclusive-OR) XOR operation
among the bits of the original message or plaintext and the keystream sequence. The
result is the ciphertext to be sent. For the decryption, the receiver generates the same
keystream, realizes the same bit-wise XOR operation between the received ciphertext
and the keystream sequence and obtains again the original message.

Most keystream generators are based on Linear Feedback Shift Registers (LFSRs)
[8], which are linear structures characterized by their length (the number of memory
cells), their characteristic polynomial (the feedback function) and their initial states
(the seed or key of the cryptosystem). If the characteristic polynomial is a primitive
polynomial [14], then the LFSRs generate Pseudo- Noise sequences (PN-sequences)
with good characteristics of pseudorandomness.

For a survey on primitive LFSRs, PN-sequences, and shift equivalences the in-
terested reader is referred to [8]. In stream cipher procedures, the PN- sequences are
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combined by means of nonlinear functions in order to prodkeystream sequences of
cryptographic application. Combinational generatorsjinear filters, clock-controlled
generators, irregularly decimated generators ... arsqusae of the most popular nonlin-
ear sequence generators. All of them produce keystrearhsgh linear complexity,
long period and good statistical properties (see [6] and [3]

Most cryptanalysis on stream ciphers are performed undeoak plaintext hy-
pothesis, that is to say, it is assumed that the attacker inast @ccess to a portion
of the keystream sequence (the intercepted sequence). theointercepted bits, the
attacker has to deduce the cryptosystem key. Once the keyoisrk as the sequence
generator is public, the whole keystream sequence can baseacted. The complex-
ity of this attack is always compared with that of the key exdiave search. If the former
complexity is lesser, then the cryptosystem is said to bkeiro

This work focuses on a particular kind of stream ciphers thasel FSRs: the class
of shrinking generators. They are made out of two LFSRs aricregular decimation.
Shrinking generators have been thoroughly analyzed inraepapers such as [17],
[13] and [4]. Nevertheless, we present a new and efficieptanalytic attack requiring
much lesser amount of intercepted bits than that of the puswvattacks. The basic idea
of this cryptanalysis consists in defining the output segaei a shrinking generator as
an interleaved sequence (see [9] and [12]). The charatitsrid interleaved sequences
reveals weaknesses that lead to practical attacks. Ini@aldite conjecture that these
weaknesses can be extended to all interleaved sequenaaiesevith application in
cryptography.

The paper is organized as follows: in section 2, the deson@nd characteristics
of the shrinking generator is introduced. Interleaved cpmfition and related results
are developed in section 3. A cryptanalitic attack agaimstshrinking generator that
exploits the condition of interleaved sequence is presentsection 4, while the gen-
eralization of this technique to other cryptographic ilgaved generators appears in
section 5. Finally, conclusions in section 6 end the paper.

2 The Shrinking Generator

The so-called Shrinking Generator (SG) is a nonlinear kegst generator composed
by two LFSRs [5] so that a control regist8RSdecimates the sequence produced by
the other registeSRA S and A denote respectively their corresponding lengths and
fulfil that (S,A) = 1 andS < A. Ps(x) andPa(x) € GF(2)[x] denote their corresponding
primitive characteristic polynomials.

The sequencés } produced bySRSontrols the bits of the sequenta } produced
by SRAwhich are included in the output shrunken sequefmé according to the fol-
lowing rule: If s = 1 thenz; = &, and ifs = 0, thena; is discarded.

As different pairs ofSRA'SRSinitial states can generate the same shrunken se-
quence, in the sequel we assume that the first term of the segi{ge} equals 1, that is
s = 1. According to [5], the period of the shrunken sequence is:

T=(2"-1)25Y, (1)
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its linear complexity, notated LC, satisfies the followingguality:
A-252 < LC<A- 25D, 2)
and its characteristic polynomial is of the form:
Pss(x) = (P(x))P ®3)

whereP(x) is anA-degree primitive polynomial iGF(2)[x] andp is an integer in the
interval 252 < p< 2(5-1) Moreover, it can be proven [16] that the shrunken sequence
has also good distributional statistics. Therefore, ttiieme has been traditionally used
as keystream sequence generator with application in skeyatryptography.

3 Interleaved Configuration

The(2*—1)-2(5-Y bits of a period of any shrunken sequerieg; can be arranged into
a(2” — 1) x 2(5-1) matrix that we will callinterleavedcon figuratioand will denote by
IC. In fact,

VA Al 3 Zys-1_1
Zs-1 Hs1p1 0 Hpsig
IC — 2051 Dos1p1 0 Zzosig

23051 ZB3os-1y1 1 sl

ZoA_2).25°1 ZoA_2).25-141 " ZoA_1).251_1

Now the following result allows one to identify each elemehthe matrixIC with
the corresponding term of the sequetiag.

Theorem 3.1.The interleaved configuration matri€€ can be written in terms of the
elements of the sequenéa } such as follows:

800 o1
825-1, 00 825-1101
c=| %251+00 8251401

83.25-1100 83.05-1101
a(ZA,Z),Z&lJroo a(ZA,z).z&lJrol e

where the additive sub-indices (j = 0,1,---,251 — 1) depend on the bits of the
sequencgs} in the following way: ifs = 1, then the corresponding sub-index
equals the sub-index 0j = i. All the sub-indices are taken modulé 2 1, that is to
say, the period of the sequeni=}.

Proof. Since the period of the PN-sequer{eg is (25— 1), the number of bits with
value 1 in a period is exactly>2?, and all the elements of any columni@f come from
the same terng; = 1 of the PN-sequence, the above expression for the mi&irix
terms of the elements ¢f } is obtained
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According to the assumpticg = 1, the sub-inder0 = 0. Next, the following result
analyzes the characteristics of the columns of the mé@rix

Theorem 3.2.The sequencefj} = {aoj: k=0,(25-1),2-(25-1),---, (2"~ 2)-
(25-1)}(j =0,1,---,2(5"D _1) corresponding to the columns of the matit are
shifted versions of a unique PN-sequence whose chardi@adsynomial is given by:

Po(x) = (x4 o) (x4 2N) (x+aZN) - (x+ aZ (A1)

whereN is an integer defined @8 = 20+ 21 + ... 4-2(5-Y anda € GF(2*) a root of
the primitive polynomiaPa(x).

Proof. Every sequencgd;} corresponding to thg-th column ofIC is a regular
decimation of the PN-sequen¢e; }. More precisely, such a sequence is obtained by
taking one out of25— 1) terms in{a;}. The primality betweer andS guarantees the
primality between(2* — 1) and (25— 1). Thus, the decimated sequen{ch} is also a
PN-sequence. In addition, as evgdy } has been obtained frofa; } with a decimation
ratio of value(25 — 1), then its characteristic polynomib(x) is the polynomial of
the cyclotomic cosef2®— 1) in the Galois Field5F (2") generated by the roots of the
polynomialPa(x), see [4]. The starting point of eagld; } is given by the corresponding
sub-indexoj. O

4 Cryptanalytic Attack

The cryptanalytic attack consists in the computation ofniiteal states of both registers
SRAand SRS In fact, from some known bits of the shrunken sequence we hav
determine the firsA bits (ap,a1,--- ,aa_1) of the sequencéa;} as well as the firs§
bits (s, 51, -+ ,Ss-1) of the sequencés }. This attack can be divided into two different
steps. In the first one, the computation of the initial stdt&RBAis carried out. In the
second step and based on BiRAinitial state, we determine the corresponding initial
state of the registé8RS

4.1 SRAlnitial State

Previously to the computation of the initial state, thedwling result is introduced.

Lemma 4.1.GivenA bits of the shrunken sequence corresponding soccessive ele-
ments of any column dfC, the remaining bits of such a column can be determined.
Proof. Theorem 3.2 determin& (x) the characteristic polynomial of ti\-sequence
corresponding to every column &E. Thus, knowingA successive bits of any column
and its characteristic polynomial, the linear recurrerstationship allows one to com-

pute the remaining bits of such a colunfn.

Now the computation of thERAinitial state is described in the next result.

Theorem 4.2.Given A bits of the shrunken sequence corresponding guccessive
elements of the first column &€, the bits of the initial state of the regist8RAcan be
determined.
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Proof. Lemma 4.1 shows that the knowledgefBuccessive elements of the first
column ofIC allows one to generate the remaining bits of such a columrnh®other
hand, from Theorem 3.1 we know that tfre+ 1)-th element of the first column ¢€
corresponds t@,, ,s_y), that is to say, thén- (25— 1) + 1)-th term of the sequence
generated by the regist&RA Consequently, we first solve the following system of
modular equations in the unknowns

ni-(2°5-1)=imod2*-1)(i=0,1,---,(A—1)),

and then we compute successively thet+ 1)-th (i=0,1,---,(A—1)) elements of the
first column ofIC in order to obtairag,a;, - - - ,aa — 1, respectivelyl]

4.2 SR9nitial State

The computation of th&RSnitial state is described in the next result.

Theorem 4.3.Given A- Sbits of the shrunken sequence corresponding to the top-left
corner(A x S) sub-matrix oflC, the bits of the initial state of the regist8RScan be
determined.

Proof. Firstly, from the knowledge of théA x S) sub-matrix ofiC,

=l Aol
s g A2s_1)+01
Bos1 8 25-1)101
SUBc =

3251  83(25-1)401

Aa-1).25-1 &A-1).(25-1)+01 """

and according to Lemma 4.1, we can deduce the remaining biteose S columns.
Secondly, the relative shifts among columns may be compluted the comparison
between consecutive columns. Since the sequence in edarypcofIC is exactly the
same but starting at different points given &y , as soon as a relative shift is found
the sub-index j may be easily computed. In addition, each sub-indgkdicates the
position of the(j + 1)-th 1 in the initial state oSRSwhile the intermediate bits are 0's.
Thus, the above procedure can be repeated fol,2,--- till we getoj > (S—1). In
this way, the initial state of the regist8RSs thoroughly determined.

4.3 lllustrative Example

Let us consider a shrinking generator characterized by:

(1) SRAwith lengthA= 5, characteristic polynomidia(x) = x° + x* +x3+x2 +1
and output sequende; } .

(2) SRSwith lengthS= 4, characteristic polynomids(x) = x* +x3 41 and output
sequencés }.

(3) The characteristic polynomial of the shrunken sequési®s(x) = Pp(X)P =
4+ x3+x2 +x+1)8.
Given 20 bits of the shrunken sequence corresponding%o<at) sub-matrix ofiC
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10117
1001
SUBc=1]0101
0111
0001

we can launch a cryptanalytic attack against the shrinkargegator in order to obtain
the initial states of both LFSRs. Table 1 shows the calautatcarried out for cryptan-
alyzing the above described generator. The most left coltgpresents the indices
numbered0, --- ,2* — 2 = 30). Next column shows from Theorem 3.1 the position of
the termgag, ay,--- ,a4) of the sequencéa; } in the first column{d, } of the matrixIC.
The following columns of the Table 1 represent the mal@xin boldface thg5 x 4)
sub-matrix with the known bits, the remaining bits{afp} are the bits computed to
determine the initial states &RAandSRSand the symbol - corresponds to unknown
bits of the shrunken sequence.

Computation of the SRA Initial StatAccording to Theorem 4.2, we compute the
positions of then; + 1)-th elements of the first column &€ by solving the equation
system

ni-15= mod31(i=0,1,...,4).

Thatis to sayng = 0,n; = 29,n, = 27,n3 = 25,n4 = 23. Then, by means of the char-
acteristic polynomiaPp(x) we determine the values of thig; + 1)-th (i = 0,1,...,4)
elements of the first columfido} of IC. Consequentlygy = 1,a; = 0,a, = 0,83 =
1,a4 =1 (see Table 1). Therefore, the initial state of the regiS®RA(1, 0, 0, 1, 1) has
been determined.

Computation of the SRS initial statAccording to Theorem 4.3, we compute the
relative shifts between consecutive columns in the ma@ix

- Computation obl: We knowa; at the (29+1)-th position of the first column fdOg
and compute itS— 1 = 4 successive bits. We compare these 5 bits (0, 0, 1, 1, 0) méth t
first 5 bits (0, 0, 1, 1, 0) of the second colurfuh } (see Table 1). There is coincidence,
thusol = 1.

- Computation 0b2: We knoway at the (27+1)-th position of thido} and compute
its 4 successive bits. We compare these 5 bits (0, 1, 0, Oth}keé first 5 bits (1, 0, 0, 1,
0) of the third column{d} . There is no coincidence, thus we analyze the following bit
az.We knowag at the (25+1)-th position ofdp} and compute its 4 successive bits.We
compare these 5 bits (1, 0, 0, 1, 0) with the first 5 bits (1, @, @) of {d>} (see Table
1). There is coincidence, thws = 3. Sinceo, = 3> S— 1, we have determined the
initial state of SRSIn fact,sp = 1, 01 = 1 impliess; = 1, op = 3 impliess, = 0 and
s3 = 1. Therefore, th&RSnitial state is(s,s1,2,S3) = (1,1,0,1). Remark that only
the knowledge of three columns of the sub-matrix has beeassecy to identify the
initial state ofSRS Indeed, this number equals the number of bits 1 in the Irstate
of the selector register. The maximum number of known bitsasponds t&RSnitial
state with all bits 1. In the remaining cases, less bits difecmnt.
Once the initial states of both register are determinedjytime shrunken sequence that
is the keystream sequence can be computed.
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Table 1. Matrix IC corresponding to the described SG.
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5 Generalization to Interleaved Sequences

First of all, we introduce the general definition of intexled sequence [12].

Definition 5.1. Let f(x) be a polynomial oveGF(q) of degree and letm be a positive
integer. For any sequen¢eg} overGF(q), we writek =i-m+ j with (i=0,1,...) and
(j=0,...,m—1). If every sub-sequencgu;} of {uc} defined agu.m.j} is generated
by f(x), then the sequendei} is called an interleaved sequence o0@&t(q) of sizem
associated with the polynomi&(x).

Table 2. Interleaved sequence with 4 shifted versions of the samed®Nence.

c
o
(4
=
c
N
c
[5)

POROORR
PP OROOR
OrRrO0OORRER
OCORRERLROR

Table 2 shows the interleaved sequekiog} over GF(2) associated with the 3-
degree characteristic polynomig(x) = x3+x-+ 1 overGF (2) and sizen = 4. Reading
by rows, the interleaved sequenceig} ={1,1,1,1,1,0,1,0,0,0,1,1,0, 1,0, 1,
1,0,0,1,0,1,1,0,1, 1, 0, pwhile by columns the sequence is made ouf oj}

(j =0,...,3) four shifted versions of the PN-sequence generatefi ky

Interleaved sequences are currently used as keystreararssgguwith application

in cryptography. They can be generated in different ways:
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(1) By a LFSR controlled by another LFSR (which may be the san®) e.g. multi-
plexed sequences [11], clock-controlled sequences [§¢acted sequences [7], shrink-
ing generator sequences [5] etc.

(2) By one or more than one LFSR and a feed-forward nonlinestfon e.g. Gold-
sequence family, Kasami (small and large set) sequencdigamGMW sequences,
Klapper sequences, No sequences etc. See [9] and the dsi@ted therein.

In brief, a large number of well-known cryptographic sequesnare included in
the class of interleaved sequences. Next, the link betwstenieéaved sequences and
shrunken sequences is expressed in the following result.

Theorem 5.2.Shrunken sequences are interleaved sequences of $ize 2

Proof.Let {z} be a shrunken sequence with characteristic polynoRfigP where
P(x) is anA-degree primitive polynomial anglis an integer in the interval92 < p<
2(5-1) According to the interleaved configuratit®, we may expres$z} in terms of
m sequencesz;} where{zj} = {Zmj} with i > 0,m=25"Y and(j =0,...m—
1). Since by Theorem 3.2 the sequen¢gs are generated by the same characteristic
polynomialPp(x), we get that the shrunken sequereg} is an interleaved sequence
of size 251 associated with the polynomiB(x). O

The previous theorem proves that shrunken sequences arkavied sequences.
Moreover, section 4 shows that the knowledge of a number tsfddithe shrunken
sequence allows us to mount a cryptanalytic attack agdiesshrinking generator.
As many cryptographic sequence generators produce iatedesequences, then the
previous considerations take us into the following conjezt

Conjecture 5.3.Given a number of bits corresponding to an initial sub-matfithe in-
terleaved configuratiolC of an interleaved sequence, it is possible to obtain the evhol
interleaved sequence. The confirmation of this conjectunddvprove the weakness of
interleaved generators for cryptographic purposes.

6 Conclusions

In this work a new cryptanalytic attack against the classhoinking generators has
been proposed. The amount of intercepted bits necessaealiae such an attack is
much lesser than that of other standard cryptanalysis. @kie ldea consists in defin-
ing the shrunken sequence as an interleaved sequence. thengeaknesses inherent
to interleaved sequences can be advantageously used imatttecal attack. A direct
consequence of this technique is its generalization tor dtiterleaved sequence gener-
ators of cryptographic purpose. In this way, the securitthisf kind of generators must
be carefully checked.
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