Integrating Formal Approaches and Simulation to
Improve Reliability and Correctness of Web Services

George Eleftherakisand Ognen Paunovski
1 City College, 13, Tsimiski str., 54624 Thessaloniki, Greece

2 South East European Research Centre, 17, Mitropoleos str., 54624 Thessaloniki, Greece

Abstract. The emerging web service paradigm offers an innovative and prac-
tical platform for business to business collaboration and enterprise information
systems integration. A methodology for modelling web service systems based on
an incremental and iterative approach integrating formal techniques and simula-
tion is presented. This disciplined approach focuses on improving the reliability
and correctness of the system under development. Using X-machines as the core
design technique it offers intuitive mapping of BPEL specification. At the same
time it enforces continuous verification and testing of components throughout the
process. Blending this formal approach with simulation it allows the informal
verification of complex service compositions in cases where formal verification
is impossible or impractical. The applicability of the methodology is practically
demonstrated through a typical web service case study.

1 Introduction

The future interoperation between network applications will be based heavily on the
concept of Web Services. Web Services (WS) as self-contained software components
aim to provide seamless machine to machine interoperation in network applications.
This new paradigm is of paramount importance for business to business collaboration
and enterprise information systems integration. This is primarily due to the broad range
of applicability and flexibility of the architecture as well as the opportunity to facilitate
introduction of novel functionalities which can be achieved through service collabora-
tion. This collaboration between the services creates a framework for combination of
existing services in order to achieve a desired business process. Thus the elementary
services may form more complex composite services.

However as the complexity of web services increases, there is a need to ensure that
they behave correctly. Therefore the elementary services need to satisfy several crite-
ria. First of all they need to meet the requirements and satisfy any necessary properties
which are part of its design objectives. Additionally the implementation of the service
should follow the design and be tested in order to prove its correctness. In this context
it is argued that the use of formal methods can achieve (to some extend) this goal in all
phases of system development, modelling, verification and testing [10]. However ap-
plying formal verification to composite web services is not possible in some cases due

Eleftherakis G. and Paunovski O. (2008).

Integrating Formal Approaches and Simulation to Improve Reliability and Correctness ofWeb Services.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
180-189

DOI: 10.5220/0001740701800189

Copyright © SciTePress



181

to the complexity of the composition. Furthermore in somsesawhile formal verifi-
cation may be possible it requires too much time and effoitlvimakes it completely
impractical.

This is in fact why an informal language is commonly used tec#fy composi-
tions of web services. The Business Process Execution laayggfor Web Services
(BPEL4WS or BPEL) [1] in recent years has become an industidgadard for speci-
fying web service compositions. Nevertheless while BPEintsitive and easy to use
it lacks the capability to ensure “correctness” of the desfypossible solution to this
problem could be achieved by mapping a BPEL process speduificep a language
with formally defined semantics (e.g. Petri net, state ma&yiprocess algebras etc.).
This approach has several advantages. By mapping a BPEI[fispéen to a formal
language, a formal semantics of the BPEL could be provid2fl |iso, all static and
dynamic analysis techniques and tools developed for thmdbmethod can be ex-
ploited in the context of BPEL processes improving the canfad of the correctness
of the final product.

In this paper we use a formal method, namely X-machines anekiension Com-
municating X-machines, to capture a BPEL process spedditatThe chosen formal
method closely suits the needs of component-based develdpiiike in the case of
web services) while being practical at the same time. Fumbee we present a disci-
plined methodology offering iteratively incremental dgment of complex service
compositions. The proposed methodology utilises formalafilng and verification to
avoid any flaws in the early stages of the development of seswiogether with a for-
mal testing strategy to discover any undiscovered flawstar Istages. These formal
techniques are coupled with informal verification stepsvighed through simulation
(animation). The simulation is needed in order to informaikrify complex models
with dynamic communication which cannot be formally vedfielowever at the same
time the animation of the model is a step which provides imatedeedback to the de-
velopment team and facilitates effective communicatiothefformal experts and the
people (users and/or developers) with no formal backgroAhdhese features make
the proposed methodology practical. This way it makes tiseuse of the development
effort to achieve highest confidence in the quality of thealigped services.

In the following section several formal approaches usedsh service development
are discussed with the focus on the one used in this papem&jer idea and a brief
description of the activities in the proposed methodolagsiaborated in section 3. We
demonstrate the approach taken to implementing eachtgdtithe methodology with
the same example throughout. Finally, a discussion on thaadelogy and further
work to be carried out is presented.

2 Web Services and Formal Methods

There are several techniques and tools that are able tddrema process specified in
BPEL into a formal model for the purpose of verification. liststep the formal model
is usually transformed into a version of finite state machi#SM) and automata [7],
a version of Petri nets, process algebras [14] or other formeéhods. The second step



182

is to represent the formal model (e.g. FSM) to an approptatguage for a model
checker or any other tool offering verification for the mogdl].

In this process the emphasis is on the verification of wehicespecification, how-
ever there is very little ongoing research on the testing @b wervices [3]. There are
even fewer attempts to combine testing techniques witliigation techniques, like the
work described in [6], where the focus is on testing of coniteoseb services. How-
ever there is a lack of methodologies integrating thesedbtethniques into a practical
process.

The proposed methodology is addressing the issues distabsee through a dis-
ciplined process which utilises a formal approach (X-maeh) and integrates many
formal techniques with informal activities (simulatioir).essence X-machines is a for-
mal method that enhances the class of FSM by introducing mearal functions. An
X-machine is defined by an input stream, an output streant,af salues that describe
its memory structure, a set of states, a state transitioarska set of functions. Labels
in the transitions are functions which are triggered thiroag input symbol and a mem-
ory instance to produce an output symbol and a new memorgrinst A deterministic
X-machine [5]is an 8-tupl&X = (X, I, Q, M, D, F, qo, mo) Where:

— XY andI" are the input and output alphabets respectively.

— @ is the finite set of states.

— M is the (possibly) infinite set called memory.

— &, thetypeof the machineX, is a set of partial functiong that map an input and
a memory state to an output and a possibly different mematgst : > x M —

I x M.

— F is the next state partial functiol; : Q x & — @, which given a state and a
function from the typed determines the next statg.is often described as a state
transition diagram.

— qo andmy, are the initial state and initial memory respectively.

X-machines can be applied in similar cases as Statechattsthpr similar nota-
tions, such as SDL for example. However, X-machines haveraksignificant advan-
tages. First, they provide a mathematical modelling forsnafor the system, which in
turn allows X-machine specification to be model checkedT8ls, facilitating the ver-
ification of desired model properties. Moreover, X-machioffer a strategy to test the
implementation against the model which guarantees tomé@tercorrectness if certain
assumptions in the implementation hold [5].

In addition, communicating X-machines provide a notatitlowdang to define in-
teraction and communication between individual X-machirelels [8]. Functions can
send messages to input streams of other X-machine componaith are consumed
by local functions. A Communicating X-machine Syst&mas defined in [8] is a 2-tuple
Z = ((Cy)i=1,...n, CR) where:

.....

— (C} is thei-th Communicating X-machine component, and

— CRis arelation defining the communication among the compaém C C' x
C andC = {C4,...,C,}. Atuple (C;,Ck) € CR denotes that the X-machine
component’; can output a message to a corresponding input stream of Xineac
component, for anyi, k € {1,...,n}, i # k.



183

A communicating X-machine model consists of several X-nr@models that are
able to interact by exchanging messages. The structitedefines a directed graph
which statically determines the direction of messages éetwcomponents. An X-
machine component is defined as an X-machine in which thetibmecdo not only
read and write from/to their input and output streams retpayg but also read and
write from/to streams that are used to communicate withroth@achine components.
More analytically, functions are of the formy; ((0);,m) = ((v)&, m') where(o);
means that input is provided by machiég whereagy); denotes an outgoing mes-
sage to machin€’;. If ¢ = j and/ori = k, that means that machirg reads from its
standard input stream and/or writes to its standard outpedam.

In practice, it is found that the development of a commuimcpgystem model can
be based on a number of well-defined distinct steps that areribed in detail in the
following sections. To each of the steps a set of appropieats, such as an interchange
description language, parser, animator, test set gemagtato is employed in order to
make the methodology applicable in real cases [9].

3 Methodology

Communicating X-machines is viewed as a modelling methdwresa complex sys-
tem can be decomposed in small components (elementargssywodelled as simple
X-machine models, thus model interacting component-bagsgms. The communi-
cation of all these components is specified separately ieraalform the complete
system as a communicating X-machine model which corresptmd composite web
service. This implies a modular bottom-up approach and atpjan iterative gradual
development. It also facilitates the reusability of exigtiX-machine models, making
the management of the whole project more flexible and efficiBimus achieving the
completion of the entire model with lower cost and less dgwelent time.

The communicating X-machine method supports a disciplimediular develop-
ment, allowing the developers to decompose the system uladetopment into com-
municating components. We suggest that the developmensgétam model can be
mapped into the following well-defined distinct actionstthee graphically illustrated
in figure 1:

1 Analyze the existing business process in order to deterthi@ web service com-
position:
e description of the tasks performed by individual web sersjc
e description of the communication (interaction) betweenvleb services,
e description of the expected behaviour of the composed weficse
2 Develop a set of test scenarios (simulation conditionsgivtvill validate the be-
haviour of the service composition. At the same time the Sptaperties that each
of the services should satisfy need to be derived.
3 Develop X-machine models for each independent servidesicdmposition.
4 Code the X-machine model into a language (XMDL) that ftatidis the subsequent
steps.



184

© -Activity, operation at a particular step Business Process
—a— -Transition flow forward Analysis
--#~-Transition flow backward (feedback)
-Artifact (single or multiple instances)

Modelling

Services ~ Communication Expected
Services X-machine Description  Description ~ Behaviour

Models (visual) 1
Coding - Analysis Analysis
Informal | %%

Verification | s - e
S e Modelling
DIV % L Simulation
e | Scenarios
> Soooed

=== Animation =

\ % (simulation) =
EETEE RF

Communicating
X-machine Model

A o g
: [[[ [ [ W0N

Implementation

Services X-machine
Models (XMDL)

Test Suite Verified Models Simulation Model

Fig. 1. The proposed development methodology.

e Simulate the X-machine model to rapidly verify (informalthe expected be-
haviour and communicate the model to the users to deteatsdrthe design
in the early stages of the development.

5 Use the formal verification technique (model checking)Xenachine type models
in order to increase the confidence that the proposed modé¢hbalesired charac-
teristics.

6 Develop communicating X-machine model which describesathy in which indi-
vidual services communicate and interact.

7 Implement the communicating X-machine model in a form Whiould be ani-
mated, used in a simulation study.

8 Execute the test scenarios (defined in step 2) through ta@aaif simulation study
of the implemented model.

9 Analyze the results of the simulation on order to determuhether the service
composition behaved as intended.

The process described above can be used to refine the rgsultidel following
an iterative process. Towards this end a set of appropatis has been developed
and have been integrated under a suite (called X-Systemsyport modelling with
X-machines [9]. X-System can be employed to facilitate thevdies of the above
methodology making it applicable in real cases. Coding ahXchine model is car-
ried out using the X-machine Description Language (XMDLJation which acts as



185

an interchange language for describing X-machine modelstarrorresponding tools
(syntax and type checker, visual editor, compiler, animd€j. Through the animation,
it is possible for the developers to informally verify thaetmodel corresponds to the
actual system under development. The animation can alssdxeto demonstrate the
model to the end-users allowing them to identify any misemtions regarding the user
requirements. After that formal verification of X-machinedels is achieved with the
use of an automated tool, a model checker. Model checking-ofaxhine models is
supported byYmCTL . This technique enables the designer to verify the agped
model against temporal logitmCTL formulas which express the properties that the
system should have. Following the implementation of theiser the test-cases are au-
tomatically derived using the X-machine test case genergiis allows the use of the
formal testing strategy to test the implementation and @its/correctness with respect
to the X-machine model. Once the individual models are \egtjfthe communication
and interaction of the components can be established. §Hirie in XMDL-c notation
and its corresponding tools. Using this framework the satioh scenarios are executed
to derive informal validation of the expected behaviour.

In the section that follows a web services example is used\a=hizle of study
illustrating the proposed methodology and its applicabtth composite web services,
explaining in practice how each activity is carried out.

4 Case Study

In order to demonstrate the modelling of web services usinga<hines, we have ap-
plied our methodology on the Virtual Travel Agency (VTA) eastudy [7]. In the VTA
problem domain the goal of the VTA service is to provide a fligihd hotel booking for
auser. Once the VTA receives a reservation request fronratusentacts the flight ser-
vice in order to get an offer for the available flights in thesified period and location.
After that it contacts the hotel service for the availableghoffers. When it receives the
offers the VTA contacts the user with the available offergitiwg its response. If the
user accepts the offer the VTA informs the flight and hoteVisess in order to obtain
the tickets and provides them to the user. Otherwise (if tejects the offer) the VTA
rejects the hotel and flight service offers. In the case wieeaffer is available, either
for the flight or hotel, the VTA informs the user that there @&saffer available for the
requested time and location.

First of all the analysis of the description of the case stoduces the three ex-
pected documents. A description of the identified services flight, hotel and vta)
and their expected behaviour, a description of the way thesdces communicate and
finally the description of the expected system behaviouimdthese documents we
construct the needed simulation scenarios and we spedfy madel’s properties as
temporal logic formulas. Then we start modelling each serviising the first docu-
ment, as X-machine models.

In figure 2 the state transition diagram of the X-machine nhofithe flight service
is depicted together with the BPEL description of the sexvidis figure clearly depicts
the intuitive modelling of the service as an X-machine maaledl demonstrates the
expressional power of the X-machine to model web servichs. &xtra benefit using



186

Flight Service BPEL model Flight Service X-Machine model

[RECEIVE] receiving_flight_request
Flight Request
WAITING PROCESSING
flight_offer_na flight_offer_available
fswiTcH]

isAvailable [ FLIGHT_NA ][ FLIGHT_AVAILABLE]

reset invoking_flight_na invoking_flight_offer

FAILURE WAIT
[ON MESSAGE]
Flight Ack
receiving_flight_nack receiving _flight_ack

[INVOKE]
SUCCESS FLIGHT_ACCEPTED

Flight Ticket
‘ invoking_flight_ticket

reset

TINVOKE]
Flight NA

O

NA FAILURE [ON MESSAGE]
Flight nAck

NA FAILURE

SUCCESS

Fig. 2. Flight service in BPEL and as an X-machine model.

X-machines compared with other formal methods is that dpam the intuitive way
to model the control (dynamic behaviour of the service) yan model the data (static
part of the service). Using mathematical notation, the defmof the flight service is
as follows:

— The set of inputs i¥ = BPEL_el enent x vari abl e whereBPEL_el ement =
{ i nvoke, recei ve,on_nessage,swi tch, reset } andvari abl e =
vari abl e_name x val ue, wherevari abl e_nane is a basic type (could be any
string) andval ue is either a natural number, or a boolean, or an abstractgepse
tation of date and time as time slots (re_sl ot s). The set of outputs is
I'={f1ight_requested,flight_available,..}.

— The set of states i© ={ wai ti ng, processi ng, fli ght_avail abl e,
flight_na,failure,wait,flight_accept ed,success}.

— The memory holds a set of all the available flights and the ffligét was requested.
M =(flight_nunbers xtime_slots, (flight_nunbers,time_slots)),
with f | i ght _nunber s representing all possible flight numbers.

— The type of the machine is a set of the transition labels in figure 2.

Finally, the functionsp € & of the X-machine need to be defined. The next ac-
tivity is to code the model to XMDL. In order to demonstrate KM the function
flight_of fer_avail abl e is defined in XMDL as:

#fun flight_offer_avail abl e(((?bpel, (?F ?T))), (?av_flights, ?fl))=
if ?bpel = switch and (?F, ?T) belongs ?av_flights
then ( (flight_available), (?av_flights), (?F ?T)).

Using XMDL as the modelling language, X-System allows theration of X-
Machine models. This is an important activity that makesriethodology practical
since it enhances the communication overall (developeeteldper and developer to
client) and provides early and cost effective feedback ftbemactual users although
they have no experience in formal models.



187

fing offer 8 va )
INACTIVE  |[20uesing oFer WAIT S NA_FAILURE
reset receiving_offer " invoking_offer_nack vta
[ SUCCESS ] [ OFFER_ACCEPTED ] [ OFFER_RECEIVED ]
vta - . via Ki ffe K |
* ;-: receiving_ticket | * z Invoking_ofrer_acl reset
user
vta
WAITING [ PROCESSING ] [ OFFER_RECEIVED ]
ing_offer_request
Tight |4 ote " otel
. reset invoking_flight_request /'nvok/'ng?hoteljeqhu;"srb o e
reset
[ WAIT receiving_flight_offer
reset receiving_hotel_offer
hotef receiving_flight_na ) L
o @ [0CCMROTIGNLNAG L @t @t
receiving_hotel_na Tvoking_offer
[ OFFER_NOT_AVAILABLE ] eceiving offer ack
receiving_offer_nack tight
- H’r’nvoking_na ‘ﬁ%’]&ingfﬂightf nack *M‘
[ NA_FAILURE ] [ OFFER_REJECTED ][ OFFER_ACCEPTED ]
t ! ! f @ right
ad invoking_na invoking_flight_nack Tt receiving_flight_ticket Ihotet
hotel @)
receiving_hotel_ticket
FAILURE i,m/ invoking_hotel_nack
)| o ff
[ SUCCESS e {_ TICKET_RECEWED  [Truoking notel ack
flight hotel
°
ey receiving_flight_request % receiving_hotel_request
WAITING e WAITING
flight_offer_na flight_offer_available lhatel_ offer_na hotel_offer_available
[ FLIGHT_NA ] [ FLIGHT_AVAILABLE ] [ HOTEL_NA ] [ HOTEL_AVAILABLE ]
reset | ot |invoking flight na | invoking flight_offer resel | et |invoking_hotelna | invoking_hotel_offer
@ e )| e @va
[ FAILURE ] [ WAIT ] FAILURE WAIT
) e
receiving_flight_nack - receiving_flight_ack receiving_hotel_nack receiving_hotel_ack
SUCCESS FLIGHT_ACCEPTED SUCCESS HOTEL_ACCEPTED
A £ invoking_flight ticket y £ invoking_hotel_ticket
2 *

Fig. 3. The overall system as a communicating X-machine model.

However there are properties of the system that the desigmdd like to prove and
not demonstrate their existence in the X-machine model.fdhmal verification tech-
nigue for X-machine models enables the designer in theviiig activity to formally
verify the developed model against temporal logic formtieas express the properties
that the system should have.

The next step is to specify the communication between theaXhime models of the
services and this way create the communicating X-machirgeiaf the system under
development. One more benefit is that it is possible to mdaeénvironment (i.e. the
user) as an X-machine achieving to model the complete sy&eaphically on the state



188

transition diagram we denote the acceptance of input byarstother than the standard
by a solid circle along with the nantg; of the communicating X-machine component
that sends it. Similarly, a solid diamond with the naéig denotes that output is sent
to the C, communicating X-machine component. The complete modeg¢sated in
figure 3 providing a flexible and modular design of the comgptgtstem where clearly
the services of the system are represented together witheided communication to
create the expected system behaviour.

XMDL has been extended (XMDL-c) in order to code communizgtiomponents.
XMDL-c provides syntax that facilitates the definition oétbommunicating functions.
CommX-System is a tool created to support modelling and lsitimn of Communi-
cating X-machines [8]. CommX-System takes as input all thDX files describing
the services together with the XMDL-c file that describesabmmunication between
them, and outputs an executable file corresponding to theatbwystem, offering a
simulation model of it. The following activity is to executiee simulation scenarios
and compare the outcome with the expected behaviour of tstersy The results of
this analysis will provide feedback to the developers iatlig the “correctness” of the
model. Taking this into account further iterations maybedesl to improve the model.

5 Conclusions and Further Work

We have presented a methodology for developing enterpyerss following a web
service architecture using X-machines formal method. Xrges attracted many re-
searchers interest over the last fifteen years [4] mainlabge of the intuitiveness in
modelling reactive systems and the additional featurespihevide in terms of testing
and verification. The methodology and its accompanyingstonpose an incremental
bottom-up practical development.

The proposed methodology following a holistic approactegnates formal tech-
nigues focusing on the improvement of reliability and commess of composite web
services. It offers a disciplined approach exhibiting tbikofving key features: (a) It is
component based and architecture centric. (b) It uses aafonathod (X-machines) as
the core design tool that offers a diagrammatic notationtantisupport. This formal
model offers an intuitive mapping of BPEL notation to a fofroae. (c) It enforces
continuous verification and testing of components througlioe process to achieve
highest confidence in the quality of the developed companéd} It employs simula-
tion allowing the informal verification of complex servicerapositions in cases where
formal verification is impossible or impractical. (e) Deasiig incremental and iterative
via a prescribed sequence of design activities within aicyecbcess.

The use of the proposed methodology on the case study demat@aigpromising re-
sults. However, there are several issues that could betpdteimproved. Future work
will be concentrated on the automatic translation of BPEtcHjrations to X-machine
models. In addition the model checking technique could bthéx extended in order to
facilitate the formal verification of communicating X-maee models. Research is also
conducted towards the establishment of a successful gesttiategy for the communi-
cating X-machine models, that is expected also to offer Hilityato formally extract
simulation scenarios in order to follow a disciplined agmio in the informal verifica-



189

tion through simulation. Finally, on going research is &dding the issue of detecting
unexpected emergent behaviours in automatic web servicepasitions [13].

References

1. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. ita, C.K. Liu, V. Mehta,
S. Thatte, P. Yendluri, A. Yiu, and A. Alves. Web servicesibass process execution lan-
guage, version 2.0, December 2005.

2. G. Eleftherakis.Formal Verification of X-machine Models : Towards Formal Biepment
of Computer-Based Systeni®hD thesis, University of Sheffield, UK, 2003.

3. Lars Frantzen, Jan Tretmans, and René de Vries. Towardslrhased testing of web ser-
vices. In Antonia Bertolino and Andrea Polini, editois, Proceedings of International
Workshop on Web Services Modeling and Testing (WS-MaTg208ges 67—82, Palermo,
Sicily, Italy, June 9th 2006.

4. M. Holcombe. What are X-machine§@rmal Aspects of Computing2(6):418-422, 2000.

5. M. Holcombe and F. Ipat€orrect Systems: Building a Business Process Solufgninger
Verlag, London, 1998.

6. Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chentosated model checking
and testing for composite web servicesPhoceedings of 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (IS3R05) page 300307, Seattle,
WA, USA, May 2005.

7. R. Kazhamiakin and M. Pistore. Parametric communicatimalel for the verification of
BPEL4WS compositions. In M. Bravetti, L. Kloul, and G. Zawab, editorsProceedings
of the 2nd International Workshop on Web Services and FomM@hods volume 3670 of
Lecture Notes in Computer Scienpages 318-332, Versailles, France, September 2005.

8. P.Kefalas, G. Eleftherakis, and E. Kehris. Communigg¥rmachines: a practical approach
for formal and modular specification of large systetngormation and Software Technolagy
45(5):269-280, April 2003.

9. P.Kefalas, G. Eleftherakis, and A. Sotiriadou. Deveigpi ools for Formal Methods. 18th
Panhellenic Conference on Informatjgmges 625-639, Thessaloniki, November 2003.

10. B. Meyer. The Grand Challenge of Trusted Component25th International Conference
on Software Engineeringrages 660-667, Portland, Oregon, May 2003.

11. S. Nakajima. Lightweight formal analysis of web senfilosvs. Progress in Informatics
1(2):57-76, November 2005.

12. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, .MHer Hofstede, and H.M.W.
Verbeek. Formal semantics and analysis of control flow irbpst. Technical Report Report
BPM-05-15, BPM Center, 2005.

13. O. Paunovski, G. Eleftherakis, and A.J. Cowling. Fraoréwfor Exploring Emergence
within Complex Systems. IRroc. 2nd Annual SEERC Doctoral Conferendaly 2007.

14. G. Salaiin, L. Bordeaux, and M. Schaerf. Describing @adaning on web services using
process algebra. IRroceedings of the IEEE International Conference on WelviSes
pages 43-51, San Diego, CA, USA, June 2004. IEEE.



