
Integrating Formal Approaches and Simulation to
Improve Reliability and Correctness of Web Services

George Eleftherakis1 and Ognen Paunovski2

1 City College, 13, Tsimiski str., 54624 Thessaloniki, Greece

2 South East European Research Centre, 17, Mitropoleos str., 54624 Thessaloniki, Greece

Abstract. The emerging web service paradigm offers an innovative and prac-
tical platform for business to business collaboration and enterprise information
systems integration. A methodology for modelling web service systems based on
an incremental and iterative approach integrating formal techniques and simula-
tion is presented. This disciplined approach focuses on improving the reliability
and correctness of the system under development. Using X-machines as the core
design technique it offers intuitive mapping of BPEL specification. At the same
time it enforces continuous verification and testing of components throughout the
process. Blending this formal approach with simulation it allows the informal
verification of complex service compositions in cases where formal verification
is impossible or impractical. The applicability of the methodology is practically
demonstrated through a typical web service case study.

1 Introduction

The future interoperation between network applications will be based heavily on the
concept of Web Services. Web Services (WS) as self-contained software components
aim to provide seamless machine to machine interoperation in network applications.
This new paradigm is of paramount importance for business to business collaboration
and enterprise information systems integration. This is primarily due to the broad range
of applicability and flexibility of the architecture as well as the opportunity to facilitate
introduction of novel functionalities which can be achieved through service collabora-
tion. This collaboration between the services creates a framework for combination of
existing services in order to achieve a desired business process. Thus the elementary
services may form more complex composite services.

However as the complexity of web services increases, there is a need to ensure that
they behave correctly. Therefore the elementary services need to satisfy several crite-
ria. First of all they need to meet the requirements and satisfy any necessary properties
which are part of its design objectives. Additionally the implementation of the service
should follow the design and be tested in order to prove its correctness. In this context
it is argued that the use of formal methods can achieve (to some extend) this goal in all
phases of system development, modelling, verification and testing [10]. However ap-
plying formal verification to composite web services is not possible in some cases due

Eleftherakis G. and Paunovski O. (2008).
Integrating Formal Approaches and Simulation to Improve Reliability and Correctness ofWeb Services.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
180-189
DOI: 10.5220/0001740701800189
Copyright c© SciTePress

to the complexity of the composition. Furthermore in some cases while formal verifi-
cation may be possible it requires too much time and effort which makes it completely
impractical.

This is in fact why an informal language is commonly used to specify composi-
tions of web services. The Business Process Execution Language for Web Services
(BPEL4WS or BPEL) [1] in recent years has become an industrial standard for speci-
fying web service compositions. Nevertheless while BPEL isintuitive and easy to use
it lacks the capability to ensure “correctness” of the design. A possible solution to this
problem could be achieved by mapping a BPEL process specification to a language
with formally defined semantics (e.g. Petri net, state machines, process algebras etc.).
This approach has several advantages. By mapping a BPEL specification to a formal
language, a formal semantics of the BPEL could be provided [12]. Also, all static and
dynamic analysis techniques and tools developed for the formal method can be ex-
ploited in the context of BPEL processes improving the confidence of the correctness
of the final product.

In this paper we use a formal method, namely X-machines and its extension Com-
municating X-machines, to capture a BPEL process specifications. The chosen formal
method closely suits the needs of component-based development (like in the case of
web services) while being practical at the same time. Furthermore we present a disci-
plined methodology offering iteratively incremental development of complex service
compositions. The proposed methodology utilises formal modelling and verification to
avoid any flaws in the early stages of the development of services together with a for-
mal testing strategy to discover any undiscovered flaws in later stages. These formal
techniques are coupled with informal verification steps provided through simulation
(animation). The simulation is needed in order to informally verify complex models
with dynamic communication which cannot be formally verified. However at the same
time the animation of the model is a step which provides immediate feedback to the de-
velopment team and facilitates effective communication ofthe formal experts and the
people (users and/or developers) with no formal background. All these features make
the proposed methodology practical. This way it makes the best use of the development
effort to achieve highest confidence in the quality of the developed services.

In the following section several formal approaches used in web service development
are discussed with the focus on the one used in this paper. Themajor idea and a brief
description of the activities in the proposed methodology is elaborated in section 3. We
demonstrate the approach taken to implementing each activity in the methodology with
the same example throughout. Finally, a discussion on the methodology and further
work to be carried out is presented.

2 Web Services and Formal Methods

There are several techniques and tools that are able to transform a process specified in
BPEL into a formal model for the purpose of verification. In this step the formal model
is usually transformed into a version of finite state machines (FSM) and automata [7],
a version of Petri nets, process algebras [14] or other formal methods. The second step

181

is to represent the formal model (e.g. FSM) to an appropriatelanguage for a model
checker or any other tool offering verification for the model[11].

In this process the emphasis is on the verification of web service specification, how-
ever there is very little ongoing research on the testing of web services [3]. There are
even fewer attempts to combine testing techniques with verification techniques, like the
work described in [6], where the focus is on testing of composite web services. How-
ever there is a lack of methodologies integrating these formal techniques into a practical
process.

The proposed methodology is addressing the issues discussed above through a dis-
ciplined process which utilises a formal approach (X-machines) and integrates many
formal techniques with informal activities (simulation).In essence X-machines is a for-
mal method that enhances the class of FSM by introducing memory and functions. An
X-machine is defined by an input stream, an output stream, a set of values that describe
its memory structure, a set of states, a state transition setand a set of functions. Labels
in the transitions are functions which are triggered through an input symbol and a mem-
ory instance to produce an output symbol and a new memory instance. A deterministic
X-machine [5] is an 8-tupleX = (Σ, Γ, Q, M, Φ, F, q0, m0) where:

– Σ andΓ are the input and output alphabets respectively.
– Q is the finite set of states.
– M is the (possibly) infinite set called memory.
– Φ, thetypeof the machineX , is a set of partial functionsϕ that map an input and

a memory state to an output and a possibly different memory state,ϕ : Σ × M →
Γ × M .

– F is the next state partial function,F : Q × Φ → Q, which given a state and a
function from the typeΦ determines the next state.F is often described as a state
transition diagram.

– q0 andm0 are the initial state and initial memory respectively.

X-machines can be applied in similar cases as Statecharts and other similar nota-
tions, such as SDL for example. However, X-machines have several significant advan-
tages. First, they provide a mathematical modelling formalism for the system, which in
turn allows X-machine specification to be model checked [2].Thus, facilitating the ver-
ification of desired model properties. Moreover, X-machines offer a strategy to test the
implementation against the model which guarantees to determine correctness if certain
assumptions in the implementation hold [5].

In addition, communicating X-machines provide a notation allowing to define in-
teraction and communication between individual X-machinemodels [8]. Functions can
send messages to input streams of other X-machine components which are consumed
by local functions. A Communicating X-machine SystemZ as defined in [8] is a 2-tuple
Z = ((Ci)i=1,...,n, CR) where:

– Ci is thei-th Communicating X-machine component, and
– CR is a relation defining the communication among the components,CR ⊆ C ×

C andC = {C1, . . . , Cn}. A tuple (Ci, Ck) ∈ CR denotes that the X-machine
componentCi can output a message to a corresponding input stream of X-machine
componentCk for anyi, k ∈ {1, . . . , n}, i 6= k.

182

A communicating X-machine model consists of several X-machine models that are
able to interact by exchanging messages. The structureCR defines a directed graph
which statically determines the direction of messages between components. An X-
machine component is defined as an X-machine in which the functions do not only
read and write from/to their input and output streams respectively but also read and
write from/to streams that are used to communicate with other X-machine components.
More analytically, functions are of the form:ϕi ((σ)j , m) = ((γ)k, m′) where(σ)j

means that input is provided by machineCj whereas(γ)k denotes an outgoing mes-
sage to machineCk. If i = j and/ori = k, that means that machineCi reads from its
standard input stream and/or writes to its standard output stream.

In practice, it is found that the development of a communicating system model can
be based on a number of well-defined distinct steps that are described in detail in the
following sections. To each of the steps a set of appropriatetools, such as an interchange
description language, parser, animator, test set generator etc., is employed in order to
make the methodology applicable in real cases [9].

3 Methodology

Communicating X-machines is viewed as a modelling method, where a complex sys-
tem can be decomposed in small components (elementary services) modelled as simple
X-machine models, thus model interacting component-basedsystems. The communi-
cation of all these components is specified separately in order to form the complete
system as a communicating X-machine model which corresponds to a composite web
service. This implies a modular bottom-up approach and supports an iterative gradual
development. It also facilitates the reusability of existing X-machine models, making
the management of the whole project more flexible and efficient. Thus achieving the
completion of the entire model with lower cost and less development time.

The communicating X-machine method supports a disciplinedmodular develop-
ment, allowing the developers to decompose the system underdevelopment into com-
municating components. We suggest that the development of asystem model can be
mapped into the following well-defined distinct actions that are graphically illustrated
in figure 1:

1 Analyze the existing business process in order to determine the web service com-
position:

• description of the tasks performed by individual web services,
• description of the communication (interaction) between the web services,
• description of the expected behaviour of the composed web service.

2 Develop a set of test scenarios (simulation conditions) which will validate the be-
haviour of the service composition. At the same time the set of properties that each
of the services should satisfy need to be derived.

3 Develop X-machine models for each independent service in the composition.
4 Code the X-machine model into a language (XMDL) that facilitates the subsequent

steps.

183

Business Process

Services
Description

Communication
Description

Expected
BehaviourServices X-machine

Models (visual)

Modelling

Verification

Verified Models

Communicating
X-machine Model

Modelling

Analysis

Simulation
Scenarios

Analysis

Animation
(simulation)

Outcomes

Analysis

Result

Services X-machine
Models (XMDL)

Coding

Simulation Model

Implementation

Model Properties

Analysis

Test Suite

Informal
Verification

< >
< >
< >
< >
< >
< >
< >
< >
< >

< >

< >

EMPTY

NON_EMPTY

FULL

 add_part

 become_empty

 remove_part

 add_part

 become_full

M=(set_of (ITEM_TYPE, ID), capacity)

 remove_part

 ignore_add

Buffer

EMPTY

NON_EMPTY

FULL

 add_part

 become_empty

 remove_part

 add_part

 become_full

M=(set_of (ITEM_TYPE, ID), capacity)

 remove_part

 ignore_add

Buffer

part

Input buffer

Processing Machine

Output buffer

part

Input Controller (queue) Output Controller

CONTROLLING

 take_out_first

 update_memory

ctrl_in
buf_in mach

mach buf_in

 part

 part

in_buffer,not_empty
give_me_one

BLOCKED

READY

PROCESS_COMPLETED

PROCESSING

 unblock

request

start

reset

 block

 end_process

mach
ctrl_in actrl_in

 buf_in ctrl_out

ctrl_out

buf_out

ctrl_out

buf_out

ctrl_out

EMPTY

NON_EMPTY

FULL

 add_part
 become_empty remove_part

 add_part

 become_full

buf_in

 remove_part

 ignore_add

ctrl_in

ctrl_in

ctrl_in mach

mach

ctrl_in

ctrl_in

ctrl_in

mach

EMPTY

NON_EMPTY

FULL

 add_part
 become_empty

 remove_part

 add_part

 become_full

buf_out

 remove_part

ignore_add

ctrl_out

ctrl_out

ctrl_out ctrl_out

h

ctrl_out

hmach

ctrl_out mach

mach

operation_push,

operation_pop

CHECKING

 forth_coming_will_block

 increase ctrl_out

buf_out

 mach mach

decrease

buf_out mach

 mach mach

 forth_coming_will_not_block

full,

not_full
on_process

22

1

3

4

5

6

9

8

7

-Activity, operation at a particular step

-Transition flow forward

-Transition flow backward (feedback)

-Artifact (single or multiple instances)

5

Fig. 1.The proposed development methodology.

• Simulate the X-machine model to rapidly verify (informally) the expected be-
haviour and communicate the model to the users to detect errors in the design
in the early stages of the development.

5 Use the formal verification technique (model checking) forX-machine type models
in order to increase the confidence that the proposed model has the desired charac-
teristics.

6 Develop communicating X-machine model which describes the way in which indi-
vidual services communicate and interact.

7 Implement the communicating X-machine model in a form which could be ani-
mated, used in a simulation study.

8 Execute the test scenarios (defined in step 2) through execution of simulation study
of the implemented model.

9 Analyze the results of the simulation on order to determinewhether the service
composition behaved as intended.

The process described above can be used to refine the resulting model following
an iterative process. Towards this end a set of appropriate tools has been developed
and have been integrated under a suite (called X-System), tosupport modelling with
X-machines [9]. X-System can be employed to facilitate the activities of the above
methodology making it applicable in real cases. Coding of X-machine model is car-
ried out using the X-machine Description Language (XMDL) notation which acts as

184

an interchange language for describing X-machine models and its corresponding tools
(syntax and type checker, visual editor, compiler, animator) [9]. Through the animation,
it is possible for the developers to informally verify that the model corresponds to the
actual system under development. The animation can also be used to demonstrate the
model to the end-users allowing them to identify any misconceptions regarding the user
requirements. After that formal verification of X-machine models is achieved with the
use of an automated tool, a model checker. Model checking of X-machine models is
supported byXmCTL . This technique enables the designer to verify the developed
model against temporal logicXmCTL formulas which express the properties that the
system should have. Following the implementation of the service, the test-cases are au-
tomatically derived using the X-machine test case generator. This allows the use of the
formal testing strategy to test the implementation and prove its correctness with respect
to the X-machine model. Once the individual models are verified, the communication
and interaction of the components can be established. This is done in XMDL-c notation
and its corresponding tools. Using this framework the simulation scenarios are executed
to derive informal validation of the expected behaviour.

In the section that follows a web services example is used as avehicle of study
illustrating the proposed methodology and its applicability to composite web services,
explaining in practice how each activity is carried out.

4 Case Study

In order to demonstrate the modelling of web services using X-machines, we have ap-
plied our methodology on the Virtual Travel Agency (VTA) case study [7]. In the VTA
problem domain the goal of the VTA service is to provide a flight and hotel booking for
a user. Once the VTA receives a reservation request from a user, it contacts the flight ser-
vice in order to get an offer for the available flights in the specified period and location.
After that it contacts the hotel service for the available hotel offers. When it receives the
offers the VTA contacts the user with the available offers awaiting its response. If the
user accepts the offer the VTA informs the flight and hotel services in order to obtain
the tickets and provides them to the user. Otherwise (if userrejects the offer) the VTA
rejects the hotel and flight service offers. In the case when no offer is available, either
for the flight or hotel, the VTA informs the user that there is no offer available for the
requested time and location.

First of all the analysis of the description of the case studyproduces the three ex-
pected documents. A description of the identified services (i.e. flight, hotel and vta)
and their expected behaviour, a description of the way theseservices communicate and
finally the description of the expected system behaviour. Using these documents we
construct the needed simulation scenarios and we specify each model’s properties as
temporal logic formulas. Then we start modelling each service, using the first docu-
ment, as X-machine models.

In figure 2 the state transition diagram of the X-machine model of the flight service
is depicted together with the BPEL description of the service. This figure clearly depicts
the intuitive modelling of the service as an X-machine modeland demonstrates the
expressional power of the X-machine to model web services. The extra benefit using

185

No Yes

NA FAILURE

SUCCESS

NA FAILURE

[RECEIVE]
Flight Request

[SWITCH]
isAvailable

[INVOKE]
Flight NA

Flight Service X-Machine modelFlight Service BPEL model

[INVOKE]
Flight Offer

[PICK]

[ON MESSAGE]
Flight Ack

[ON MESSAGE]
Flight nAck

[INVOKE]
Flight Ticket

WAITING

FLIGHT_NA FLIGHT_AVAILABLE

WAITFAILURE

SUCCESS FLIGHT_ACCEPTED

flight_offer_available

reset
reset

invoking_flight_offerinvoking_flight_na

invoking_flight_ticket

receiving _flight_ackreceiving_flight_nack

PROCESSING

receiving_flight_request

flight_offer_na

Fig. 2. Flight service in BPEL and as an X-machine model.

X-machines compared with other formal methods is that apartfrom the intuitive way
to model the control (dynamic behaviour of the service) you can model the data (static
part of the service). Using mathematical notation, the definition of the flight service is
as follows:

– The set of inputs isΣ = BPEL_element× variable whereBPEL_element =
{ invoke, receive, on_message, switch, reset } andvariable =
variable_name × value, wherevariable_name is a basic type (could be any
string) andvalue is either a natural number, or a boolean, or an abstract represen-
tation of date and time as time slots (time_slots). The set of outputs is
Γ ={flight_requested, flight_available, ...}.

– The set of states isQ ={ waiting, processing, flight_available,
flight_na, failure, wait, flight_accepted, success}.

– The memory holds a set of all the available flights and the flight that was requested.
M = (flight_numbers× time_slots, (flight_numbers,time_slots)),
with flight_numbers representing all possible flight numbers.

– The type of the machineΦ is a set of the transition labels in figure 2.

Finally, the functionsϕ ∈ Φ of the X-machine need to be defined. The next ac-
tivity is to code the model to XMDL. In order to demonstrate XMDL the function
flight_offer_available is defined in XMDL as:

#fun flight_offer_available(((?bpel,(?F,?T))),(?av_flights,?fl))=
if ?bpel = switch and (?F,?T) belongs ?av_flights
then ((flight_available), (?av_flights),(?F,?T)).

Using XMDL as the modelling language, X-System allows the animation of X-
Machine models. This is an important activity that makes themethodology practical
since it enhances the communication overall (developer to developer and developer to
client) and provides early and cost effective feedback fromthe actual users although
they have no experience in formal models.

186

vta

�ight hotel

user

WAITING PROCESSING OFFER_RECEIVED

WAIT

SUCCESS

OFFER_REJECTED

TICKET_RECEIVED

FAILURE

OFFER_ACCEPTED

OFFER_NOT_AVAILABLE

NA_FAILURE

receiving_offer_request

user

vta

vta

vta

invoking_flight_request invoking_hotel_request

invoking_offer

reset

reset

reset

receiving_flight_offer

receiving_flight_na

invoking_na

invoking_na

receiving_hotel_na

invoking_flight_nack

invoking_hotel_ack

invoking_flight_nack

invoking_ticket

receiving_offer_nack

receiving_offer_ack

invoking_flight_ack

invoking_hotel_nack

receiving_flight_ticket

receiving_hotel_offer

receiving_hotel_ticket

WAITING

FLIGHT_NA FLIGHT_AVAILABLE

WAITFAILURE

SUCCESS FLIGHT_ACCEPTED

flight_offer_available

reset
reset

invoking_flight_offerinvoking_flight_na

invoking_flight_ticket

receiving_flight_ackreceiving_flight_nack
vta

vta

vta

vta vta

vta

WAITING

HOTEL_NA HOTEL_AVAILABLE

WAITFAILURE

SUCCESS HOTEL_ACCEPTED

hotel_offer_available

reset
reset

invoking_hotel_offerinvoking_hotel_na

invoking_hotel_ticket

receiving_hotel_ackreceiving_hotel_nack

PROCESSING

receiving_hotel_request

hotel_offer_na

INACTIVE WAIT

OFFER_RECEIVEDOFFER_ACCEPTED

NA_FAILURE

SUCCESS

requesting_offer receiving_na

receiving_offerreset

reset
invoking_offer_ackreceiving_ticket

invoking_offer_nack

PROCESSING

receiving_flight_request

flight_offer_na

user user

flight

hotel

hotel

flight

flight

flight

hotel

flight

hotel

user

hotel

user

user

hotel

flight

user

vta vta

vta

flight

vta

vta

vta

vta

vta

vta

Fig. 3. The overall system as a communicating X-machine model.

However there are properties of the system that the designerwould like to prove and
not demonstrate their existence in the X-machine model. Theformal verification tech-
nique for X-machine models enables the designer in the following activity to formally
verify the developed model against temporal logic formulasthat express the properties
that the system should have.

The next step is to specify the communication between the X-machine models of the
services and this way create the communicating X-machine model of the system under
development. One more benefit is that it is possible to model the environment (i.e. the
user) as an X-machine achieving to model the complete system. Graphically on the state

187

transition diagram we denote the acceptance of input by a stream other than the standard
by a solid circle along with the nameCj of the communicating X-machine component
that sends it. Similarly, a solid diamond with the nameCk denotes that output is sent
to theCk communicating X-machine component. The complete model is depicted in
figure 3 providing a flexible and modular design of the complete system where clearly
the services of the system are represented together with theneeded communication to
create the expected system behaviour.

XMDL has been extended (XMDL-c) in order to code communicating components.
XMDL-c provides syntax that facilitates the definition of the communicating functions.
CommX-System is a tool created to support modelling and simulation of Communi-
cating X-machines [8]. CommX-System takes as input all the XMDL files describing
the services together with the XMDL-c file that describes thecommunication between
them, and outputs an executable file corresponding to the overall system, offering a
simulation model of it. The following activity is to executethe simulation scenarios
and compare the outcome with the expected behaviour of the system. The results of
this analysis will provide feedback to the developers indicating the “correctness” of the
model. Taking this into account further iterations maybe needed to improve the model.

5 Conclusions and Further Work

We have presented a methodology for developing enterprise systems following a web
service architecture using X-machines formal method. X-machines attracted many re-
searchers interest over the last fifteen years [4] mainly because of the intuitiveness in
modelling reactive systems and the additional features they provide in terms of testing
and verification. The methodology and its accompanying tools impose an incremental
bottom-up practical development.

The proposed methodology following a holistic approach, integrates formal tech-
niques focusing on the improvement of reliability and correctness of composite web
services. It offers a disciplined approach exhibiting the following key features: (a) It is
component based and architecture centric. (b) It uses a formal method (X-machines) as
the core design tool that offers a diagrammatic notation andtool support. This formal
model offers an intuitive mapping of BPEL notation to a formal one. (c) It enforces
continuous verification and testing of components throughout the process to achieve
highest confidence in the quality of the developed components. (d) It employs simula-
tion allowing the informal verification of complex service compositions in cases where
formal verification is impossible or impractical. (e) Design is incremental and iterative
via a prescribed sequence of design activities within a cyclic process.

The use of the proposed methodology on the case study demonstrated promising re-
sults. However, there are several issues that could be potentially improved. Future work
will be concentrated on the automatic translation of BPEL specifications to X-machine
models. In addition the model checking technique could be further extended in order to
facilitate the formal verification of communicating X-machine models. Research is also
conducted towards the establishment of a successful testing strategy for the communi-
cating X-machine models, that is expected also to offer the ability to formally extract
simulation scenarios in order to follow a disciplined approach in the informal verifica-

188

tion through simulation. Finally, on going research is addressing the issue of detecting
unexpected emergent behaviours in automatic web services compositions [13].

References

1. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K. Liu, V. Mehta,
S. Thatte, P. Yendluri, A. Yiu, and A. Alves. Web services business process execution lan-
guage, version 2.0, December 2005.

2. G. Eleftherakis.Formal Verification of X-machine Models : Towards Formal Development
of Computer-Based Systems. PhD thesis, University of Sheffield, UK, 2003.

3. Lars Frantzen, Jan Tretmans, and René de Vries. Towards model-based testing of web ser-
vices. In Antonia Bertolino and Andrea Polini, editors,in Proceedings of International
Workshop on Web Services Modeling and Testing (WS-MaTe2006), pages 67–82, Palermo,
Sicily, Italy, June 9th 2006.

4. M. Holcombe. What are X-machines?Formal Aspects of Computing, 12(6):418–422, 2000.
5. M. Holcombe and F. Ipate.Correct Systems: Building a Business Process Solution. Springer

Verlag, London, 1998.
6. Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chen. Automated model checking

and testing for composite web services. InProceedings of 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2005), page 300307, Seattle,
WA, USA, May 2005.

7. R. Kazhamiakin and M. Pistore. Parametric communicationmodel for the verification of
BPEL4WS compositions. In M. Bravetti, L. Kloul, and G. Zavattaro, editors,Proceedings
of the 2nd International Workshop on Web Services and FormalMethods, volume 3670 of
Lecture Notes in Computer Science, pages 318–332, Versailles, France, September 2005.

8. P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: a practical approach
for formal and modular specification of large systems.Information and Software Technology,
45(5):269–280, April 2003.

9. P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing Tools for Formal Methods. In9th
Panhellenic Conference on Informatics, pages 625–639, Thessaloniki, November 2003.

10. B. Meyer. The Grand Challenge of Trusted Components. In25th International Conference
on Software Engineering, pages 660–667, Portland, Oregon, May 2003.

11. S. Nakajima. Lightweight formal analysis of web serviceflows. Progress in Informatics,
1(2):57–76, November 2005.

12. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and H.M.W.
Verbeek. Formal semantics and analysis of control flow in ws-bpel. Technical Report Report
BPM-05-15, BPM Center, 2005.

13. O. Paunovski, G. Eleftherakis, and A.J. Cowling. Framework for Exploring Emergence
within Complex Systems. InProc. 2nd Annual SEERC Doctoral Conference, July 2007.

14. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services using
process algebra. InProceedings of the IEEE International Conference on Web Services,
pages 43–51, San Diego, CA, USA, June 2004. IEEE.

189

