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Abstract. Nonlinear composite filters for robust and illumination-invariant pat-
tern recognition are proposed. The filters are based on logical and rank order 
operations. The performance of the proposed filters is compared with that of 
various linear composite filters in terms of discrimination capability. Computer 
simulation results are provided to illustrate the robustness of the proposed fil-
ters when a target is embedded into cluttered background with unknown illumi-
nation and corrupted by additive and impulsive noise. 

1 Introduction 

Correlation-based filters have been an area of extensive research over past decades 
[1-4]. A usual way to design filters is by optimizing some performance criteria. Vari-
ous performance measures for correlation filters have been proposed and summarized 
[1]. For example, the classical matched spatial filter (MSF) [2] is optimal if an input 
image is corrupted by additive Gaussian noise. However, many real images are cor-
rupted by non-Gaussian noise. Besides, the MSF is not able to discriminate effec-
tively an object of one class and that belonging to other classes. Composite filters 
based on synthetic discriminant functions (SDF) [3] can be used for multiclass pattern 
recognition. SDF filters utilize a set of training images to synthesize a template that 
yields prespecified correlation outputs in response to training images. A drawback of 
SDF filters is appearance of false peaks on the correlation plane. A partial solution of 
this problem is to control the whole correlation plane by minimizing the average 
correlation energy (MACE) [4]. MACE filters suppress sidelobes while produce 
sharp correlation peaks at the target location. However, the filters are not tolerant to 
input noise. 

Traditionally correlation-based filters use a linear correlation operation. Minimiza-
tion of the mean absolute error (MAE) leads to a nonlinear correlation, which is com-
puted as a sum of minima. The MAE criterion is often used to solve optimization 
problems in rank-order image filtering. This criterion is more robust when the noise 
has even slight deviations from the Gaussian distribution, and produces a sharper 
peak at the origin.5 Recently, local adaptive correlations based on rank order opera-
tions were proposed to improve recognition in scenes with non-Gaussian noise [6,7]. 
However, their performance is poor in scenes with highly illuminated background. 

In this paper we propose illumination-invariant nonlinear composite filters derived 
from the MAE criterion. With the help of computer simulations the performance of 
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the proposed filters is compared with that of linear composite filters. The paper is 
organized as follows: Section 2 provides a review of composite linear filters. Section 
3 introduces the proposed filters. In section 4 we provide computer simulation results. 
Section 5 summarizes our conclusions. 

2 Linear Composite Filters 

Composite filters are usually used for distortion-invariant pattern recognition. In this 
case a set of training images that are sufficiently descriptive and representative of 
expected distortions can be employed to improve the recognition.  

2.1 SDF filter 

Conventional SDF filters are a linear combination of MSFs for different patterns. The 
coefficients of the linear combination are chosen to satisfy a set of constraints on the 
filter output requiring a prespecified value for each pattern used.  

Suppose there are N training images from a true class, each image contains d pix-
els. We convert the 2D arrays of the images into the 1D column vector by lexico-
graphical ordering. These vectors are the columns of a matrix R of size d×N. The 
column vector u contains N elements, which are the desired values of the output cor-
relation peaks corresponding to each training image. If the matrix (R+R) is nonsingu-
lar, the conventional SDF filter can be expressed as follows [3]: 

h R R R uSDF
+ −= 1( )  , (1) 

here superscript + means conjugate transpose. The main shortcoming of the linear 
SDF filters is appearance of sidelobes owing to the lack of control over the whole 
correlation plane. 

2.2 MACE filter 

In order to suppress false correlation peaks, the MACE filter minimizes the average 
correlation energy of the correlation outputs for a set of training images, satisfying at 
the same time the correlation peak constraints at the origin. Suppose that there are N 
training images, each image with d pixels. First, the 2D Fourier transform is per-
formed on each training image and converted into 1D column vector. Then, a matrix 
X with N columns and d rows is constructed. The columns of X are given by the 
vector version of each transformed image. The frequency response of the MACE 
filter can be expressed as [4] 

-1 + -1 -1h D X(X D X) uMACE =  , (2) 

where the column vector u contains desired correlation peak values of the training 
images and the dxd diagonal matrix D contains the average power spectrum of the 
training images.  
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3 Nonlinear Composite Filters 

We wish to design a nonlinear composite filter, which is invariant to illumination, 
robust to noise, cluttered background, and false objects. The proposed filtering is a 
locally adaptive processing of the signal in a moving window. The moving window is 
a spatial neighborhood containing pixels surrounding the central window pixel geo-
metrically. The neighborhood is referred to as the W-neighborhood. The shape of the 
W-neighborhood is similar to the region of support of the target. The size of the 
neighborhood is referred to as W , and it is approximately taken as the size of the 
target. In the case of nonstationary noise or cluttered background (space-varying 
data), it is assumed that the W-neighborhood is sufficiently small and the signal and 
noise can be considered stationary over the window area.  

3.1 Illumination-Invariant Correlation  

Let {T(k,l)} and  {S(k,l)} be a target image and a test scene respectively, both with Q 
levels of quantization. Here (k,l) are the pixel coordinates. The local nonlinear corre-
lation derived from the MAE criterion between a normalized input scene and a shifted 
version of the target at coordinates (k,l) can be defined as  

( ) ( ) ( ) ( ) ( )
,

, , , , , ,
m n W

C k l MIN a k l S m k n l b k l T m n
∈

= + + +⎡ ⎤⎣ ⎦∑  , (3) 

where the sum is taken over the W-neighborhood. The coefficients a(k,l) and b(k,l) 
take into account unknown illumination and a bias of the target respectively. The 
normalization coefficients can be computed by minimizing the mean squared error 
between the window signal and the target as:  

( )
( ) ( ) ( )

( )( ) ( )( )
,
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( ) ( ) ( ), , ,b k l T a k l S k l= − ⋅   , (5) 

here T  and ( ),S k l  are the average of the target and local window signal over the W-
neighborhood at the (k,l)’th window position, respectively.  

3.2 Nonlinear Composite Correlation Filters 

According to the threshold decomposition concept [8], a gray-scale image X(k,l) can 
be represented as a sum of binary slices:  

1

1
( , ) ( , )

Q
q

q
X k l X k l

−

=

= ∑  , (6) 
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where { }( , ), 1,... 1qX k l q Q= −  are binary slices  obtained by decomposition of the 
image with a threshold q as follows: 

1,   ( , )
( , )

0,        
q if X k l q

X k l
otherwise

≥⎧
= ⎨
⎩

 . (7) 

Now, assume that there are N objects from the true class ( ){ }, , 1...iT k l i N=  and M 

objects to be rejected ( ){ }, , 1...iP k l i M=  (the false class). We construct N reference 
images as logical combinations of the training images:  

( ) ( ) ( )
1

1 1

ˆ , , , , 1...
Q M

q q
i i j

q j

T k l T k l P k l i N
−

= =

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ I U  , (8) 

where { }( , ), 1,... 1, 1,...q
iT k l q Q i N= − =  and { }( , ), 1,... 1, 1,...q

iP k l q Q i M= − =  are 
binary slices obtained by threshold decomposition from corresponding training im-
ages of true and false classes respectively. U and I represent the logical union 
and intersection, respectively. Finally, the nonlinear composite correlation is com-
puted by  

( ) ( )ˆ , , , 1...i
i

uC k l MAX C k l i N
t

⎛ ⎞⎧ ⎫
= =⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

 . (9) 

where ( )ˆ ,C k l  is the composite correlation at the coordinates (k,l), ( ),iC k l  is the i’th 
correlation (see equation 3) between the input scene and the i’th reference image 
(computed with equation 8), MAX (Xi) is the maximum value among all the Xi,  u is 

the desired value at the correlation output, and ( ) ( )
1

, 1 1

, ,
Q M

q q
i i j

k l W q j

t T k l P k l
−

∈ = =

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ I U . 

One can show that the composite correlation yields the value u at output correlation 
for objects belonging to the true class, while the output correlation peaks for the false 
objects are zeros.  

4 Computer Simulations 

In this section computer simulation results obtained with the proposed filters are pre-
sented. The performance of nonlinear filters is compared with that of SDF and 
MACE filters in terms of discrimination capability (DC). The DC is formally defined 
as the ability of a filter to distinguish a target among other different objects [9], and 
can be expressed as:  

( )
( )

2

2

0 0
1

0 0

B

O

C ,
DC

C ,
= −  , (10) 
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where C B (0,0) is the maximum in the correlation plane over the background area to 
be rejected and CO(0,0) is the maximum in the correlation plane over the area of the 
object to be recognized. The area of the object to be recognized is determined by the 
region of support of the target. The background area is complementary to the area of 
the object to be recognized.  

  
(a)     (b) 

Fig. 1. (a) Objects used in experiments (target is marked with the arrow), (b) test scene with 
objects embedded into a cluttered background. 

Figure 1(a) shows the objects used in computer simulations. The target is marked 
with an arrow. The size of the moving window is about 19×35 pixels. The signal 
range of images is [0-255]. The objects of the true class are the target and its version 
rotated by 5 degrees. Figure 1(b) illustrates the objects embedded into a background. 
The size of scenes is 256x256.The mean of target is 92.3 and its standard deviation is 
47.9. The mean of background is 93.8 with standard deviation of 48.7. We designed a 
filter with 2 objects from the true class and 1 object from the false class. 30 statistical 
trials in different positions of the objects were conduced and averaged. The DC val-
ues for the SDF, the MACE and the nonlinear filter are 0.13, 0.90, and 0.93, respec-
tively.  

Next the mean of background is varied while its standard deviation is fixed. Figure 
2 shows the results. Note that the performance of linear filters deteriorates quickly 
when the background becomes highly illuminated, while the proposed nonlinear filter 
is illumination-invariant. The SDF filter fails to recognize the target in highly illumi-
nated background. 
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Fig. 2. Performance of filters in terms of DC as a function of the mean of background. 

Now we show the robustness of filters to different kinds of noise. First, the scene is 
corrupted by impulsive salt and pepper noise. The probability of impulsive noise is 
varied from 0.04 to 0.2 with equal probability of occurrence for negative and positive 
impulses. To guarantee statistically correct results, 30 statistical trials of each experi-
ment for different realizations of random processes were performed. Figure 3(a) is an 
example of the test scene corrupted by impulsive noise with probability of 0.2. 

  
(a)       (b) 

Fig. 3. Test input scene corrupted by (a) impulsive noise with probability of 0.2, (b) mixed 
additive noise with standardp deviation of 40 and impulsive noise with probability of 0.2. 

Figure 4(a) illustrates the performance of filters as a function of the probability of 
impulsive noise.  
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(b) 

Fig. 4. Performance of filters in terms of DC as a function of impulsive noise probability for (a) 
impulsive noise only, (b) mixed additive and impulsive noise. 

Note that performance of linear filters degrades rapidly, while the proposed filter is 
able to recognize targets. Finally the scene is corrupted by mixed additive Gaussian 
and impulsive noise. The standard deviation of additive noise is 40 and the probabil-
ity of impulsive noise is varied from 0.04 to 0.2. 
Figure 3(b) shows an example of a test scene corrupted with mixed noise, the prob-
ability of impulsive noise is 0.2. Figure 4(b) shows the computer simulation results. It 
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can be seen that the linear filters rapidly fail to recognize the objects, while the 
nonlinear filter is able to correctly detect objects in extremely noisy scenes. 

5 Conclusions  

In this paper, composite nonlinear filters were proposed. Their recognition perform-
ance and noise robustness were compared to those of composite linear filters in terms 
of discrimination capability. Extensive computer simulations illustrated an improve-
ment in pattern recognition of multiple objects when the proposed filters are used. 
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