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Abstract. Finite mixture modelling is a standard pattern recognition technique.
However, in statistical machine translation (SMT), the use of mixture modelling
is currently being explored. Two main advantages of the mixture approach are
first, its flexibility to find an appropriate tradeoff between model complexity and
the amount of training data available and second, its capability to learn specific
probability distributions that better fit subsets of the training dataset. This latter
advantage is even more important in SMT, since it is widely accepted that most
state-of-the-art translation models proposed have limited application to restricted
semantic domains. In this work, we revisit the mixture extension of the well-
known M21 translation model. The M2 mixture model is evaluated on a word
alignment large-scale task obtaining encouraging results that prove the applica-
bility of finite mixture modelling in SMT.

1 Introduction

Finite mixture modelling is a popular approach for density estimation in many scientific
areas [1]. On the one hand, mixtures are flexible enough for finding an appropriate
tradeoff between model complexity and the amount of training data available. Usually,
model complexity is controlled by varying the number of mixture components while
keeping the same parametric form for all components. On the other hand, maximum
likelihood estimation of mixture parameters can be reliably accomplished by the well-
knownExpectation-Maximisation (EM)algorithm [2, 3].

One of the most interesting properties of mixture modelling is its capability to learn
a specific probability distribution in a multimodal dataset that better explains the general
data generation process. In translation tasks, these multimodal datasets are not an ex-
ception, but the general case. Indeed, it is easy to find corpora from which several topics
could be drawn. These topics define sets of topic-specific lexicons that need to be trans-
lated taking into the Semitic context in which they are found. This semantic ambiguity
problem could be overcome by learning topic-dependent translation models that cap-
ture together the semantic context and the translation process. The application of finite
mixture modelling to SMT is currently being explored with successful results [4–6].

Previous work on finite mixture modelling applied to SMT has mainly focused on
the mixture extension of word-based alignment models, more precisely, the well-known
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IBM alignment models [7, 8]. In [4], a mixture extension of the M2 model is proposed,
reporting appealing results on a small synthetic task [4]. However, the question that
arises is whether these positive results on a small task can be extrapolated to large-scale
tasks. This paper presents an alternative evaluation of theM2 mixture model on a word
alignment shared task that serves as a reference task in SMT [9–13].

Indeed, word alignment is the first step towards the construction of modern phrase-
based SMT systems [14–17]. It involves the induction of a word mapping from a
(source) language into another (target) language over bilingual sentences. The second
phase uses statistics over these learnt word alignments to translate new sentences.

In this paper, we first review the M2 in Section 2, before deriving the M2 mixture
model in Section 3. In Section 4, we introduce the evaluationmetrics that are used to
assess word alignment quality of the proposed model on the shared task presented in
Section 5. Section 6 is devoted to experimental results and Section 7 concludes and
provides an outlook on future work.

2 The M2 model

2.1 The Model

Let (x, y) be a pair of source-target sentences; i.e.x is a sentence in a certain source
language andy is its corresponding translation in a different target language. LetX and
Y denote the source and target vocabularies, respectively. The IBM alignment models
are parametric models for the translation probabilityp(x | y); i.e., the probability thatx
is the source sentence from which we get a given translationy.

The IBM alignment models assume that each source word isconnected to exactly
one target word. Also, it is assumed that the target sentence hasan initial NULL or
emptyword to which source words with no direct translation are connected. Formally, a
hidden variablea = a1a2 · · ·a|x| is introduced to reveal, for each source word position
j, the target word positionaj ∈ {0, 1, . . . , |y|} to which it is connected. Thus,

p(x | y) =
∑

a∈A(x,y)

p(x, a | y) (1)

whereA(x, y) denotes the set of all possible alignments betweenx andy. The term
p(x, a | y) can be factorised as source position-dependent probabilities

p(x, a | y) =
|x|∏

j=1

p(xj , aj | aj−1
1 , xj−1

1 , y) (2)

In the case of the IBM model 2, it is assumed thataj only depends onj and|y|, and
thatxj only depends on the target word to which it is connected,yaj . Hence,

p(xj , aj|aj−1
1 , xj−1

1 , y) := p(aj |j, |y|) p(xj |yaj ) (3)

and the set of unknown parametersΘ comprises

Θ =
{

p(i | j, |y|) ∀ i ∈ {0, 1, . . . , |y|}, j ∈ {1, . . . , |x|} and|y|
p(u | v) u ∈ X , v ∈ Y.

(4)
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Note that the alignment parameters defined here are slightlydifferent from those defined
in the original parametrisation [8], which also depend on|x|, p(i | j, |x|, |y|).

Putting Eqs. (1), (2) and (3) together, we define the M2 model,after some straight-
forward manipulations, as follows:

p(x | y) =
|x|∏

j=1

|y|∑

i=0

p(i | j, |y|) p(xj |yi). (5)

2.2 Maximum Likelihood Estimation

It is not difficult to derive an EM algorithm to perform maximum likelihood estima-
tion of Θ with respect to a collection ofN independent training samples(X, Y ) =
{(x1, y1), . . . , (xN , yN)}. The log-likelihood function is:

L(Θ) =
N∑

n=1

log
∑

an

p(xn, an|yn) (6)

with

p(xn, an|yn) =
|xn|∏

j=1

p(anj |j, |yn|) p(xnj |ynanj )

=
|xn|∏

j=1

|yn|∏

i=0

[p(i | j, |yn|) p(xnj |yni)]
anji (7)

where, for convenience, the alignment variable,anj ∈ {0, 1, . . . , |yn|}, has been rewrit-
ten as an indicator vector in Eq. (7),anj = (anj0,. . . ,anj|yn|), with 1 in positionanji

and zeros elsewhere.
Now, we can defineA as the set of alignment indicator vectors associated with the

bilingual pairs(X, Y ) with

A = (a1, . . . , an, . . . , aN )t (8)

where variableA is the missing data in the M2 model.
The EM algorithm maximises Eq. (6) iteratively, through theapplication of two

basic steps in each iteration: the E(xpectation) step and the M(aximisation) step.
The E step computes the expected value of the logarithm ofp(X, A |Y ), given the

(incomplete) data samples(X, Y ) and a current estimate ofΘ, Θ(k). Given that the
alignment variables inA are independent from each other, we can compute the E step
as theQ function in the EM terminology,

Q(Θ |Θ(k)) =
N∑

n=1

E(log p(xn, an | yn; Θ) |xn, yn, Θ(k)) (9)

=
N∑

n=1

|xn|∑

j=1

|yn|∑

i=0

a
(k)
nji [log p(i | j, |yn|) + log p(xnj | yni)] (10)
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with

a
(k)
nji =

p(i | j, |yn|)(k) p(xnj | yni)(k)

|yn|∑
i′=0

p(i′ | j, |yn|)(k) p(xnj | yni′)(k)

. (11)

That is, the expectation of wordxnj to be connected toyni is our current estimation
of the probability ofxnj to be translated intoyni, instead of any other word inyn

(including the NULL word).
Then, the M step finds a new estimate ofΘ, Θ(k+1), by maximising Eq. (9), using

Eq. (11) instead of the missinganji. This results in:

p(i | j, |y|)(k+1) =

N∑
n=1

j≤|xn|
|yn|=|y|

a
(k)
nji

|y|∑
i′=0

N∑
n=1

j≤|xn|
|yn|=|y|

a
(k)
nji′

∀i, j and|y|; (12)

and

p(u|v)(k+1) =

N∑
n=1

|xn|∑
j=1

xnj=u

|yn|∑
i=0

yni=v

a
(k)
nji

∑
u′∈X

N∑
n=1

|xn|∑
j=1

xnj=u′

|yn|∑
i=0

yni=v

a
(k)
nji

∀u ∈ X andv ∈ Y. (13)

An initial estimate forΘ, Θ0, is required for the EM algorithm to start. In the case
of the M2 model, we use the initial solution given by the M1 model, which is a particular
case of the M2 model in which alignment probabilities are uniformly distributed; i.e.,

p(i | j, |y|)(k+1) =
1

|y|+ 1
∀ i, j and|y|. (14)

3 Mixture of M2 models

3.1 The Model

A finite mixture model is a probability (density) function ofthe form:

p(z) =
T∑

t=1

p(t) p(z | t) (15)

whereT is thenumber of mixture componentsand, for each componentt, p(t) ∈ [0, 1]
is its prior or coefficientandp(z | t) is its component-conditional probability (density)
function. It can be seen as a generative model that first selects thetth component with
probabilityp(t) and then generatesz in accordance withp(z | t). It is clear that finite
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mixture modelling allows generalisation of any given probabilistic model by simply
using more than one component.

In this work, we are interested in modelling the translationprobabilityp(x | y) using
aT -component,y-conditional mixture of M2 models:

p(x | y) =
T∑

t=1

p(t) p(x | y, t) (16)

where

p(x|y, t) =
|x|∏

j=1

|y|∑

i=0

p(i | j, |y|, t) p(xj |yi, t) (17)

Note that we could have madep(t) to depend ony in Eq. 16 but, for simplicity, this is
left for future work. Thus, the global vector of parametersΘ is

Θ = (p(1), . . . , p(t), . . . , p(T ); Θ1, . . .Θt, . . . , ΘT )t. (18)

where for each componentt, p(t) is its mixture prior or coefficient andΘt comprises
the component-conditional parameters

Θt =
{

p(i | j, |y|, t) ∀ i ∈ {0, 1, . . . , |y|}, j ∈ {1, . . . , |x|} and|y|
p(u | v, t) u ∈ X , v ∈ Y.

(19)

It is easy to extend the EM algorithm developed in the previous section to the case
of M2 mixtures. The log-likelihood function ofΘ with respect toN training samples is

L(Θ) =
N∑

n=1

log
∑

zn

∑

an

p(xn, zn, an|yn) (20)

wherezn = (zn1, . . . , znT ) is an indicator vector for the component generatingxn, and

p(xn, zn, an | yn) =
T∏

t=1

[p(t) p(xn, an | yn, t)]znt (21)

with

p(xn, an | yn, t) =
|xn|∏

j=1

|yn|∏

i=0

[p(i | j, |yn|, t)p(xnj | yni, t)]
anji

where, as in the previous section,anji = 1 means that thenth training pair has its source
positionj connected to target positioni. Note that data completion in the mixture case
includes the alignmentsA and the component labels

Z = (z1, . . . , zn, . . . , zN )t (22)

as well. Thus, theQ function for the M2 mixture model becomes

Q(Θ |Θ(k)) =
N∑

n=1

T∑

t=1

z
(k)
nt log p(t)

+
|xn|∑

j=1

|yn|∑

i=0

(znt anji)(k) [log p(i | j, |yn|, t) + log p(xnj | yni, t)] . (23)
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with

z
(k)
nt =

p(t)(k) p(xn | yn, t)(k)

T∑
t′=1

p(t′)(k) p(xn | yn, t′)(k)

(24)

and the expected value ofznt anji,

(znt anji)(k) = z
(k)
nt a

(k)
njit (25)

with

a
(k)
njit =

p(i | j, |yn|, t)(k) p(xnj | yni, t)(k)

|yn|∑
i′=0

p(i′ | j, |yn|, t)(k) p(xnj | yni′ , t)(k)

(26)

Note that Eq. (26) is just a component-conditional version of Eq. (11).
The M step now includes an updating rule for the mixture coefficients,

p(t)(k+1) =
1
N

N∑

n=1

z
(k)
nt ∀t (27)

and component-conditional versions of Eq. (12) and (13):

p(i | j, |y|, t)(k+1) =

N∑
n=1

j≤|xn|
|yn|=|y|

z
(k)
nt a

(k)
njit

|y|∑
i′=0

N∑
n=1

j≤|xn|
|yn|=|y|

z
(k)
nt a

(k)
nji′t

∀t, i, j and|y| (28)

and

p(u | v, t)(k+1) =

N∑
n=1

|xn|∑
j=1

xnj=u

|yn|∑
i=0

yni=v

z
(k)
nt a

(k)
njit

∑
u′∈X

N∑
n=1

|xn|∑
j=1

xnj=u′

|yn|∑
i=0

yni=v

z
(k)
nt a

(k)
njit

∀t, u andv. (29)

The initialisation technique for the M2 model can be easily extended to the mixture
case; i.e. by using a solution from a simpler mixture of IBM1 models.

3.2 Viterbi Alignment

In Eq. (1), we introduced the concept of alignment as an assignment between source
and target words, more precisely between source and target positions. However, this
alignment information was missing in the translation process, and we had to marginalise
over all possible values of the alignment variable.
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In practise, we are interested in the most probable alignment, also known as the
Viterbi alignment,

â = argmax
a

p(x, a | y; Θ). (30)

Assuming a conventional M2 model, Eq. (30) can be trivially maximised

â = argmax
a

|x|∏

j=1

max
aj

p(aj | j, |y|) p(xj | yaj ). (31)

In other words, the Viterbi alignment for the M2 model is computed as a local maximi-
sation for each source position, being its asymptotic costO(|x| · |y|).

Nevertheless, the computation of the Viterbi alignment forthe M2 mixture model is
approximated by maximising over the components in the mixture,

â ≈ argmax
a

max
t=1,...,T

p(t)
|x|∏

j=1

max
aj

p(aj | j, |y|, t) p(xj | yaj , t) (32)

being its asymptotic costO(T · |x| · |y|).

4 Evaluation Metrics

Word alignment is considered to be a complex and ambiguous task [18], and therefore
we need an annotation scheme that allows ambiguous alignments to be defined. The
experts conducting the annotation process are permitted touse two types of alignments:
S (sure) andP (probable), such thatS ⊆ P . Both of them may contain many-to-one
and one-to-many relationships.P alignments are specially useful in cases like idiomatic
expressions, free translations and missing function words.

Given a Viterbi alignmentA defined as

A = {(j, aj) | 1 ≤ aj ≤ |y|} ∀j 1 ≤ j ≤ |x| (33)

where the NULL alignments has been intentionally left out ofthe evaluation, precision
and recall measures can be computed

recall=
|A ∩ S|
|S| , precision=

|A ∩ P |
|A| (34)

as well as the alignment error rate (AER) [9] that is related to the well-known F-measure

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S| (35)

These definitions of precision, recall and AER are based on the assumption that a
recall error can occur only if anS alignment is not found and a precision error can occur
only if the found alignment is not evenP .

AER has been widely used in the scientific community to evaluate word alignment
quality until very recently [9–13,19]. However in [20], Fraser and Marcu claim that
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AER, though derived from the F-measure, does not penalise unbalanced precision and
recall, whereS ⊂ P . As a result, AER is low correlated with translation quality, as pre-
viously reported in [21]. For this reason, they suggest to use anα-optimised F-measure
that controls the contribution of precision and recall,

F-measure(α) =
precision· recall

α · recall+ (1− α) · precision
(36)

so that this metric is highly correlated with SMT performance.

5 Corpora

The corpus employed in the experiments was the French-English Hansard task consist-
ing of the debates of the Canadian parliament. This corpus isone of the resources that
were used during the word alignment shared task organised during the HLT/NAACL
2003 workshop on “Building and Using Parallel Texts” [22].

The independent test set is that defined in [23] which was manually labelled by two
annotators. Each annotator comes up with aS andP alignment set. TheS alignment
sets from each annotator are intersected to defined the referenceS alignment set, while
the referenceP alignment set is the result of the union of theP alignment sets from
both annotators. The definition of theS andP alignment sets in this way guarantees
an alignment error rate of zero percent when we compare theS alignments of each
annotator with the reference alignment. The corpus statistics are shown in Table 1.

Table 1. Statistics on the French-English Hansard task (K denotes×103, andM denotes×106).

Training set Trial set Test set
Fr En Fr En Fr En

sentence pairs 1.1M 37 447
average length 20 17 19 17 17 15
vocabulary size 87K 68K 0.3K 0.3K 1.9K 1.7K
running words 24M 20M 0.7K 0.7K 7.8K 7.0K
singletons 27K 20K 0.3K 0.2K 1.3K 1.1K

6 Experimental Results

The objective of these experiments is to study the evolutionof AER andα-optimised F-
measure on the Hansard task as a function of the number of components in the M2 mix-
ture model. The results with the GIZA++ toolkit are for sanity check reasons. Smooth-
ing parameters were manually tuned on the trial partition tominimise AER.

Table 2 presents AER figures on the test partition for M2 mixture model. Each
number in Table 2 is an average over values obtained from10 randomised initialisation,
that are used to estimate confidence intervals computed as twice the standard deviation.
These experiments were performed for both directions, English-French (En-Fr) and
French-English (Fr-En) and varying the number of components in the mixture model
(T = 1, 2, 3). Experiments beyond 3 components per mixture were not run because of
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Table 2. AER figures on the test partition of the Hansard corpus for theM2 mixture model
varying the number of components in the mixture (T = 1, 2, 3) and the conventional M2 model
implemented in the GIZA++ toolkit.

AER GIZA++ 1 2 3

Fr-En 20.0 19.6 19.0± 0.1 18.8±0.1
En-Fr 18.3 17.6 17.2± 0.1 16.8±0.1

Table 3. F-measure (α = 0.2) figures on the test partition of the Hansard corpus for the M2mix-
ture model varying the number of components in the mixture (T = 1, 2, 3) and the conventional
M2 model implemented in the GIZA++ toolkit.

F-measure GIZA++ 1 2 3

Fr-En 85.5 86.1 86.6±0.2 86.8± 0.1
En-Fr 85.8 86.6 87.1±0.1 87.4± 0.1

memory requirements. The number of iterations per model wasmix 15 25 for the M2
mixture model. Viterbi alignments were calculated according to Eq. (32).

In Table 2, there is a statistically significant improvementwhen we go from the con-
ventional single-component M2 model to the multiple-component M2 mixture model
for both language directions. Besides, the decrease in AER on the English-French di-
rection from two to three components is also statistically significant.

To have a broader view of the benefits and properties of the models in question,
we decided to carry out an evaluation in terms ofα-optimised F-measure shown in
Table 3. According to [20] and being aware of the differencesbetween our work and
that presented in [20], we setα = 0.2 in order to compute the corresponding F-measure
that would be fairly correlated with the performance of phrasal SMT performance.

Similarly to the AER results in Table 2, the computed F-measure shows that there
is a significant improvement when we compare the conventional M2 model to the
multiple-component M2 mixture model. However, the small difference between two
and three components in terms of AER is diminished in the evaluation with F-measure.
In any case, the interpretation of the figures in Table 3 foresees an improvement in trans-
lation quality if we train a phrase-based SMT system with theViterbi alignments of the
multiple-component M2 mixture model, instead of the conventional M2 model. This
hypothesis has to be corroborated with translation experiments on the Hansard corpus.

7 Conclusions and Future Work

In this paper, we have revisited the M2 mixture model to perform an alternative eval-
uation based on Viterbi alignment quality. AER and F-measure results reported on a
large-scale shared task, as the Hansard corpus, unveil statistically significant improve-
ments of the multiple-component M2 mixture model over the conventional M2 model.

These encouraging results suggest the necessity of furtherevaluation for the M2
mixture model. This further evaluation would entail the training of a phrase-based SMT
system using word alignments supplied by the M2 mixture model. To this purpose, we
can employ the publicly available Moses toolkit [24], whichimplements a state-of-the-
art phrase-based SMT system, and study the evolution of the translation quality of the
resulting system as a function of the number of components inthe M2 mixture model.
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These results would corroborate the relation between alignment quality and translation
quality, demonstrating so the appropriateness of finite mixture modeling in SMT.

Alternatively, it would be interesting to develop mixture extensions of superior IBM
models, like Model 4 and 5, or the log-linear Model 6 [9] to fairly valorate the contri-
bution of mixture modeling to state-of-the-art alignment results.
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